一种基于BCl3气体的LPCVD硼掺杂非晶硅水平镀膜方法及应用

文档序号:1794265 发布日期:2021-11-05 浏览:36次 >En<

阅读说明:本技术 一种基于BCl3气体的LPCVD硼掺杂非晶硅水平镀膜方法及应用 (Based on BCl3Horizontal coating method for gas LPCVD boron-doped amorphous silicon and application ) 是由 林佳继 梁笑 刘群 于 2021-06-16 设计创作,主要内容包括:本发明公开了一种基于BCl-(3)气体的LPCVD硼掺杂非晶硅水平镀膜方法及应用,本发明在生长Poly-Si过程中,通入BCl-(3)实现原位掺杂,然后退火晶化,掺杂的P poly-Si增加空穴的迁移速率同时抑制电子的迁移速率。同时与SiO-(2)结合,SiO-(2)/P-poly-Si引入具有电子和空穴不对称隧穿概率的隧道势垒,显著降低光伏电池界面复合,将电流密度J-(0)降低至15fA/cm~(2),大幅提高太阳电池发电效率。本发明采用BCl-(3)气态源,BCl-(3)分子极易分解并快速进行硼非晶硅晶体的形成,所以BCl-(3)的利用率非常高,利用本发明的方法可以疏散BCl-(3)气体在炉管内的分布,使得炉管内BCl-(3)分布均匀,并能够与SiH-(4)充分混合参与反应。(The invention discloses a BCl-based method 3 The invention discloses a horizontal film coating method of gas LPCVD boron-doped amorphous silicon and application thereof 3 And realizing in-situ doping, then annealing and crystallizing, wherein the doped P poly-Si increases the migration rate of holes and inhibits the migration rate of electrons. Simultaneously with SiO 2 Bonding, SiO 2 the/P-poly-Si introduces a tunnel barrier with asymmetric tunneling probability of electrons and holes, the recombination of the photovoltaic cell interface is obviously reduced, and the current density J is reduced 0 Reduced to 15fA/cm 2 And the power generation efficiency of the solar cell is greatly improved. The invention adopts BCl 3 Gaseous source, BCl 3 Molecules are extremely easily decomposed and the formation of boron amorphous silicon crystals proceeds rapidly, so BCl 3 The utilization rate of the method is very high, and BCl can be evacuated by using the method of the invention 3 The distribution of gas in the furnace tube enables the BCl in the furnace tube 3 Uniformly distributed and capable of reacting with SiH 4 Fully mixing and participating in the reaction.)

一种基于BCl3气体的LPCVD硼掺杂非晶硅水平镀膜方法及应用

技术领域

本发明具体涉及一种基于BCl3气体的LPCVD硼掺杂非晶硅水平镀膜方法及应用。

背景技术

太阳能电池的生产过程中,基体硅片的成本占整个生产成本的比例最高,为降低生产成本,尽快实现光伏电价“平价上网”,提高市场竞争力,硅片薄化是必然的趋势,随之产生的问题就是电池表面复合严重。这就为太阳能电池表面钝化技术提出了挑战,为了在硅片薄化的过程中仍然保持电池的高转化效率,对晶体硅太阳电池表面钝化技术的研究是必不可少的。因此,无论是提高太阳能电池的转换效率,还是降低太阳能电池的生产成本,对于晶体硅太阳能电池表面钝化技术的研究都必不可少。

随着太阳能电池研究的不断进步与深入,多种不同结构的高效太阳能电池被开发,如PERC、IBC、HIT、TOPCon等,同时太阳能电池转换效率越来越接近其理论极限。

常规Al-BSF太阳能电池由于背面金属电极直接与Si接触,载流子复合严重,导致J0偏高,Voc难以超过685mV。PERC太阳能电池在背面金属与Si之间沉积Al2O3/SiNx叠层钝化膜,利用场钝化和化学钝化对背表面实现了优异的钝化效果,提高了电池Voc。目前PERC太阳能电池的Voc可以接近690mV,但仍难以超过700mV。由于Al2O3/SiNx均为介质绝缘膜,为实现电学接触,需对介质膜进行局域开孔,由此造成载流子需通过二维输运才能被金属电极收集,造成横向电阻输运损耗,FF随着金属接触间距的增加而减少。同时金属与Si局域接触仍然在该区域存在较高的复合,即J0,metal比较高。

更高效的太阳能电池要求在具有良好的界面钝化情况下,尽可能实现一维纵向输运,使Voc和FF最大化。而钝化接触便是实现该功能的途径之一。

隧穿氧化层钝化接触(Tunnel Oxide Passivating Contacts)电池的概念由德国夫琅禾费太阳能系统研究所(Fraunhofer-ISE)于2013年提出,图1为该N型钝化接触太阳能电池的结构示意图。钝化接触电池的Poly-Si与Si基底界面间的氧化硅对钝化起着非常关键的作用,氧化硅通过化学钝化降低Si基底与Poly-Si之间的界面态密度。多数载流子通过隧穿原理实现输运,少数载流子则由于势垒以及Poly-Si场效应的存在难以隧穿通过该氧化层。在重掺Poly-Si中,多数载流子浓度远高于少数载流子,降低电子空穴复合几率的同时,也增加了电导率形成多数载流子的选择性接触。在选择性接触区域,多子传输导致电阻损失,同时少量少子向金属接触区域迁移导致复合损失。前者对应接触电阻ρc,而后者则对应界面复合J0

而对于目前商业化的晶体硅太阳能电池,70%仍然为P型电池,虽然N型钝化接触电池能够带来电池发电效率的较大幅度提升,但是基于目前较大的P型生产规模去切换技术需要巨大的设备、技术等投入,N型钝化接触技术无法满足当前P型市场实现快速高效低成本切换。

因此能够实现P型硅片的钝化接触电池的开发变得尤其重要,目前国际上一些研发机构采用磁控溅射制备p+Poly,其p型钝化接触太阳能电池效率为23%,Voc超过700mV,表明磁控溅射也可以制备出性能优异的Poly-Si。但是磁控溅射制备技术特别复杂,而且磁控溅射设备昂贵,不利于现有市场成本的降低。

发明内容

针对上述情况,为克服现有技术的缺陷,本发明提供一种基于BCl3气体的LPCVD硼掺杂非晶硅水平镀膜方法及应用。

为了实现上述目的,本发明提供以下技术方案:

一种基于BCl3气体的LPCVD硼掺杂非晶硅水平镀膜方法,包括以下步骤:

步骤1:将氧化后的硅片背靠背水平装入石英舟中,在设定温度500℃下将装有硅片的石英舟推入镀膜石英管中,并通入保护氮气;

本发明中,硅片采用水平插片方式。在镀膜时,硅片对气流的阻碍很小,气流可从硅片间隙传输,且对镀膜气流起到分布板作用,使得气体更为均匀的传输。相比竖直插片,水平插片式气体传输距离更远,更均匀。此外,竖直插片方式气流只能从硅片四周接近炉管壁空间中传输,气流易紊乱产生湍流,不利于前驱体的传输,也不利于镀膜。

步骤2:升温至500-800℃,然后关闭氮气进气阀,同时控制系统压力处于200mtorr-800mtorr的压力下;

步骤3:炉口、炉尾进气口分别通入SiH4和BCl3气体;

步骤4:关闭硅烷和BCl3气体进气阀门,同时通入氮气赶走未完全沉积的前驱体;

步骤5:通入大氮(即纯氮气),炉管降温,回压;

步骤6:待管内压力接近大气压时,将装有硅片的石英舟从炉管中拉出。

进一步地,步骤1中,通入2000sccm-3000sccm的保护氮气。

进一步地,步骤3中,通入BCl3的流量为10sccm-300sccm。

进一步地,步骤3中,通入SiH4的流量为100sccm-1000sccm。

进一步地,步骤3中,炉口采取炉门处环形进气。

进一步地,步骤3中,炉尾进气采取喷淋直管进气。

进一步地,步骤3中,硅烷和BCl3气体的通入时间为10-100min。

进一步地,步骤5中,通入1-20L大氮。

进一步地,步骤5中,通入大氮,炉管降温到500℃,回压。

一种基于BCl3气体的LPCVD硼掺杂非晶硅水平镀膜方法在制备光伏太阳能电池中的应用,所述镀膜方法为以上所述的镀膜方法。

本发明的有益效果是:

(1)本发明使用LPCVD方式能够实现低温高质量隧穿氧化层和非晶硅薄膜的生长,并实现高效率隧穿钝化层,使得隧穿钝化方法能够快速应用于量产单晶电池生产线,显著降低光伏电池界面复合。

(2)本发明在生长Poly-Si过程中,通入BCl3实现原位掺杂,然后退火晶化,掺杂的P-poly-Si增加空穴的迁移速率同时抑制电子的迁移速率(形成能带弯曲和异质结接触)。同时与SiO2结合,SiO2/P-poly-Si引入具有电子和空穴不对称隧穿概率的隧道势垒,显著降低光伏电池界面复合,将电流密度J0降低至15fA/cm2,大幅提高太阳电池发电效率。

常规生长P-poly-si的方式为,先使用LPCVD方法生长一层100-300nm的i-polysi,然后通过硼扩散的方式进行掺杂,该方式的存在以下几点缺陷:

(a)需要两台设备才能实现P-poly si层的生长,设备投入成本高,不利于大规模生产的成本控制。

(b)硼扩散过程中900-1000℃左右的高温,高温过程会加剧电池热辐射复合,不利于高效电池的进一步发展。

(c)采用硼扩散的方式,由于高温过程温度较高,B原子在Si体内的掺杂深度和浓度不可控,很容易降低P-poly-Si的钝化效果,导致iVoc&电池效率的降低。

本发明使用BCl3、SiH4作为反应气体,使用原位掺杂的方式,直接生长P-poly Si,生长温度较低,且通过调整通入BCl3的量,掺杂浓度可控。且在生长过程中使用本发明的进气方式,可以保证气体均匀分布在炉管内,有利于整体工艺的均匀性。

(3)本发明使用水平插片镀膜工艺,与竖直镀膜相比,减少管内气体湍流,确保片内镀膜均匀性。水平式插片,硅片靠重力水平重叠,高温、气流、振动对水平插片式硅片的扰动极小,气流在硅片的背面产生的绕镀很轻微。

(4)本发明为保证片间镀膜均匀性,采取炉口及炉尾双气路进气。其中炉口采用炉门处环形进气,炉尾进气口采用直通到管内前部温区的喷淋直管进气,解决了BCl3分布不均匀而导致的生长不均匀问题,这种新型进气方式,确保掺杂层稳定性及均匀性。

(5)本发明镀膜温度控制在500-800℃之间,系统压力处于200mtorr-800mtorr,通过优化气态BCl3的浓度、温度和压力,能够得到具备高钝化性能的硼掺杂薄膜的结构和形貌。

(6)本发明采用BCl3气态源,区别于B2H6,使用BCl3气体危险性较低,B2H6有剧毒,B2H6一旦燃烧,一般很难扑灭,最有效的处理方法是及时阻止泄露,并防止火灾向周围蔓延。而BCl3没有毒性,而且不易燃烧,同时BCl3具备B2H6同样的掺杂效果。

(7)由于BCl3分子极易分解并快速进行硼非晶硅晶体的形成,所以BCl3的利用率非常高,利用本发明的方法可以疏散BCl3气体在炉管内的分布,使得炉管内BCl3分布均匀,并能够与SiH4充分混合参与反应。

通过优化气态硼化氢的浓度、温度和压力,得到具备高钝化性能的硼掺杂薄膜的结构和形貌。本发明制得的掺硼非晶硅薄膜具备优异的钝化能力,为后续制备钝化接触结构电池提供优异的基础。在P型PERC产品上将背面Al2O3钝化层替换成掺B非晶硅的TOPCon结构,Voc有较大提升,量产化实验数据,掺B钝化接触电池,较普通P型PERC电池,效率提升0.5%左右,Voc提升5mV。

(8)对于钝化接触,一般N型电池采用n+Poly层,即在本征poly硅中掺杂P元素,实现方法为利用SiH4气体,生长本征poly层,然后进行P扩散;P型电池需要采用p+Poly层。本发明使用BCl3和SiH4两种气体共同作用,反应一次生成B掺杂的p+Poly层;并且本发明采用LPCVD生长方式,生长方法简单,设备成本较低,且具备较大产能,能够满足批量化市场应用。

附图说明

图1是N型钝化接触电池模型。

图2是竖直插片与水平插片气流流向示意图。

图3是P型TOPCon电池结构示意图。

图4是交叉指式背接触异质结太阳电池(HBC)示意图。

图5是本发明中,进气方式示意图,(a)为整体的进气方式示意图,(b)为(a)的侧视图。

图6是环形进气示意图。

具体实施方式

以下结合附图对本发明的技术方案做进一步详细说明,应当指出的是,具体实施方式只是对本发明的详细说明,不应视为对本发明的限定。

实施例1

基于BCl3气体的LPCVD硼掺杂非晶硅水平镀膜方法,采用的反应源为BCl3气体与SiH4气体反应,包括以下步骤:

步骤1:将完成氧化生长后的硅片背靠背水平装入石英舟中,石英舟中硅片的放置间距为2.36mm,本实施例中,所述氧化硅薄膜的厚度范围为1-3nm。如图2所示,在设定温度500℃下将装有硅片的石英舟推入镀膜石英管中,并通入2000sccm的保护氮气;本发明中,硅片采用水平插片方式。在镀膜时,硅片对气流的阻碍很小,气流可从硅片间隙传输,且对镀膜气流起到分布板作用,使得气体更为均匀的传输。相比竖直插片,水平插片式气体传输距离更远,更均匀。此外,竖直插片方式气流只能从硅片四周接近炉管壁空间中传输,气流易紊乱产生湍流,不利于前驱体的传输,也不利于镀膜。

步骤2:当升温至550℃时,5min后关闭氮气进气阀,控制系统压力处于200mtorr的压力下;

步骤3:炉口进气口分别通入硅烷(SiH4)和BCl3气体,炉尾进气口分别通入硅烷(SiH4)和BCl3气体;通入BCl3流量为100sccm,通入SiH4流量为500sccm,气体通入时间为60min。为控制镀膜均匀性,炉口采取炉门处环形进气(见图6),管道上设有出气口,进行喷气。炉尾进气采取喷淋直管进气,进气管为直管,直管上设有多个出气孔。如图5所示,(a)为整体的进气方式示意图,(b)为(a)的侧视图,硅片两侧各有一根出气管,每根出气管均匀排列2排出气孔,2排出气孔呈一定角度(120°-180°角)保证气体延两侧均匀发散。本发明中的进气方式可以调整不同区域的前驱体源量,配合温区温度的调整,从而保证管内镀膜均匀性。

步骤4:关闭硅烷和BCl3气体进气阀门,同时通入氮气赶走未完全沉积的前驱体;

步骤5:通入5L大氮(即纯氮气),炉管降温到500℃回压;

步骤6:待炉管内压力接近大气压时,将装有硅片的石英舟从炉管中拉出。

通过以上实施方案制得的掺硼非晶硅薄膜具备优异的钝化能力,能够实现P型TOPCon电池的制备,P型TOPCon电池结构如图3所示,兼容现有大规模量产的P型PERC工艺,可以进一步提高现有产能的利用率,电池效率大幅提升。与普通P型PERC电池相比,采用本发明方法之后,再进一步制备得到的P型TOPCon电池电池效率提升0.5%左右,Voc提升5mV,而且J0较低,具体的数据如表2所示。

实施例2

基于BCl3气体的LPCVD硼掺杂非晶硅水平镀膜方法,采用的反应源为BCl3气体与SiH4气体反应,包括以下步骤:

步骤1:将氧化后的硅片背靠背水平装入密舟中,石英舟中硅片的放置间距为2.36mm,氧化硅薄膜的厚度范围为1-3nm。如图2所示,在设定温度500℃下将装有硅片的石英舟推入镀膜石英管中,并通入2400sccm的保护氮气;

步骤2:升温至600℃时,10min后关闭氮气进气阀,同时控制系统压力处于500mtorr的压力下;

步骤3:炉口进气口分别通入硅烷(SiH4)和BCl3气体,炉尾进气口分别通入硅烷(SiH4)和BCl3气体,通入BCl3流量为300sccm,通入SiH4流量为900sccm,气体通入时间为15min。为控制镀膜均匀性,炉口采取炉门处环形进气,炉尾进气采取喷淋直管进气;

步骤4:关闭硅烷和BCl3气体进气阀门,同时通入氮气赶走未完全沉积的前驱体;

步骤5:通入15L大氮,炉管降温到500℃回压;

步骤6:待管内压力接近大气压时,将装有硅片的石英舟从炉管中拉出。

实施例3

本发明采用的BCl3掺杂技术同样适用于HBC电池的制备,利用LPCVD掺杂技术实现,其中B掺杂利用BCl3气态掺杂源实现;

基于BCl3气体的LPCVD硼掺杂非晶硅水平镀膜方法,采用的反应源为BCl3气体与SiH4气体反应,包括以下步骤:

步骤1:将氧化后的硅片背靠背水平装入密舟中,石英舟中硅片的放置间距为2.36mm,本实施例中,所述氧化硅薄膜的厚度范围为1-3nm。在设定温度500℃下将装有硅片的石英舟推入镀膜石英管中,并通入3000sccm的保护氮气;

步骤2:升温至800℃,9min关闭氮气进气阀,同时控制系统压力处于800mtorr的特定压力下;

步骤3:炉口进气口分别通入硅烷(SiH4)和BCl3气体,炉尾进气口分别通入硅烷(SiH4)和BCl3气体,通入BCl3流量为300sccm,通入SiH4流量为1000sccm,气体通入时间为2min。为控制镀膜均匀性,炉口采取炉门处环形进气,炉尾进气采取喷淋直管进气;

步骤4:关闭硅烷和BCl3气体进气阀门,同时通入氮气赶走未完全沉积的前驱体;

步骤5:通入17L大氮,炉管降温到500℃回压;

步骤6:待管内压力接近大气压时,将装有硅片的石英舟从炉管中拉出。

HBC电池结构(如图4所示)前表面无金属电极,背部P、N层呈现有序规则的交错排列,大大降低了串联电阻Rs,且与P、N层接触相间的金属电极能够形成很好的欧姆接触,增大了短路电流。另外,优异的本征钝化层能够获取高的开路电压。

实施例4

制备P型钝化接触电池的步骤如下:

1.制绒:对p型硅片进行表面织构化刻蚀形成绒面;

2.扩散:对硅片正面进行磷扩散形成PN结;

3.刻蚀:对硅片背面进行抛光、去除边缘PN结及正面的磷硅玻璃;

4.氧化:硅片氧化,在硅片正面形成一层1-3nm的二氧化硅薄膜;

5.生长p+Poly层:采用本发明方法生长p+Poly层,具体步骤如实施例1所述;

6.PECVD镀膜:采用管式PECVD的方式在硅片正面和背面分别镀氮化硅薄膜;本实施例中,所述的管式PECVD为现有技术中常规的方法,本发明不对其进行改进。

7.印刷烧结:印刷正面、背面电极;然后将印刷好的电池片在高温(300~900℃)下进行烧结,使印刷的浆料和硅片形成良好的欧姆接触。

除了本发明中的基于BCl3气体的LPCVD硼掺杂非晶硅水平镀膜方法(即步骤5)之外,其他操作步骤现有技术中常规的步骤,本发明不对他们进行改进。

对比例1

采用常规P型硅片制备P型PERC电池,步骤为:

1.制绒:对p型硅片进行表面织构化刻蚀形成绒面;

2.扩散:对硅片正面进行磷扩散形成PN结;

3.刻蚀:对硅片背面进行抛光、去除边缘PN结及正面的磷硅玻璃;

4.氧化:在硅片正面形成一层2-10nm的二氧化硅薄膜;

5.背钝化:采用ALD或PECVD沉积方式在背面形成一层氧化铝膜,厚度为2nm-15nm,对背面达到钝化效果;本对比例中,采用PECVD沉积方式;

6.PECVD镀膜:采用管式PECVD的方式在硅片正面和背面分别镀氮化硅薄膜;

7.激光开槽:按照特定图形用激光在硅片背面开槽,开槽深度需大于背面氧化铝和氮化硅的厚度,从而使背面印刷的浆料和硅片形成接触;

8.印刷烧结:印刷正面、背面电极;然后将印刷好的电池片在高温(300~900℃)下进行烧结,使印刷的浆料和硅片形成良好的欧姆接触。

本对比例中的操作步骤均是现有技术中常规的步骤,本发明不对他们进行改进。

本对比例中其他实施方式、条件与实施例4相同。

对比例1采用普通P型PERC技术得到的太阳能电池效率和Voc均低于本发明方法(实施例4)制得的太阳能电池效率和Voc,如表2所示。

对比例2

一种硼掺杂非晶硅水平镀膜方法,包括以下步骤:

步骤1:将氧化后的硅片背靠背水平装入间距为2.36mm的石英舟中,所述氧化层厚度1-3nm,如图2所示,在设定温度500℃下将装有硅片的石英舟推入镀膜石英管中,并通入2500sccm的保护氮气;

步骤2:升温至400℃,关闭氮气进气阀,同时控制系统压力处于1000mtorr的压力下;

步骤3:炉口、炉尾进气口分别通入硅烷和BCl3气体,通入BCl3流量为500sccm,通入SiH4流量为100sccm,气体通入时间为50min。

步骤4:关闭硅烷和BCl3气体进气阀门,同时通入氮气赶走未完全沉积的前驱体;

步骤5:通入大氮,炉管降温至500℃回压;

步骤6:待管内压力接近大气压时,将装有硅片的石英舟从炉管中拉出。

该方案(对比例2)下制备掺杂B元素的p+Poly层,无法实现优良的钝化能力,电池效率低于23%。

表1 P型TOPCon电池制备流程与P型PERC电池制备流程

P型PERC电池制备流程 P型topCon电池制备流程
制绒 制绒
扩散 扩散
刻蚀 刻蚀
氧化 氧化
背钝化(Al<sub>2</sub>O<sub>3</sub>) p+Poly生长
PECVD镀膜 PECVD镀膜
激光开槽 印刷烧结
印刷烧结

表2实施例4与对比例1制备得到的电池的检测结果

电池类型 J<sub>0</sub> 量产化Voc 电池效率
P型PERC电池 &gt;20fA/cm<sup>2</sup> 695mV 23%
P型topCon电池 &lt;15fA/cm<sup>2</sup> 700mV 23.50%

注:J0表示电流密度,Voc是指太阳能电池开路电压,用来表征太阳能电池发电能力的重要指标之一。

由表2可知,采用本发明方法之后,再进一步制备得到的P型TOPCon电池电池效率为23.50%,开路电压为700mV,电流密度小于15fA/cm2。与普通P型PERC电池相比,P型TOPCon电池电池效率提升0.5%左右,Voc提升5mV,而且J0较低。

显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。

12页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种金刚石纳米毛刺结构的制备方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!