一种基于位置指纹和二步多项式拟合的卫星位置预测跟踪方法

文档序号:1377730 发布日期:2020-08-14 浏览:7次 >En<

阅读说明:本技术 一种基于位置指纹和二步多项式拟合的卫星位置预测跟踪方法 (Satellite position prediction tracking method based on position fingerprint and two-step polynomial fitting ) 是由 马琳 黄鹏飞 韩飞 王兆龙 于 2020-04-14 设计创作,主要内容包括:本发明是一种基于位置指纹和二步多项式拟合的卫星位置预测跟踪方法。所述方法为设置时间窗,通过基于位置指纹的卫星分级定位方法确定时间窗内成员星的N个离散位置构成的轨迹;将时间窗内的N个离散位置作为历史定位结果,根据二步多项式拟合方法确定出N个离散位置的二步多项式拟合值;确定成员星历史定位结果的轨迹吻合度,根据轨迹吻合度确定分级定位轨迹与真实轨迹的偏移程度;计算指纹定位结果,并对指纹定位结果进行卡尔曼滤波,得到成员星最终定位结果。本发明预测跟踪的定位结果的定位误差小于5m的概率为90%,定位误差小于10m的概率约为95%,定位误差小于30m的概率超过95%。定位精度远远高于未跟踪的定位结果。(The invention discloses a satellite position prediction tracking method based on position fingerprints and two-step polynomial fitting. Setting a time window, and determining a track formed by N discrete positions of member satellites in the time window by a satellite hierarchical positioning method based on position fingerprints; taking N discrete positions in a time window as a historical positioning result, and determining a two-step polynomial fitting value of the N discrete positions according to a two-step polynomial fitting method; determining the track goodness of fit of the member ephemeris history positioning result, and determining the deviation degree of the hierarchical positioning track and the real track according to the track goodness of fit; and calculating a fingerprint positioning result, and performing Kalman filtering on the fingerprint positioning result to obtain a final positioning result of the member satellite. The probability that the positioning error of the positioning result of the prediction tracking is less than 5m is 90%, the probability that the positioning error is less than 10m is about 95%, and the probability that the positioning error is less than 30m exceeds 95%. The positioning accuracy is much higher than the untracked positioning result.)

一种基于位置指纹和二步多项式拟合的卫星位置预测跟踪 方法

技术领域

本发明涉及卫星位置预测跟踪技术领域,是一种基于位置指纹和二步多项式拟合的卫星位置预测跟踪方法。

背景技术

卫星集群是指由多个卫星组成的一个分布式卫星系统。其中,选取一颗或若干颗卫星作为基准星,其余卫星为成员星。基准星沿着预设的轨道飞行,成员星跟随基准星进行伴飞。卫星集群自主定位的目的是利用基准星的信息对成员星进行定位。传统的卫星集群自主定位主要针对两个卫星或小规模卫星集群。随着航天任务的任务需求的不断发展,卫星集群成员数量不断增多功能趋向专一化,因此需要研究一种快速、低成本的,并具有集群自主性的定位技术。基于位置指纹的定位方法是一种较为成熟的定位方法,指纹定位系统具有成本低、结构简单的特点,因此将指纹定位方法扩展至卫星集群定位中,能够有效减小研制成本,并对卫星集群的协同控制以及卫星技术的发展具有重要意义。

然而,由于卫星集群范围大,不能保证在任意时刻成员星的位置都在距离基准星很近的范围内,因此会造成一些成员星定位结果与真实位置偏离过大的问题,导致定位精度迅速降低。其次,基准星始终在进行周期性的运行之中,基准星之间形成的拓扑结构也呈现周期性的变化。当某时刻基准星的拓扑结构较差时,特别是基准星位于同一平面上时,空间中的信号分布将呈现对称性,同样会导致该时刻的定位结果与实际偏离过大。因此需要对成员星进行跟踪以提高定位精度。

发明内容

本发明为提高定位精度,本发明提供了一种基于位置指纹和二步多项式拟合的卫星位置预测跟踪方法,本发明提供了以下技术方案:

一种基于位置指纹和二步多项式拟合的卫星位置预测跟踪方法,包括以下步骤:

步骤1:设置时间窗,从时间窗起始时刻开始,通过基于位置指纹的卫星分级定位方法以一定的时间对成员星进行N次连续定位,确定时间窗内成员星的N个离散位置构成的轨迹;

步骤2:将时间窗内的N个离散位置作为历史定位结果,根据二步多项式拟合方法确定出N个离散位置的二步多项式拟合值;

步骤3:确定成员星历史定位结果的轨迹吻合度,根据轨迹吻合度确定分级定位轨迹与真实轨迹的偏移程度;

步骤4:计算指纹定位结果,并对指纹定位结果进行卡尔曼滤波,得到成员星最终定位结果;

步骤5:将时间窗向成员星运动方向滑动1个单位,根据成员星接收信令判断成员星当前时刻是否存在机动变轨,当不存在机动变轨时,则重复步骤2至步骤4;当存在机动变轨时,则重置时间窗,并将变轨时刻作为时间窗的起始时刻,重复步骤1至步骤4。

优选地,通过基于位置指纹的卫星分级定位方法以一定的时间间对成员星进行N次连续定位,确定时间窗内成员星的N个离散位置构成的轨迹,通过下式表示时间窗内成员星的N 个离散位置构成的轨迹:

L=[l1 l2 … lN]T

li=(xi,yi,zi),i=1,2,…,N

其中,L为N个离散位置构成的轨迹,lN为L中第i个位置。

优选地,所述步骤2具体为:

步骤2.1:对时间窗内的N个离散位置的X轴、Y轴和Z轴数据进行拟合计算,得到一部多项式拟合的轨迹方程,通过下式表示一步多项式拟合的轨迹方程:

其中,pn(t)为X轴一步多项式拟合轨迹方程,qn(t)为Y轴一步多项式拟合轨迹方程,rn(t) 为Z轴一步多项式拟合轨迹方程;n为一步拟合多项式次数,k为一步拟合多项式次数序号, ak为X轴一步拟合多项式系数,bk为Y轴一步拟合多项式系数,ck为Z轴一步拟合多项式系数,tk为对应的时刻;

确定一步多项式拟合的轨迹,通过下式表示一步多项式拟合的轨迹:

其中,为一步多项式拟合的轨迹,为ti时刻的轨迹的一步多项式拟合值;

步骤2.2:根据一步多项式拟合的轨迹确定历史定位结果和一步多项式拟合值的差值,通过下式表示历史定位结果和一步多项式拟合值的差值:

其中,为历史定位结果和一步多项式拟合值的差值;

根据历史定位结果和一步多项式拟合值的差值确定二步多项式拟合门限值,通过下式表示二步多项式拟合门限值:

其中,median(·)表示求中位数,k为比例常数,η为二步多项式拟合门限值;

步骤2.3:对多项式拟合的过程重新进行拟合,得到二步多项式拟合的轨迹方程,通过下式表示二步多项式拟合的轨迹方程:

其中,为X轴二步多项式拟合轨迹方程,为X轴二步拟合多项式系数,为Y 轴二步多项式拟合轨迹方程,为Y轴二步拟合多项式系数,为Z轴二步Z多项式拟合轨迹方程,为Z轴二步拟合多项式系数;

根据多项式函数确定成员星的历史定位结果的二步多项式拟合值,通过下式表示所述二步多项式拟合值:

其中,为成员星历史定位结果的二步多项式拟合值,为第ti时刻的轨迹的二步多项式拟合值。

优选地,确定成员星历史定位结果的轨迹吻合度,通过下式表示所述轨迹吻合度:

其中,w为成员星历史定位结果的轨迹吻合度,I(·)为指示函数,v为成员星的运行速度的大小,c为比例常数;

历史定位结果中偏差大的点增多,拟合位置无法表示真实位置,则吻合度就会降低。

优选地,计算指纹定位结果具体为:确定轨迹吻合度的门限值σ,σ取0.8,当成员星历史定位结果的轨迹吻合度w<σ时,通过基于位置指纹的卫星分级定位方法得到tN+1时刻指纹定位结果,通过下式表示tN+1时刻指纹定位结果:

其中,为tN+1时刻指纹定位结果,为tN+1时刻指纹定位结果X轴坐标,为tN+1时刻指纹定位结果Y轴坐标,为tN+1时刻指纹定位结果Z轴坐标;

当w≥σ时,根据二步拟合得到的多项式函数对tN+1时刻成员星的位置进行预测,得到tN+1时刻成员星的预测位置,通过下式表示所述预测位置:

其中,为tN+1时刻成员星的预测位置;

以tN+1时刻成员星的预测位置为中心,建立边长为l的跟踪区域,将跟踪区域划分成多个边长为l′的小立方体,以每个小立方体的中心为参考点,利用KNN算法得到tN+1时刻指纹定位结果,通过下式表示tN+1时刻指纹定位结果:

优选地,确定成员星最终定位结果具体为:

步骤4.1:通过tN时刻的状态得到tN+1时刻状态的卡尔曼预测值通过下式tN+1时刻状态的表示卡尔曼预测值

XN=[lN v]T

其中,A为状态转移矩阵,XN为tN时刻的状态,lN为tN时刻成员星的定位结果,

计算tN+1时刻的状态协方差矩阵的预测值,通过下式表示tN+1时刻的状态协方差矩阵的预测值:

其中,为tN+1时刻的状态协方差矩阵的预测值,PN表示tN时刻状态协方差矩阵,Q 表示过程噪声协方差矩阵;

步骤4.2:将tN+1时刻的指纹定位结果作为观测值,用tN+1时刻的观测值对当前状态的卡尔曼预测值进行修正,从而得到tN+1时刻修正状态XN+1

其中,K为卡尔曼增益,lN+1为成员星在tN+1时刻最终定位结果,H为观测矩阵,R表示测量噪声协方差矩阵,Z为观测值;

步骤4.3:根据tN+1时刻修正状态XN+1确定成员星在tN+1时刻最终定位结果,通过下式表示成员星在tN+1时刻最终定位结果:

lN+1=(xN+1,yN+1,zN+1)

其中,lN+1为tN+1时刻最终定位结果。

本发明具有以下有益效果:

本发明通过对历史定位结果进行二步拟合并计算轨迹吻合度的方式识别判断历史定位结果是否符合跟踪条件,当符合跟踪条件时,利用二步拟合的轨迹得到当前时刻成员星的预测位置;接下来,根据预测位置确定跟踪区域,在跟踪区域建立跟踪RadioMap并再次进行指纹定位,确定成员星的指纹定位结果,对指纹定位结果进行卡尔曼滤波得到最终的定位结果。

实验结果表明,预测跟踪的定位结果的定位误差小于5m的概率为90%,定位误差小于 10m的概率约为95%,定位误差小于30m的概率超过95%。定位精度远远高于未跟踪的定位结果。因此本发明所提出的算法能够大幅度提高定位精度。

附图说明

图1为设置时间窗示意图;

图2为跟踪区域示意图;

图3为种基于位置指纹和二步多项式拟合的卫星位置预测跟踪方法流程图;

图4为真实轨迹示意图;

图5为分级定位结果示意图;

图6为预测跟踪结果示意图;

图7为校正前后定位误差CDF曲线图。

具体实施方式

以下结合具体实施例,对本发明进行了详细说明。

具体实施例一:

根据图3所示,本发明提供一种基于位置指纹和二步多项式拟合的卫星位置预测跟踪方法,包括以下步骤:

一种基于位置指纹和二步多项式拟合的卫星位置预测跟踪方法,包括以下步骤:

步骤1:设置时间窗,从时间窗起始时刻开始,通过基于位置指纹的卫星分级定位方法以一定的时间对成员星进行N次连续定位,确定时间窗内成员星的N个离散位置构成的轨迹;通过基于位置指纹的卫星分级定位方法以一定的时间间对成员星进行N次连续定位,确定时间窗内成员星的N个离散位置构成的轨迹,通过下式表示时间窗内成员星的N个离散位置构成的轨迹:

L=[l1 l2 … lN]T

li=(xi,yi,zi),i=1,2,…,N

其中,L为N个离散位置构成的轨迹,lN为L中第i个位置。

步骤2:将时间窗内的N个离散位置作为历史定位结果,根据二步多项式拟合方法确定出N个离散位置的二步多项式拟合值;

所述步骤2具体为:

步骤2.1:对时间窗内的N个离散位置的X轴、Y轴和Z轴数据进行拟合计算,得到一部多项式拟合的轨迹方程,通过下式表示一步多项式拟合的轨迹方程:

其中,pn(t)为X轴一步多项式拟合轨迹方程,qn(t)为Y轴一步多项式拟合轨迹方程,rn(t) 为Z轴一步多项式拟合轨迹方程;n为一步拟合多项式次数,k为一步拟合多项式次数序号, ak为X轴一步拟合多项式系数,bk为Y轴一步拟合多项式系数,ck为Z轴一步拟合多项式系数,tk为对应的时刻;

确定一步多项式拟合的轨迹,通过下式表示一步多项式拟合的轨迹:

其中,为一步多项式拟合的轨迹,为ti时刻的轨迹的一步多项式拟合值;

步骤2.2:根据一步多项式拟合的轨迹确定历史定位结果和一步多项式拟合值的差值,通过下式表示历史定位结果和一步多项式拟合值的差值:

其中,为历史定位结果和一步多项式拟合值的差值;

根据历史定位结果和一步多项式拟合值的差值确定二步多项式拟合门限值,通过下式表示二步多项式拟合门限值:

其中,median(·)表示求中位数,k为比例常数,η为二步多项式拟合门限值;

步骤2.3:对多项式拟合的过程重新进行拟合,得到二步多项式拟合的轨迹方程,通过下式表示二步多项式拟合的轨迹方程:

其中,为X轴二步多项式拟合轨迹方程,为X轴二步拟合多项式系数,为Y 轴二步多项式拟合轨迹方程,为Y轴二步拟合多项式系数,为Z轴二步Z多项式拟合轨迹方程,为Z轴二步拟合多项式系数;

根据多项式函数确定成员星的历史定位结果的二步多项式拟合值,通过下式表示所述二步多项式拟合值:

其中,为成员星历史定位结果的二步多项式拟合值,为第ti时刻的轨迹的二步多项式拟合值。

步骤3:确定成员星历史定位结果的轨迹吻合度,根据轨迹吻合度确定分级定位轨迹与真实轨迹的偏移程度;

确定成员星历史定位结果的轨迹吻合度,通过下式表示所述轨迹吻合度:

其中,w为成员星历史定位结果的轨迹吻合度,I(·)为指示函数,v为成员星的运行速度的大小,c为比例常数;

历史定位结果中偏差大的点增多,拟合位置无法表示真实位置,则吻合度就会降低。

步骤4:计算指纹定位结果,并对指纹定位结果进行卡尔曼滤波,得到成员星最终定位结果;

计算指纹定位结果具体为:确定轨迹吻合度的门限值σ,σ取0.8,当成员星历史定位结果的轨迹吻合度w<σ时,通过基于位置指纹的卫星分级定位方法得到tN+1时刻指纹定位结果,通过下式表示tN+1时刻指纹定位结果:

其中,为tN+1时刻指纹定位结果,为tN+1时刻指纹定位结果X轴坐标,为tN+1时刻指纹定位结果Y轴坐标,为tN+1时刻指纹定位结果Z轴坐标;

当w≥σ时,根据二步拟合得到的多项式函数对tN+1时刻成员星的位置进行预测,得到tN+1时刻成员星的预测位置,通过下式表示所述预测位置:

其中,为tN+1时刻成员星的预测位置;

以tN+1时刻成员星的预测位置为中心,建立边长为l的跟踪区域,将跟踪区域划分成多个边长为l′的小立方体,以每个小立方体的中心为参考点,利用KNN算法得到tN+1时刻指纹定位结果,通过下式表示tN+1时刻指纹定位结果:

确定成员星最终定位结果具体为:

步骤4.1:通过tN时刻的状态得到tN+1时刻状态的卡尔曼预测值通过下式tN+1时刻状态的表示卡尔曼预测值

XN=[lN v]T

其中,A为状态转移矩阵,XN为tN时刻的状态,lN为tN时刻成员星的定位结果,

计算tN+1时刻的状态协方差矩阵的预测值,通过下式表示tN+1时刻的状态协方差矩阵的预测值:

其中,为tN+1时刻的状态协方差矩阵的预测值,PN表示tN时刻状态协方差矩阵,Q 表示过程噪声协方差矩阵;

步骤4.2:将tN+1时刻的指纹定位结果作为观测值,用tN+1时刻的观测值对当前状态的卡尔曼预测值进行修正,从而得到tN+1时刻修正状态XN+1

其中,K为卡尔曼增益,lN+1为成员星在tN+1时刻最终定位结果,H为观测矩阵,R表示测量噪声协方差矩阵,Z为观测值;

步骤4.3:根据tN+1时刻修正状态XN+1确定成员星在tN+1时刻最终定位结果,通过下式表示成员星在tN+1时刻最终定位结果:

lN+1=(xN+1,yN+1,zN+1)

其中,lN+1为tN+1时刻最终定位结果。

步骤5:将时间窗向成员星运动方向滑动1个单位,根据成员星接收信令判断成员星当前时刻是否存在机动变轨,当不存在机动变轨时,则重复步骤2至步骤4;当存在机动变轨时,则重置时间窗,并将变轨时刻作为时间窗的起始时刻,重复步骤1至步骤4。

具体实施例二:

本发明提供一种基于位置指纹和二步多项式拟合的卫星位置预测跟踪方法,具体包括以下步骤:

步骤1:如图1所示,设置宽度为N的时间窗,从时间窗起始时刻开始,通过基于位置指纹的卫星分级定位方法以一定的时间间隔Δt对成员星进行N次连续定位,得到时间窗内成员星的N个离散位置构成的轨迹L

L=[l1 l2 … lN]T:

其中,li=(xi,yi,zi),i=1,2,…,N,表示轨迹L中第i个位置。对应的时刻为:

T=[t1 t2 … tN]T

步骤2:将时间窗内的N个离散位置作为历史定位结果,根据二步多项式拟合方法计算出这N个离散位置的二步多项式拟合值,具体实施方式如下:

:首先对X轴数据进行拟合。假设X轴拟合多项式为

X轴拟合误差为:

则目标函数为:

显然,Jx是a0,…,an的多元函数。对Jx分别关于每个多项式系数求偏导可得:

令偏导数等于0可得

上式是关于a0,…,an的线性方程组,用矩阵表示为:

根据上式可解出a0,…,an,从而可以得出X轴拟合多项式。同理,对Y轴和Z轴进行拟合,分别得到Y轴拟合多项式和Z轴拟合多项式。于是,可得到一步多项式拟合的轨迹方程:

于是,一步多项式拟合的轨迹可表示为:

其中,表示ti时刻的轨迹的一步多项式拟合值。

计算成员星历史定位结果和一步多项式拟合值之间的差值:

计算二步多项式拟合门限值η:

其中,median(·)表示求中位数,k为比例常数,通常k=2。若则成员星的历史定位结果li以及对应的时刻ti用于后续的二步多项式拟合;若则成员星的历史定位结果li对应的时刻ti不用于后续的二步多项式拟合。

利用确定的用于拟合的历史位置li和对应的时刻ti,按照多项式拟合的过程重新进行拟合,得到二步多项式拟合的轨迹方程:

根据新的多项式函数可以确定成员星的历史定位结果的二步多项式拟合值:

其中,表示第ti时刻的轨迹的二步多项式拟合值。

步骤3:计算成员星历史定位结果的轨迹吻合度w。轨迹吻合度定义如下:

其中,I(·)表示指示函数,v表示成员星的运行速度的大小,c为比例常数,通常c=5。轨迹吻合度表示经过二步曲线拟合之后的拟合位置和历史定位结果之间吻合的程度,历史定位结果中偏差大的点越多,则拟合位置越难以表示真实位置,则吻合度就会越低,反之吻合度越高。因此轨迹吻合度表征分级定位轨迹和真实轨迹之间的偏移程度。

步骤4:计算tN+1时刻的指纹定位结果。首先确定轨迹吻合度门限值σ,通常取σ=0.8;若 w<σ,则仍然通过基于位置指纹的卫星分级定位方法得到tN+1时刻指纹定位结果若w≥σ,则符合跟踪条件,按照以下步骤得到tN+1时刻指纹定位结果:

根据二步拟合得到的多项式函数对tN+1时刻成员星的位置进行预测,可得到tN+1时刻成员星的预测位置

以tN+1时刻成员星的预测位置为中心,建立边长为l的跟踪区域,如图2所示。

将跟踪区域划分成多个边长为l′的小立方体,以每个立方体的中心为参考点,根据tN+1时刻的基准星位置,按照信号传播模型计算每个参考点的RSS,建立跟踪Radio Map,利用KNN 算法可得到当前时刻指纹定位结果:

对tN+1时刻指纹定位结果进行卡尔曼滤波,得到tN+1时刻最终定位结果。具体实施方式如下:

假定tN时刻的状态为:

XN=[lN v]T

其中,lN=(xN,yN,zN)表示tN时刻成员星的定位结果,v=(vx,vy,vz)表示成员星当前的速度。假设相邻两个时刻之间的时间间隔很小,在这段时间内成员星可近似作匀速直线运动,因此tN+1时刻的成员星位置的卡尔曼预测值和tN时刻的位置lN满足以下近似关系:

因此状态转移矩阵为

于是可以通过tN时刻的状态得到tN+1时刻状态的卡尔曼预测值

其中,

计算tN+1时刻的状态协方差矩阵的预测值

其中,PN表示tN时刻状态协方差矩阵,Q表示过程噪声协方差矩阵。

将tN+1时刻的指纹定位结果作为观测值Z:

用tN+1时刻的观测值对当前状态的卡尔曼预测值进行修正,从而得到tN+1时刻状态XN+1

其中,lN+1=(xN+1,yN+1,zN+1)为成员星在tN+1时刻最终定位结果,K为卡尔曼增益:

H为观测矩阵通过下式表示:

其中,R表示测量噪声协方差矩阵。从而通过公式获得成员星在tN+1时刻的最终定位结果:

按照下式更新状态协方差矩阵得到tN+1时刻的状态协方差矩阵的最终值:

步骤5:时间窗向成员星运动方向滑动1个单位,并根据成员星接收信令判断成员星当前时刻是否存在机动变轨,若不存在机动变轨,则重复步骤2步骤5过程;若存在机动变轨,则重置时间窗,并将变轨时刻作为时间窗的起始时刻,重复步骤1~步骤5。

如图3所示,基于位置指纹和二步多项式拟合的卫星位置预测跟踪算法主要有三个阶段:分级定位阶段、预测跟踪阶段和滤波阶段。首先需要通过基于位置指纹的卫星分级定位算法得到历史定位结果,然后基于二步多项式拟合计算轨迹吻合度。当符合跟踪条件时,根据预测结果确定跟踪区域,计算跟踪Radio Map,对成员星再次定位,并对定位结果进行卡尔曼滤波;当不符合跟踪条件时,再次利用分级定位算法计算成员星的当前位置,并进行卡尔曼滤波。

为了验证基于位置指纹和二步多项式拟合的卫星位置预测跟踪算法,结合基于位置指纹的卫星集群分级定位算法,对本发明提出的算法进行仿真。本发明进行了多次实验,在每次实验中成员星的轨迹为一条直线,轨迹点的数量为300。本发明设定时间窗的宽度为30,即每次选取30个历史位置进行二步拟合,判断是否满足跟踪条件并进行跟踪。

在某一次实验中,成员星真实轨迹如图4所示。分级定位结果如图5所示,从图中可以看出,由于定位范围大,且稀疏Radio Map的参考点间隔大,因此分级定位算法的定位结果中存在一些偏差特别大的点,从而造成定位精度不高。

而对分级定位结果进行预测跟踪后,定位结果如图6所示。从图6可知,对历史数据进行预测跟踪能够大大提高定位精度。在图5中,有一部分定位结果和真实轨迹的偏差很大,而从图6可知,本发明提出的算法的定位位置和真实轨迹基本重合,从而验证了本发明所提预算法的可靠性。为了分析本发明算法对定位精度的提升,将未进行跟踪的指纹定位误差的累计分布函数和跟踪后的定位误差的累积分布函数进行对比。

从图7中可以看出,跟踪后的定位结果的定位误差明显小于未校正的定位结果的定位误差。分级定位算法的结果中,定位误差小于5m的概率只有68%左右,定位误差小于10m的概率不到80%,定位误差小于30m的概率小于90%。而通过图5可知,预测跟踪的定位结果的定位误差小于5m的概率为90%,定位误差小于10m的概率约为95%,定位误差小于30m 的概率超过95%。定位精度远远高于未跟踪的定位结果。可见,本发明所提出的算法能够大幅度提高定位精度。

以上所述仅是一种基于位置指纹和二步多项式拟合的卫星位置预测跟踪方法的优选实施方式,一种基于位置指纹和二步多项式拟合的卫星位置预测跟踪方法的保护范围并不仅局限于上述实施例,凡属于该思路下的技术方案均属于本发明的保护范围。应当指出,对于本领域的技术人员来说,在不脱离本发明原理前提下的若干改进和变化,这些改进和变化也应视为本发明的保护范围。

18页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:可被探测与主动寻向定位系统及定位方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!