具有非晶结构的硅粘合涂层及其形成方法

文档序号:1516972 发布日期:2020-02-11 浏览:22次 >En<

阅读说明:本技术 具有非晶结构的硅粘合涂层及其形成方法 (Silicon bond coat with amorphous structure and method of forming the same ) 是由 格伦·哈罗德·柯比 贾斯汀·迈克尔·纳吉 约翰·塔姆·阮 杰弗里·艾伦·布罗斯 布莱恩·哈维 于 2019-07-30 设计创作,主要内容包括:提供了涂层部件及其形成和使用方法。涂层部件包括:具有表面的基底;位于基底表面上的硅基粘合涂层;和位于硅基粘合涂层上的隔离涂层。硅基粘合涂层包含非晶硅相,该非晶硅相中分布有(例如,平均尺寸为约0.03μm至约3μm的)晶体硅晶粒。非晶硅相可以由纯硅金属形成,或者可以由其中分散有硼、氧和/或氮的硅金属形成。(Coated components and methods of forming and using the same are provided. The coated member includes: a substrate having a surface; a silicon-based bond coat on the surface of the substrate; and a release coating on the silicon-based bond coat. The silicon-based bond coat layer includes an amorphous silicon phase having crystalline silicon grains distributed therein (e.g., having an average size of about 0.03 μm to about 3 μm). The amorphous silicon phase may be formed from pure silicon metal, or may be formed from silicon metal having boron, oxygen, and/or nitrogen dispersed therein.)

具有非晶结构的硅粘合涂层及其形成方法

技术领域

本发明总体涉及与陶瓷部件上的环境隔离涂层(environmental barriercoating)一起使用的粘合涂层,以及它们的形成和使用方法。

背景技术

为了提高燃气涡轮发动机的效率,不断寻求更高的燃气涡轮发动机工作温度。然而,随着工作温度增加,发动机部件的高温耐久性必须相应地增加。通过形成铁、镍和钴基超合金,已经实现了高温性能的显著进步。尽管如此,由于许多热气路径部件由超合金构成,热障涂层(TBC)可用于使部件绝缘,并且可以在承载合金与涂层表面之间维持明显的温差,因此限制了结构部件的热暴露。

虽然已经发现超合金广泛用于整个燃气涡轮发动机中使用的部件,特别是在较高温度部分使用的部件,但已经提出了替代的更轻重量的基底材料,例如陶瓷基质复合(CMC)材料。CMC和单片陶瓷部件可使用环境隔离涂层(EBC)涂覆,以保护它们免受高温发动机部分的恶劣环境的影响。EBC可以在热燃烧环境中提供致密的气密密封以抵抗腐蚀性气体。

碳化硅和氮化硅陶瓷在干燥的高温环境中会氧化。这种氧化在材料表面上产生钝化的硅氧化皮(oxide scale)。在含有水蒸气的潮湿、高温环境中,例如涡轮发动机,由于形成钝化的硅氧化皮并随后氧化硅转化为气态氢氧化硅而发生氧化和凹陷(recession)。为了防止在潮湿、高温环境中的凹陷,将环境隔离涂层(EBC)沉积在碳化硅和氮化硅材料上。

目前,EBC材料由稀土硅酸盐化合物制成。这些材料杜绝(seal out)水蒸气,防止水蒸气到达碳化硅或氮化硅表面上的硅氧化皮,从而防止凹陷。然而,这种材料不能防止氧渗透,这导致下面的基底的氧化。基底的氧化产生钝化的硅氧化皮,伴随碳氧化物或氮氧化物气体的释放。碳氧化物(即,CO、CO2)或氮氧化物(即NO、NO2等)气体不能通过致密的EBC逸出,因此起泡。迄今为止,使用硅粘合涂层已成为这种起泡问题的解决方案。硅粘合涂层提供了氧化时(在EBC下方形成钝化的氧化硅层)不释放气态副产物的层。

如果硅粘合涂层经由制造工艺或在使用期间包含线性缺陷(例如裂缝),特别是跨越整个层厚度的线性缺陷,则硅粘合涂层可能无法在该位置提供氧化保护。这种缺口可能导致基底的局部氧化和气体的释放,其可能使上覆的EBC起泡和破裂,或者在最坏的情况下,导致大部分EBC脱层。在任何一种情况下,缺失的EBC允许高温蒸汽渗透并腐蚀性地侵蚀下面的基底。经由空气等离子体喷涂(APS)制造的硅粘合涂层往往含有微结构特征,这可导致粘合涂层的低粘结强度。此外,经由化学气相沉积(CVD)制造的硅粘合涂层在EBC系统中可具有大的晶粒尺寸。由于上覆的稀土硅酸盐层在高于CVD硅处理温度的温度下被处理,因此发生晶粒生长并且可以产生包含粘合涂层的整个厚度的晶粒。根据Hall-Petch关系,众所周知,材料中的巨大晶粒相对于具有细晶粒的相同材料产生机械性能的下降。

因此,需要改进具有CMC基底的粘合涂层以与EBC一起使用。

发明内容

方面和优点将部分地在以下描述中阐述,或者可以从描述中显而易见,或者可以通过实施本发明来掌握。

总体上提供涂层部件及其形成和使用方法。在一个实施方式中,涂层部件包括:具有表面的基底;基底表面上的硅基粘合涂层;和硅基粘合涂层上的隔离涂层。硅基粘合涂层通常包括非晶硅相,该非晶硅相中分布有晶体硅晶粒(例如,平均尺寸为约0.03μm至约3μm)。例如,非晶硅相可以由纯硅金属形成,或者可以由其中分散有硼、氧和/或氮的硅金属形成。

在特定实施方式中,晶体硅晶粒形成硅基粘合涂层的约0.1%至约99%的体积(例如,硅基粘合涂层的约1%至约65%的体积,例如硅基粘合涂层的约1%至约40%的体积)。

形成涂层部件的方法可包括:在基底的表面上形成硅基粘合涂层,以及在硅基粘合涂层上形成隔离涂层。硅基粘合涂层包括非晶硅相,该非晶硅相中分布有晶体硅晶粒。例如,在基底表面上形成硅基粘合涂层通过以下步骤实现:在沉积温度下化学气相沉积含硅前体,该沉积温度防止在硅基粘合涂层的沉积期间硅材料的结晶;以及在高于沉积温度的处理温度下热处理硅基粘合涂层,形成分布在非晶硅相内的晶体硅晶粒。

在特定实施方式中,沉积温度为约300℃至约700℃,例如约700℃至约1000℃,和/或处理温度为约1000℃至约1400℃。

总体上还提供一种涡轮部件。例如,涡轮部件可包括:基底,该基底包括陶瓷基质复合物;基底表面上的硅基粘合涂层;以及硅基粘合涂层上的隔离涂层。硅基粘合涂层包括非晶硅相,该非晶硅相中分布有晶体硅晶粒。

参考以下描述和所附权利要求,将更好地理解这些和其他特征、方面和优点。包含在本说明书中并构成其一部分的附图示出了本发明的实施方式,并与说明书一起用于解释本发明的某些原理。

附图说明

在说明书中结合所附的附图对本领域普通技术人员就包括最佳实施方式在内的本发明作了充分且可实施的公开,其中:

图1是示例性涂层部件的横截面侧视图,该涂层部件包括硅基粘合涂层;

图2是示例性涂层部件的另一横截面侧视图,该涂层部件包括其上具有热生长氧化物层的硅基粘合涂层;

图3是示例性硅基粘合涂层的横截面侧视图,该硅基粘合涂层具有分散在非晶硅相内的晶体硅晶粒;

图4是另一种示例性硅基粘合涂层的横截面侧视图,该硅基粘合涂层具有分散在非晶硅相内的晶体硅晶粒;

图5是根据本主题的各种实施方式的示例性燃气涡轮发动机的示意性横截面视图;和

图6是形成硅基粘合涂层的示例性方法的示意图,该硅基粘合涂层具有分散在非晶硅相内的晶体硅晶粒。

在本说明书和附图中重复使用的附图标记旨在表示本发明的相同或类似的特征或元件。

具体实施方式

现在将详细参考本发明的实施方式,其中一个或多个示例在附图中示出。提供每个实施方式是为了解释本发明,而不是限制本发明。事实上,对于本领域技术人员来说显而易见的是,在不脱离本发明的范围或精神的情况下,可以在本发明中进行各种修改和变化。例如,作为一个实施方式的一部分示出或描述的特征可以与另一个实施方式一起使用,以产生又一个实施方式。因此,本发明旨在覆盖落入所附权利要求及其等同物的范围内的这些修改和变化。

如本文所使用的,术语“第一”、“第二”和“第三”可以互换使用以将一个部件与另一个部件区分开,并且不旨在表示各个部件的位置或重要性。

在本公开中使用化学元素的常见化学缩写来讨论化学元素,例如通常在元素周期表中找到的化学缩写。例如,氢以其常见的化学缩写H表示;氦以其常用的化学缩写He表示;等等。如本文所用,“Ln”是指稀土元素或稀土元素的混合物。更具体地,“Ln”是指稀土元素:钪(Sc)、钇(Y)、镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu),或它们的混合物。

如本文所用,术语“基本上不含”是指存在不超过微不足道的痕量,并且包括完全不含(例如,0摩尔%至0.01摩尔%)。在本公开中,术语“约”用于表示近似或接近,如本领域中合理理解的。

在本公开中,除非另有明确说明,当一层被描述为在另一层或基底的“上”或“上方”时,应理解,这些层可以彼此直接接触或者在层之间具有另一层或特征。因此,这些术语仅仅描述了层彼此的相对位置,并不一定意味着“在...之上”,因为上方或下方的相对位置取决于装置相对于观察者的方向。

提供涂层部件以及其形成和使用方法,该涂层部件包括位于基底表面和其上的隔离涂层(例如EBC)之间的硅基粘合涂层。硅基粘合涂层通常具有微结构,该微结构主要是非晶硅材料(例如,非晶硅),其中小的硅晶粒分散在该非晶硅材料中。已经发现,相对于具有有非常大晶粒的晶体硅微结构的粘合涂层,这种硅基粘合涂层更强。因此,该硅基粘合涂层可以将基底粘合到其上的隔离涂层(例如,EBC),并且吸收氧气而不释放气体以防止下面的基底的氧化,否则基底的氧化会导致气态副产物。

参考图1,示出了示例性涂层部件100,其由具有表面103的基底102形成,表面103上具有涂层系统106。通常,涂层系统106包括在基底的表面103上的硅基粘合涂层104,以及在硅基粘合涂层104上的EBC 108。在所示的实施方式中,硅基粘合涂层104直接在表面103上,其间没有任何层。然而,在其他实施方式中,一个或多个层可以位于硅基粘合涂层104和表面103之间。图2示出了热生长氧化物(“TGO”)层105,在部件100暴露于氧气期间(例如,在制造和/或使用期间),该热生长氧化物(“TGO”)层105可以在硅基粘合涂层104(例如氧化硅层(有时称为“硅氧化皮”或“二氧化硅皮”))的表面上形成。

图3和图4示出了示例性硅基粘合涂层104(例如用于图1或2的示例性涂层部件100中)的近视横截面,该硅基粘合涂层104具有非晶硅相112,该非晶硅相112具有分散在其中的晶体硅的离散晶粒110。参照图3,晶体硅的离散晶粒110具有基本上圆形的形状,而图4的晶体硅的离散晶粒110具有不规则的形状。在特定实施方式中,晶体硅的晶粒110可具有约0.03μm至约3μm的平均尺寸。

在图3和图4的实施方式中,非晶硅相112是连续相,并且晶体硅的晶粒110在非晶硅相112内形成多个离散的颗粒相。在所示的实施方式中,非晶硅相112形成三维网络,该三维网络跨越硅基粘合涂层104的厚度并且粘合到基底102的表面103和隔离涂层106的内表面107。通常,硅基粘合涂层104相对较薄。在特定实施方式中,硅基粘合涂层104的厚度可为约25微米(μm)至约275μm,例如约25μm至约150μm(例如,约25μm至约100μm)。

非晶硅相112包括硅金属,其为纯硅或具有少量的硼、氧和/或氮分散在硅中的硅的形式。例如,在某些实施方式中,非晶硅相112包含约60%至99.9%体积(例如,约75%至99%体积)的硅金属。

在一个实施方式中,晶体硅的晶粒110形成硅基粘合涂层104的约0.1%至约99%的体积(例如,约1%至约65%的体积,诸如约1%至约40%的体积)。

在图3和4的实施方式中,无论晶体硅的离散晶粒110的尺寸和/或形状如何,晶体硅的离散晶粒110基本均匀地分布在整个非晶硅相112中。

在一个特定实施方式中,使用含硅前体(例如,来自硅烷族的那些,例如SiH4和高级硅烷,SinH2n+2(n是2-12的整数,例如n=2,以形成Si4H10))利用化学气相沉积(CVD)工艺,来形成硅基粘合涂层104。还包括来自氯硅烷系的前体(例如SiCl4,SiHCl3,SiH2Cl2,SiH3Cl及其更高级的氯硅烷),其在相对低的沉积温度(例如,约300℃至约700℃)和相对宽的沉积压力条件下(例如,约9至约760托),这取决于所用的前体。不受任何特定理论的束缚,据认为,这些相对低的沉积温度(例如,低于700℃和低至300℃)可用于获得非晶硅粘合涂层;然而,考虑到包括前体类型和压力的其他参数的优化,不排除高于700℃(例如,约700℃至约1000℃)的沉积温度。

不希望受任何特定理论的束缚,据认为,这些温度和压力条件防止硅基粘合涂层104在其形成期间显著结晶,特别是当使用较高级硅烷和氯硅烷时。CVD硅粘合涂层的非晶态与晶态性质相比较少依赖于前体流速。在典型的CVD工艺中,这可以在约0.1克/分钟(g/m)至约2g/m的范围内,并且是在需要涂覆的基底的几何形状上沉积速率和涂层均匀性之间的平衡。

在沉积之后,对硅基粘合涂层104进行热处理以形成分散在非晶硅相112内的晶体硅的小晶粒110。例如,硅基粘合涂层104可以经受高于沉积温度的处理温度,例如约1000℃至约1400℃(例如,约1200℃至约1350℃)。

再次参考图1和图2,基底102可以由陶瓷基质复合(“CMC”)材料(例如基于硅的非氧化物陶瓷基质复合物)形成。如本文所用,“CMC”是指含硅或氧化物-氧化物、基质和增强材料。如本文所用,“单片陶瓷”是指没有纤维增强的材料(例如,仅具有基质材料)。在此,CMC和单片陶瓷统称为“陶瓷”。

可用于本文的CMC的一些实例可包括但不限于具有基质和增强纤维的材料,包括非氧化硅基材料,例如碳化硅、氮化硅、碳氧化硅、氮氧化硅,以及它们的混合物。实例包括但不限于具有碳化硅基质和碳化硅纤维的CMC;具有氮化硅基质和碳化硅纤维的CMC;和具有碳化硅/氮化硅基质混合物和碳化硅纤维的CMC。此外,CMC可具有基质和由氧化物陶瓷组成的增强纤维。具体地,氧化物-氧化物CMC可以由基质和包含氧化物基材料的增强纤维组成,该氧化物基材料例如氧化铝(Al2O3)、二氧化硅(SiO2)、硅铝酸盐,以及它们的混合物。硅铝酸盐可包括结晶材料,例如莫来石(3Al2O3 2SiO2),以及玻璃状硅铝酸盐。

所得的非晶硅粘合涂层的粘结强度大于通过空气等离子体喷涂处理的硅的粘结强度,即大于6,000psi。此外,非晶硅基质中的晶体硅晶粒可以通过粘合涂层藉由裂缝偏转机制来提高抗裂纹扩展性。

如上所述,与仅使用硅粘合涂层相比,硅基粘合涂层104可以与隔离涂层108(例如,EBC)结合使用,以形成具有增加的工作温度的涂层部件100。隔离涂层108可包括由选自典型EBC或热障涂层(“TBC”)层化学物质的材料形成的一层或多层的任何组合,热障涂层(“TBC”)层化学物质包括但不限于稀土硅酸盐(例如,单硅酸盐和二硅酸盐)、硅铝酸盐(如莫来石、钡锶铝硅酸盐(BSAS)、稀土铝硅酸盐等)、氧化铪、氧化锆、稳定的氧化铪、稳定的氧化锆、稀土铪酸盐、稀土锆酸盐、稀土镓酸盐等。

隔离涂层108可以由多个单独的层114形成。在所示的实施方式中,隔离涂层108包括直接位于硅基粘合涂层104上的密封层116,以便在较高温度下部分软化和/或熔化的情况下包住非晶硅相112。然而,在其他实施方式中,密封层116可以位于EBC 108内的其他位置。

涂层部件100特别适合用作在高温环境中发现的部件,例如存在于燃气涡轮发动机中的部件,例如燃烧器部件,涡轮叶片,护罩,喷嘴,隔热罩和轮叶。特别地,涡轮部件可以是位于燃气涡轮的热气体流动路径内的CMC部件,使得涂层系统106形成用于下面的基底102的环境屏障,以在暴露于热气体流动路径时保护燃气涡轮内的部件100。

图5是根据本公开的示例性实施方式的燃气涡轮发动机的示意性横截面图。更具体地,对于图5的实施方式,燃气涡轮发动机是高旁路涡轮风扇喷气发动机10,本文称为“涡轮风扇发动机10”。如图5所示,涡轮风扇发动机10限定轴向方向A(平行于被提供用于参考的纵向中心线12延伸)和径向方向R。通常,涡轮风扇10包括风扇区段14和设置在风扇区段14下游的核心涡轮发动机16。尽管下面参考涡轮风扇发动机10进行描述,但是本公开适用于一般涡轮机械,包括涡轮喷气发动机,涡轮螺旋桨发动机和涡轮轴燃气涡轮发动机,包括工业和船用燃气涡轮发动机和辅助动力单元。

所示的示例性核心涡轮发动机16通常包括基本上管状的外壳18,其限定环形入口20。外壳18以串行流动关系包围:压缩机区段,其包括增压器或低压(LP)压缩机22和高压(HP)压缩机24;燃烧区段26;涡轮区段,其包括高压(HP)涡轮28和低压(LP)涡轮30;和喷射排气喷嘴区段32。高压(HP)轴或线轴34将HP涡轮28驱动地连接到HP压缩机24。低压(LP)轴或线轴36将LP涡轮30驱动地连接到LP压缩机22。

对于所描绘的实施方式,风扇区段14包括可变节距风扇38,其具有以间隔开的方式联接到盘42的多个风扇叶片40。如图所示,风扇叶片40大体沿径向方向R从盘42向外延伸。每个风扇叶片40借助于风扇叶片40可操作地联接到合适的致动构件44而相对于盘42绕俯仰轴线P可旋转,该致动构件44构造成一致地共同改变风扇叶片40的节距。风扇叶片40、盘42和致动构件44一起可通过穿过可选动力齿轮箱46的LP轴36绕纵向轴线12旋转。动力齿轮箱46包括多个齿轮,用于将LP轴36的旋转速度降低到更有效的风扇旋转速度。

仍然参照图5的示例性实施方式,盘42由可旋转的前机舱48覆盖,该前机舱48在空气动力学上成形为促进通过多个风扇叶片40的气流。另外,示例性风扇区段14包括环形风扇壳或外机舱50,其周向地围绕风扇38和/或核心涡轮发动机16的至少一部分。应该理解的是,机舱50可以构造成通过多个周向间隔开的出口导向轮叶52而相对于核心涡轮发动机16被支撑。此外,机舱50的下游区段54可以在核心涡轮发动机16的外部分上延伸,以在其间限定旁路气流通道56。

在涡轮风扇发动机10的运行期间,一定体积的空气58通过机舱50和/或风扇区段14的相关入口60进入涡轮风扇10。当一定体积的空气58经过风扇叶片40时,第一部分空气58如箭头62所示被引导或导向进入旁路气流通道56中,并且第二部分空气58如箭头64所示被引导或导向进入LP压缩机22。第一部分空气62和第二部分空气64之间的比率通常称为旁通比。然后,当第二部分空气64被导向通过高压(HP)压缩机24并进入燃烧区段26时,第二部分空气64的压力增加,第二部分空气64在燃烧区段26与燃料混合并燃烧以提供燃烧气体66。

燃烧气体66被导向通过HP涡轮28,其中来自燃烧气体66的一部分热能和/或动能经由联接到外壳18的HP涡轮定子轮叶68和联接到HP轴或线轴34的HP涡轮转子叶片70的连续级提取,因此使HP轴或线轴34旋转,从而支持HP压缩机24的运行。燃烧气体66接着被导向通过LP涡轮30,其中经由联接到外壳18的LP涡轮定子轮叶72和联接到LP轴或线轴36的LP涡轮转子叶片74的连续级,从燃烧气体66中提取第二部分热能和动能,因此使LP轴或线轴36旋转,从而支持LP压缩机22的运行和/或风扇38的旋转。

随后,燃烧气体66被导向通过核心涡轮发动机16的喷射排气喷嘴区段32,以提供推进推力。同时,随着第一部分空气62在从涡轮风扇10的风扇喷嘴排气区段76排出之前被导向通过旁通气流通道56,第一部分空气62的压力实质上增加,也提供了推进推力。HP涡轮28、LP涡轮30和喷射排气喷嘴区段32至少部分地限定用于将燃烧气体66导向通过核心涡轮发动机16的热气体路径78。

还一般性地提供用于涂覆陶瓷部件的方法。例如,图6示出了在基底的表面上形成涂层系统的示例性方法600的图。在602处,在基底的表面上形成硅基粘合涂层,以包含其中分布有晶体硅晶粒的非晶硅相,例如以上关于硅基粘合涂层104所述的。如上所述,在一个实施方式中,通过在相对低的温度(例如,小于1000℃)下进行化学气相沉积,然后在更高的温度(例如,大于1000℃)下进行热处理,形成硅基粘合涂层。在604处,在硅基粘合涂层上形成环境隔离涂层(EBC)。

本说明书使用示例性实施方式来公开本发明,包括其最佳实施方式,并且还旨在本领域技术人员能够实施本发明,包括制造和使用任何装置或系统以及实施任何结合的方法。本发明的可专利范围由权利要求限定,并且可包括本领域技术人员想到的其他示例。如果这些其他示例包括与权利要求的字面语言没有区别的结构要素,或者包括与权利要求的字面语言无实质差别的等效结构要素,则应认为这些其他示例落入权利要求的范围内。

本发明的进一步方面由以下条项的主题提供:

1.一种涂层部件,包括:基底,该基底具有表面;硅基粘合涂层,该硅基粘合涂层位于基底的表面上,其中,硅基粘合涂层包含其中分布有晶体硅晶粒的非晶硅相;和隔离涂层,该隔离涂层位于硅基粘合涂层上。

2.根据任何前述条项所述的涂层部件,其中,非晶硅相包括纯硅金属。

3.根据任何前述条项所述的涂层部件,其中,非晶硅相包括其中分散有硼、氧和/或氮的硅金属。

4.根据任何前述条项所述的涂层部件,其中,晶体硅晶粒形成硅基粘合涂层的约0.1%至约99%的体积。

5.根据任何前述条项所述的涂层部件,其中,晶体硅晶粒形成硅基粘合涂层的约1%至约65%的体积。

6.根据任何前述条项所述的涂层部件,其中,晶体硅晶粒形成硅基粘合涂层的约1%至约40%的体积。

7.根据任何前述条项所述的涂层部件,其中,晶体硅晶粒的平均尺寸为约0.03μm至约3μm。

8.根据任何前述条项所述的涂层部件,其中,晶体硅晶粒在整个非晶硅相中基本上均匀地分布。

9.根据任何前述条项所述的涂层部件,其中,非晶硅相是连续相,并且晶体硅晶粒在非晶硅相内形成多个离散的颗粒相。

10.根据任何前述条项所述的涂层部件,其中,非晶硅相形成三维网络,该三维网络跨越硅基粘合涂层的厚度并且粘合到基底的表面和隔离涂层的内表面。

11.根据任何前述条项所述的涂层部件,其中,硅基粘合涂层的厚度为约25μm至约275μm。

12.根据任何前述条项所述的涂层部件,其中,隔离涂层包括多个层,其中隔离涂层的至少一层包含密封层。

13.根据任何前述条项所述的涂层部件,其中,基底包括陶瓷基质复合物CMC,陶瓷基质复合物CMC包括碳化硅、氮化硅或它们的组合,基底包括多个CMC层。

14.一种涡轮部件,包括:基底,该基底包含陶瓷基质复合物,其中基底具有表面;硅基粘合涂层,该硅基粘合涂层位于基底的表面上,其中硅基粘合涂层包含其中分布有晶体硅晶粒的非晶硅相;和隔离涂层,该隔离涂层位于硅基粘合涂层上。

15.一种形成涂层部件的方法,包括:在基底的表面上形成硅基粘合涂层,其中硅基粘合涂层包含其中分布有晶体硅晶粒的非晶硅相;以及在硅基粘合涂层上形成隔离涂层。

16.根据任何前述条项所述的方法,其中,在基底的表面上形成硅基粘合涂层包括:在沉积温度下化学气相沉积含硅前体,该沉积温度防止在硅基粘合涂层的沉积期间硅材料的结晶;以及在高于沉积温度的处理温度下热处理硅基粘合涂层,形成分布在非晶硅相内的晶体硅晶粒。

17.根据任何前述条项所述的方法,其中,沉积温度为约300℃至约700℃。

18.根据任何前述条项所述的方法,其中,沉积温度为约700℃至约1000℃。

19.根据任何前述条项所述的方法,其中,处理温度为约1000℃至约1400℃。

20.根据任何前述条项所述的方法,其中,非晶硅相形成三维网络,该三维网络跨越硅基粘合涂层的厚度并且粘合到基底的表面和隔离涂层的内表面。

13页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:具有柱状晶粒的硅粘合涂层及其形成方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!