一种双层五边形电极的薄膜体声波谐振器

文档序号:1314288 发布日期:2020-07-10 浏览:17次 >En<

阅读说明:本技术 一种双层五边形电极的薄膜体声波谐振器 (Film bulk acoustic resonator with double-layer pentagonal electrode ) 是由 李国强 刘鑫尧 衣新燕 张铁林 赵利帅 刘红斌 于 2020-04-30 设计创作,主要内容包括:本发明公开了一种双层五边形电极的薄膜体声波谐振器。所述薄膜体声波谐振器从上至下包括顶电极、压电层、底电极构成的压电振荡堆结构,以及支撑层(连接层)和衬底。本发明所述的顶电极由内外两层五边形构成,由同一圆周的内外界五边形经一定角度旋转获得。本发明所述的顶电极外层厚度高于内层五边形厚度,在边缘处形成台阶边框,其余位置均为平面,且内外五边形任意两边均不平行,从而形成非对称图形,使得横向寄生的声波产生衰减和分散。本发明通过设计电极层的形状尺寸,在不增加工艺步骤的前提上抑制谐振器的横向剪切波,提高谐振器的Q值,优化薄膜体声波谐振器谐振特性。(The invention discloses a film bulk acoustic resonator with double-layer pentagonal electrodes. The film bulk acoustic resonator comprises a piezoelectric oscillation stack structure formed by a top electrode, a piezoelectric layer and a bottom electrode, a supporting layer (a connecting layer) and a substrate from top to bottom. The top electrode is formed by an inner layer of pentagon and an outer layer of pentagon, and is obtained by rotating the inner pentagon and the outer pentagon of the same circumference at a certain angle. The thickness of the outer layer of the top electrode is higher than that of the inner layer of the pentagon, a step frame is formed at the edge, the rest positions are planes, and any two sides of the inner pentagon and the outer pentagon are not parallel, so that an asymmetric pattern is formed, and transverse parasitic sound waves are attenuated and dispersed. According to the invention, by designing the shape and size of the electrode layer, the transverse shear wave of the resonator is inhibited on the premise of not increasing the process steps, the Q value of the resonator is improved, and the resonance characteristic of the film bulk acoustic resonator is optimized.)

一种双层五边形电极的薄膜体声波谐振器

技术领域

本发明涉及体声波谐振器技术领域,具体涉及一种双层五边形电极的薄膜体声波谐振器。

背景技术

随着微波无线技术的急速发展,在当今移动通讯终端中,声波滤波技术因其优异的高频使用性能显得尤为重要。通讯技术的进一步发展,对工作在射频频段的滤波器提出了集成化、微型化、高性能、低成本等新的要求。薄膜体声波谐振器(Film Bulk AcousticResonator,简称“FBAR”)以其优异的性能,如体积小、损耗低、功率容量大、可集成等优势,在传感、测控及通信等领域有广阔的应用前景。

薄膜体声波谐振器的核心结构是由电极-压电层-电极构成的压电振荡堆结构结构,其工作原理是当世家交变的电信号于两端电极上时,由于材料的逆压电效应,会将电信号转化成机械信号,机械信号以声波的形式在薄膜内传播,当垂直方向的声波波长与厚度满足一定条件时,产生驻波,此时能量的损耗最小,最终通过压电效应将声信号转化成电信号进行选频的器件。对体声波谐振器来最重要的部分便是压电振荡堆结构的压电性,高的品质因数(Q值)使得其即使在频段拥挤,通带边缘吃紧处,也可表现出极好的抑制和插入损耗性能。随着使用频段的逐渐增高,薄膜体声波谐振器的横向寄生对Q值的影响愈加显著。抑制横向寄生可进一步提高谐振器的高频表现和Q值。

射频微波技术的日益发展,对射频器件的工作条件提出了更加严苛的要求。在工作频率不断提高的同时,对器件体积、使用性能、稳定性、集成性也有了更高的要求。薄膜体声波谐振器(Film Bulk Acoustic Resonator,简称“FBAR”)以其优异的性能,如体积小、损耗低、功率容量大、可集成等优势,在传感、测控及通信等领域有广阔的应用前景。

发明内容

为了克服现有技术存在的上述不足,本发明的目的是提供一种双层五边形电极的薄膜体声波谐振器。

本发明提供的双层五边形电极的薄膜体声波谐振器是一种改良的双层五边形电极的薄膜体声波谐振器。本发明通过电极形状和台阶的设计,抑制垂直激励FBAR器件时产生的横向寄生效应,采用该电极的FBAR可具有给更高的Q值,并避免杂波的产生。在不额外增加工艺步骤的基础上,及抑制了横波又控制制造成本。

本发明的目的至少通过如下技术方案之一实现。

本发明提供的一种双层五边形电极的薄膜体声波谐振器,从上至下包括顶电极、压电层、底电极构成的压电振荡堆结构以及支撑层(连接层)和衬底;所述压电振荡堆结构的轮廓为内外两圈任意两边不平行的五边形图形;所述衬底上设有声学反射界面,压电震荡堆结构设置于声学反射界面之上,压电震荡堆结构有效面积大于声学反射界面。

进一步地,所述顶电极由内外两圈五边形电极构成,这两圈五边形电极为同一半径圆周的内切五边形和外切五边形。

进一步地,从俯视角度看,所述顶电极的内外两圈五边形电极之间有夹角,夹角的度数范围为0°-360°且夹角度数不等于n×36°,n为整数且n的取值范围为1-9。

进一步地,所述顶电极的内圈五边形电极厚度为100-300nm,所述顶电极的外圈五边形电极厚度为300-1200nm。

进一步地,所述顶电极的内外两圈五边形为同种材料,所述顶电极的材质为钼、钨、金、铝、银、钛等中的一种及以上。

进一步地,所述衬底为高阻硅、铌酸锂、蓝宝石衬底或SOI衬底中一种。所述衬底适用于薄膜体声波谐振器。

进一步地,所述顶电极和底电极均为金属薄膜。

进一步地,所述压电层为具有压电效应的薄膜材料,所述支撑层为物理支撑层或金属键合层。所述物理支撑层为氮化硅或二氧化硅等绝缘薄膜。所述金属键合层为Au/Sn、Au/Au、Ni/Sn等金属间化合物。

进一步地,所述压电层为具有压电效应的薄膜材料;所述压电层为PZT、AlN、GaN、ZnO、CdS及LiNbO3中的一种及以上。

进一步地,所述声学反射界面为空气腔或高低声阻抗交叠形成的布拉格反射层。

与现有技术相比,本发明具有如下优点和有益效果:

本发明利用电极几何形状的设计来加强薄膜体声波谐振器中纵波的反射,并减少剪切波的损耗;所设计的电极结构由内外两层经一定角度旋转的五边形构成,其中任意两边均不平行,从而形成一个非对称几何图形,使激励产生的横向声波无法产生驻波,横向反射的声波传播方向和相位均不满足振荡条件,从而分散和衰减;本发明在纵向尺寸上设置台阶以抑制寄生效应,横向尺寸上设置双五边形图形抑制寄生效应,从而进一步减少横向驻波;未增加工艺步骤,控制了器件的制造成本,使器件性能进一步提升。

附图说明

图1为本发明实施例涉及的一种双层五边形电极的薄膜体声波谐振器的俯视图;

图2为本发明实施例1中的第一种双层五边形电极的薄膜体声波谐振器的剖面图;

图3为本发明实施例2中的第二种双层五边形电极的薄膜体声波谐振器的剖面图;

图4为本发明实施例3中的第三种双层五边形电极的薄膜体声波谐振器的剖面图。

具体实施方式

以下结合实例对本发明的具体实施作进一步说明,但本发明的实施和保护不限于此。需指出的是,以下若有未特别详细说明之过程,均是本领域技术人员可参照现有技术实现或理解的。所用试剂或仪器未注明生产厂商者,视为可以通过市售购买得到的常规产品。

实施例1

本实施例提供了一种双层五边形电极的空气隙型薄膜体声波谐振器,如图1与图2所示,所述谐振器包括从下到上依次分布的衬底105、底电极104、压电层103和内圈顶电极101,外圈顶电极102。此实施例中以空气腔作为反射界面,底部电极104面积大于空气腔,且大于顶电极101与102。顶电极的双层五边形分为内圈顶电极101和外圈顶电极102。

衬底105为单晶Si;压电层材料为1 μm厚的多晶AlN材料;底电极104与内圈顶电极101均为200nm的金属Mo电极;外圈顶电极102为厚度400nm的金属Mo;

双层五边形电极由两次PVD磁控溅射得到,第一次溅射获得200nm的内圈顶电极101,第二次溅射获得400nm的外圈顶电极102;

双层五边形电极之间的夹角如图1所示相差17°,内外圈双层五边形任意两边不平行,且面积小于底电极104,形成非对称几何图形。

实施例2

本实施例提供了一种双层五边形电极的固态装配型薄膜体声波谐振器,如图3所示,所述谐振器包括从下到上依次分布的衬底105、布拉格反射层108、底电极104、压电层103和内圈顶电极101,外圈顶电极102。此实施例中以布拉格反射层作为反射界面,布拉格反射层由高低声阻抗且厚度为1/4波长的薄膜材料交替形成。顶电极的双层五边形分为内圈顶电极101和外圈顶电极102。

衬底105为单晶Si;压电层材料为1μm厚的多晶AlN材料;底电极104与内圈顶电极101均为200nm的金属Mo电极;外圈顶电极102为厚度400nm的金属Mo;布拉格反射层108是通过直流磁控溅射技术在硅片上交替沉积 Al-W 多层膜系,并采用热退火工艺改善布拉格反射层的性能。

双层五边形电极由两次PVD磁控溅射得到,第一次溅射获得200nm的内圈顶电极101,第二次溅射获得400nm的外圈顶电极102;

双层五边形电极之间的夹角如图1所示相差20°,内外圈双层五边形任意两边不平行,且面积小于底电极104,形成非对称几何图形。

实施例3

本实施例提供了一种双层五边形电极的体硅背刻蚀型薄膜体声波谐振器,如图4所示,所述谐振器包括从下到上依次分布的衬底105、支撑层106、底电极104、压电层103和内圈顶电极101,外圈顶电极102。此实施例中将工作区域底部的衬底去除,以空气界面作为反射界面。由于底部衬底被贯穿,设置支撑层106增加器件的机械牢度。顶电极的双层五边形分为内圈顶电极101和外圈顶电极102。

衬底105为单晶Si;压电层材料为1μm厚的多晶AlN材料;底电极104与内圈顶电极101均为200nm的金属Mo电极;外圈顶电极102为厚度400nm的金属Mo;支撑层材料选择150nm的氮化硅薄膜;

支撑层材料一方面提高谐振器工作时的机械强度,一方面作为刻蚀衬底过程中的阻挡层(自停止层)。

双层五边形电极之间的夹角如图1所示相差20°,内外圈双层五边形任意两边不平行,且面积小于底电极104,形成非对称几何图形。

以上实施例仅为本发明较优的实施方式,仅用于解释本发明,而非限制本发明,本领域技术人员在未脱离本发明精神实质下所作的改变、替换、修饰等均应属于本发明的保护范围。

7页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:薄膜体声波谐振器

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!