被动式无人机定位方法及服务器

文档序号:1598114 发布日期:2020-01-07 浏览:28次 >En<

阅读说明:本技术 被动式无人机定位方法及服务器 (Passive unmanned aerial vehicle positioning method and server ) 是由 叶方全 于 2019-09-27 设计创作,主要内容包括:本发明实施例提供一种被动式无人机定位方法和服务器,该方法包括:接收至少4个无线电探测器发送的频谱信息;所述频谱信息是所述无线电探测器基于接收到的无人机发出的通信信号进行时频转换得到的;基于所述频谱信息,确定两个无线电探测器接收到所述无人机发出的同一通信信号的时间差;根据多组所述两个无线电探测器接收到所述无人机发出的同一通信信号的时间差,确定所述无人机的三维位置信息。如此,能够实现被动式无人机的探测定位,对环境无电磁污染,定位精度高不存在探测盲区,且环境适应性高,可以在城市复杂的电磁环境下使用。(The embodiment of the invention provides a passive unmanned aerial vehicle positioning method and a server, wherein the method comprises the following steps: receiving frequency spectrum information sent by at least 4 radio detectors; the frequency spectrum information is obtained by performing time-frequency conversion on the radio detector based on a received communication signal sent by the unmanned aerial vehicle; determining the time difference of two radio detectors receiving the same communication signal sent by the unmanned aerial vehicle based on the frequency spectrum information; and determining the three-dimensional position information of the unmanned aerial vehicle according to the time difference of the two radio detectors in the plurality of groups receiving the same communication signal sent by the unmanned aerial vehicle. So, can realize passive unmanned aerial vehicle&#39;s detection location, to the environment no electromagnetic pollution, the high detection blind area that does not exist of positioning accuracy, and environmental suitability is high, can use under the complicated electromagnetic environment in city.)

被动式无人机定位方法及服务器

技术领域

本发明涉及无人机技术领域,尤其涉及一种被动式无人机定位方法及服务器。

背景技术

随着无人机的快速发展与普及,消费级无人机的技术门槛并不高,一套开源程序就可以支持飞行器的起飞和降落,任何人都可以用开源程序做一套无人机平台。在无人机被不同领域广泛应用的同时,其安全隐患也逐渐凸显出来,无人机被没有受过专业训练的、为了满足个人兴趣的、无飞行法律法规意识的用户,以及不法分子等利用,给公众隐私、财产、生命安全造成巨大威胁。鉴于目前缺乏对无人机的管制,因此迫切需要一种实用性强,成本低廉的无人机探测定位方法及装置。

当下无人机定位方法中,主要分为两类,一类是雷达探测定位,一类是多台无线电频谱测向交叉定位。利用雷达定位无人机主要有以下问题:1)存在200m-400m的盲区,雷达周边无法防护;2)对低空地杂波、人、车、鸟、气球、海浪等敏感,虚警率高;3)无法探测慢速(<2m/s)无人机;4)需要借助光电系统才能判别无人机;5)单台成本高,在百万量级以上,再加上辅助光电系统整个系统造价很高,利用雷达进行光电定位仅适用于对空或平坦开阔区域。利用无线电频谱测向设备进行交叉定位,主要有以下问题:1)由于测向天线阵中天线存在相互耦合问题,很难提高测向精度,目前工程应用中最好的测向精度在3度左右,1km外理想定位精度只有70m左右,双站连线方向是定位盲区,完全无法定位,用多站参与定位能解决盲区问题,但会显著提高定位成本;2)测向设备架设对环境依赖性强,近处的反射物体将显著影响探测精度,甚至会出现完全反向的探测结果,定位结果也会出错,在实际应用中测向设备交叉定位不具备引导光电识别跟踪的能力。

因此,如何实现被动探测、高精度和高环境适应性,以达到对环境无电磁污染、定位精度高到足以引导光电识别跟踪、可以在城市复杂电磁环境下使用,仍然是本领域技术人员亟待解决的问题。

发明内容

本发明实施例提供一种被动式无人机定位方法和服务器,用以解决现有技术中的无法同时实现被动探测定位和定位精度高以及高环境适应性的问题。

第一方面,本发明实施例提供一种被动式无人机定位方法,包括:

接收至少4个无线电探测器发送的频谱信息;所述频谱信息是所述无线电探测器基于接收到的无人机发出的通信信号进行时频转换得到的;

基于所述频谱信息,确定两个无线电探测器接收到所述无人机发出的同一通信信号的时间差;

根据多组所述两个无线电探测器接收到所述无人机发出的同一通信信号的时间差,确定所述无人机的三维位置信息。

优选地,所述至少4个无线电探测器中,至少1个无线电探测器与其他无线电探测器不在同一水平高度上,任意3个无线电探测器不在一条直线上。

优选地,所述频谱信息携带了接收到对应无人机通信信号的接收时间;

所述接收到对应无人机通信信号的接收时间具体为无线电探测器接收到对应无人机发出的通信信号时相对于参考时钟源的相对时间;

每个无线电探测器的参考时钟源采用GNSS授时。

优选地,所述基于所述频谱信息,确定两个无线电探测器接收到所述无人机发出的同一通信信号的时间差,具体包括:

确定两个无线电探测器发送的频谱信息中频域变化趋势相同的特征频点为关联特征频点,所述关联特征频点对应于同一通信信号;

提取两个无线电探测器之间的关联特征频点的对应的通信信号的接收时间,计算每对关联特征频点的对应通信信号的接收时间差,对多个时间差取平均,得到两个无线电探测器接收到所述无人机发出的同一通信信号的时间差。

优选地,所述根据多组两个无线电探测器接收到所述无人机同一时刻发出的通信信号的时间差得到无人机的三维位置信息,进一步包括:

根据所述时间差和电磁波传播速度确定多组无人机与两个无线电探测器之间的距离差,进而得到无人机的三维位置信息。

第二方面,本发明实施例提供一种被动式无人机定位服务器,包括:

接收单元,用于接收至少4个无线电探测器发送的频谱信息;所述频谱信息是所述无线电探测器基于接收到的无人机发出的通信信号进行时频转换得到的;

计算单元,用于基于所述频谱信息,确定两个无线电探测器接收到所述无人机发出的同一通信信号的时间差;根据多组所述两个无线电探测器接收到所述无人机发出的同一通信信号的时间差,确定所述无人机的三维位置信息。

优选地,所述计算单元还包括:

关联特征频点提取单元,用于确定两个无线电探测器发送的频谱信息中频域变化趋势相同的特征频点为关联特征频点,所述关联特征频点对应于同一通信信号;

时间差计算单元,用于提取两个无线电探测器之间的关联特征频点的对应的通信信号的接收时间,计算每对关联特征频点的对应通信信号的接收时间差,对多个时间差取平均,得到两个无线电探测器接收到所述无人机发出的同一通信信号的时间差。

第三方面,本发明实施例提供一种被动式无人机定位系统,包括::如第二方面所述的被动式无人机定位服务器和无线电探测器,其中,

无线电探测器至少有4个,至少1个无线电探测器与其他无线电探测器不在同一水平高度上,任意3个无线电探测器不在一条直线上。

第四方面,本发明实施例提供一种电子设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其特征在于,所述处理器执行所述程序时实现如第一方面所述的被动式无人机定位方法的步骤。

第五方面,本发明实施例提供一种非暂态计算机可读存储介质,其上存储有计算机程序,其特征在于,该计算机程序被处理器执行时实现如第一方面所述的被动式无人机定位方法的步骤。

本发明实施例提供的一种被动式无人机定位方法和服务器,通过服务器提取多个无线电探测器接收到无人机发出的同一通信信号的时间,根据多组两个无线电探测器接收到无人机发出的同一通信信号的时间差,确定无人机的三维位置信息。如此,能够实现被动式无人机的探测定位,使得对环境无电磁污染,定位精度高不存在探测盲区,且环境适应性高,可以在城市复杂的电磁环境下使用。

附图说明

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图做一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。

图1为本发明实施例提供的被动式无人机定位方法的流程示意图;

图2为本发明实施例提供的被动式无人机定位服务器的结构示意图;

图3为本发明实施例提供的被动式无人机定位系统的结构示意图;

图4为本发明实施例提供的一种电子设备的结构示意图。

具体实施方式

为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有付出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

现有的无人机定位方法无法同时实现无人机定位时的被动探测定位和定位精度高以及高环境适应性。对此,本发明实施例提供了一种被动式无人机定位方法用于实现高精度的被动式无人机定位,同时可以应用于城市复杂的电磁环境中。图1为本发明实施例提供的被动式无人机定位方法的流程示意图,如图1所示,执行主体为被动式无人机定位服务器,该方法包括:

步骤110,接收至少4个无线电探测器发送的频谱信息;所述频谱信息是所述无线电探测器基于接收到的无人机发出的通信信号进行时频转换得到的。

具体地,每个无线电探测器在探测到无人机发出的通信信号后,会将通信信号通过时频变换从时域转换到频域,获得无人机的通信信号的频谱信息,然后,每个无线电探测器都会将自己采集的无人机通信信号的频谱信息发送给被动式无人机定位服务器。通常,所述时频变换是FFT(快速傅里叶变换)。被动式无人机定位服务器至少要接收4个无线电探测器发送来的无人机频谱信息,用于计算无人机的三维位置信息。此处需要说明的是,无线电探测器在向被动式无人机定位服务器发送无人机通信信号的频谱信息时,也会发送自身无线电探测器的标识信息或者三维位置信息,用于告知被动式无人机定位服务器自身无线电探测器的信息。

步骤120,基于所述频谱信息,确定两个无线电探测器接收到所述无人机发出的同一通信信号的时间差。

具体地,无人机定位服务器在收到各个无线电探测器发来的无人机通信信号的频谱信息后,要确定两个无线电探测器接收到无人机发出的同一通信信号的时间差,同一通信信号即无人机在同一时刻发出的同一通信信号。

步骤130,根据多组所述两个无线电探测器接收到所述无人机发出的同一通信信号的时间差,确定所述无人机的三维位置信息。

根据多组两个无线电探测器接收到无人机发出的同一通信信号的时间差,可以列多组两个无线电探测器到无人机的距离差的方程,将多个方程联立,即可以解出无人机的三维坐标。由于在步骤110中限定接收至少4个无线电探测器发送的频谱信息,那么可以联立足够的方程解出无人机的三维坐标。

本发明实施例提供的方法,通过被动式无人机定位服务器提取多个无线电探测器接收到无人机发出的同一通信信号的时间,根据多组两个无线电探测器接收到无人机发出的同一通信信号的时间差,确定无人机的三维位置信息。如此,能够实现被动式无人机的探测定位,使得对环境无电磁污染,定位精度高不存在探测盲区,且环境适应性高,可以在城市复杂的电磁环境下使用。

基于上述实施例,所述至少4个无线电探测器中,至少1个无线电探测器与其他无线电探测器不在同一水平高度上,任意3个无线电探测器不在一条直线上。

具体地,为了求无人机的三维坐标,至少1个无线电探测器与其他无线电探测器不在同一水平高度上,这样可以确保求出无人机的水平高度,任意3个无线电探测器不在一条直线上,是为了确保求出无人机的水平坐标值。

基于上述任一实施例,所述频谱信息携带了接收到对应无人机通信信号的接收时间;

所述接收到对应无人机通信信号的接收时间具体为无线电探测器接收到对应无人机发出的通信信号时相对于参考时钟源的相对时间;

每个无线电探测器的参考时钟源采用GNSS授时。

具体地,所述频谱信息携带了接收到各个频点所对应的无人机通信信号的时间戳;各个无线电探测器在标定自身接收到无人机发出的通信信号的时间的方法是标定接收所述通信信号时相对于参考时钟源的相对时间,而每个无线电探测器的参考时钟源采用GNSS(Global Navigation Satellite System)授时。所述GNSS是全球导航卫星系统定位,GNSS的时钟稳定性一般小于50ns,这一误差影响最后无人机的定位精度约为15m。每个无线电探测器都采用GNSS授时,这样保证无线电探测器之间具有稳定的时间同步,这样可以测出准确的无人机同一通信信号到达两个无线电探测器的时间差,进而算出准确的无人机与两个无线电探测器之间的距离差。

本实施例提供的方法,通过让每个无线电探测器采用GNSS授时,可以以经济实用地保证各个无线电探测器之间的时间同步,进而降低计算的无人机三维坐标的误差。

基于上述任一实施例,所述基于所述频谱信息,确定两个无线电探测器接收到所述无人机发出的同一通信信号的时间差,具体包括:

确定两个无线电探测器发送的频谱信息中频域变化趋势相同的特征频点为关联特征频点,所述关联特征频点对应于同一通信信号;

提取两个无线电探测器之间的关联特征频点的对应的通信信号的接收时间,计算每对关联特征频点的对应通信信号的接收时间差,对多个时间差取平均,得到两个无线电探测器接收到所述无人机发出的同一通信信号的时间差。

具体地,此处判断两个无线电探测器接收到的无人机的通信信号里哪个频段对应的信号是无人机同一时刻发出的同一通信信号,是对两个无线电探测器发送来的频谱信息做分析。具体分析方式是,分析频谱变化趋势,找两个频谱信息中频谱变化趋势相同的特征频点作为关联特征频点,例如,两个幅值上升最快的特征频点、或者两个幅值下降最快的特征频点,这些关联特征频点对应的通信信号就被认作是两个无线电探测器接收的无人机同一时刻发出的同一通信信号。两个无线电探测器发送的频谱信息中可以提取出多对关联特征频点,每对关联特征频点也可以从各自的频谱信息中提取自身频点对应信号的接收时间,进而可以计算出两个无线电探测器之间多对关联特征频点的接收时间差,对多对关联特征频点的接收时间差取平均,得到最后的两个无线电探测器接收到所述无人机发出的同一通信信号的时间差。

基于上述任一实施例,所述根据多组两个无线电探测器接收到所述无人机同一时刻发出的通信信号的时间差得到无人机的三维位置信息,进一步包括:

根据所述时间差和电磁波传播速度确定多组无人机与两个无线电探测器之间的距离差,进而得到无人机的三维位置信息。

具体地,此处用接收到4个无线电探测器的无人机频谱信息举例。4个无线电探测器分别为A、B、C、D,它们的三维坐标已知,分别为(xa,ya,za)、(xb,yb,zb)、(xc,yc,zc)、(xd,yd,zd)。无人机发出的同一信号到达无线电探测器A和B的时间差为ta-tb,无人机发出的同一信号到达无线电探测器C和B的时间差为tc-tb,无人机发出的同一信号到达无线电探测器C和D的时间差为tc-td。设无人机的三维坐标为(x,y,z),且已知电磁波传播速度为c,c为常数。得到以下方程:

Figure BDA0002218982950000081

3个未知数,3个方程,求解得到无人机的三维坐标。

基于上述任一实施例,本发明实施例提供一种被动式无人机定位服务器,用于实现高精度的被动式无人机定位,同时可以应用于城市复杂的电磁环境中。图2为本发明实施例提供的被动式无人机定位服务器的结构示意图,如图2所示,所述被动式无人机定位服务器包括接收单元210和计算单元220,

所述接收单元210,用于接收至少4个无线电探测器发送的频谱信息;所述频谱信息是所述无线电探测器基于接收到的无人机发出的通信信号进行时频转换得到的;

所述计算单元220,用于基于所述频谱信息,确定两个无线电探测器接收到所述无人机发出的同一通信信号的时间差;根据多组所述两个无线电探测器接收到所述无人机发出的同一通信信号的时间差,确定所述无人机的三维位置信息。

本发明实施例提供的被动式无人机定位服务器,通过提取多个无线电探测器接收到无人机发出的同一通信信号的时间,根据多组两个无线电探测器接收到无人机发出的同一通信信号的时间差,确定无人机的三维位置信息。如此,能够实现被动式无人机的探测定位,使得对环境无电磁污染,定位精度高不存在探测盲区,且环境适应性高,可以在城市复杂的电磁环境下使用。

基于上述任一实施例,所述计算单元还包括关联特征频点提取单元和时间差计算单元,

所述关联特征频点提取单元,用于确定两个无线电探测器发送的频谱信息中频域变化趋势相同的特征频点为关联特征频点,所述关联特征频点对应于同一通信信号;

所述时间差计算单元,用于提取两个无线电探测器之间的关联特征频点的对应的通信信号的接收时间,计算每对关联特征频点的对应通信信号的接收时间差,对多个时间差取平均,得到两个无线电探测器接收到所述无人机发出的同一通信信号的时间差。

基于上述任一实施例,本发明实施例提供一种被动式无人机定位系统。图3为本发明实施例提供的被动式无人机定位系统的结构示意图。如图所示,该系统包括如上述实施例所述的被动式无人机定位服务器和无线电探测器,其中,

无线电探测器至少有4个,至少1个无线电探测器与其他无线电探测器不在同一水平高度上,任意3个无线电探测器不在一条直线上。图3中的被动式无人机定位系统包含4个无线电探测器,分别是探测器A、探测器B、探测器C、探测器D,被动式无人机定位服务器为定位服务器O,被定位的无人机M,通过探测无人机M和它的遥控K之间的通信信号来对无人机M进行定位;四个无线电探测器被动接收无人机M的通信信号,四个无线电探测器再将自身提取的无人机M的通信信号的频谱信息转发给定位服务器O。

图4为本发明实施例提供的电子设备的实体结构示意图,如图4所示,该电子设备可以包括:处理器(processor)401、通信接口(Communications Interface)402、存储器(memory)403和通信总线404,其中,处理器401,通信接口402,存储器403通过通信总线404完成相互间的通信。处理器401可以调用存储在存储器403上并可在处理器401上运行的计算机程序,以执行上述各实施例提供的被动式无人机定位方法,例如包括:接收至少4个无线电探测器发送的频谱信息;所述频谱信息是所述无线电探测器基于接收到的无人机发出的通信信号进行时频转换得到的;基于所述频谱信息,确定两个无线电探测器接收到所述无人机发出的同一通信信号的时间差;根据多组所述两个无线电探测器接收到所述无人机发出的同一通信信号的时间差,确定所述无人机的三维位置信息。

此外,上述的存储器403中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。

本发明实施例还提供一种非暂态计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现以执行上述各实施例提供的被动式无人机定位方法,例如包括:接收至少4个无线电探测器发送的频谱信息;所述频谱信息是所述无线电探测器基于接收到的无人机发出的通信信号进行时频转换得到的;基于所述频谱信息,确定两个无线电探测器接收到所述无人机发出的同一通信信号的时间差;根据多组所述两个无线电探测器接收到所述无人机发出的同一通信信号的时间差,确定所述无人机的三维位置信息。

以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。

通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,上述技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行各个实施例或者实施例的某些部分所述的方法。

最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

12页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种位置检测方法及装置

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!