一种热镀锌机组锌层厚度控制方法

文档序号:1704512 发布日期:2019-12-13 浏览:14次 >En<

阅读说明:本技术 一种热镀锌机组锌层厚度控制方法 (Method for controlling thickness of zinc layer of hot galvanizing unit ) 是由 夏志 廖砚林 柳会梅 周云根 熊俊伟 于 2019-10-21 设计创作,主要内容包括:一种热镀锌机组锌层厚度控制方法,所述方法包括:采集热镀锌机组用于计算锌层厚度预测值的工艺参数,其中,所述工艺参数包括带钢速度、气刀高度、刀唇到带钢距离、气刀压力、刀唇间隙和带钢厚度;判断当前工况变化情况,基于工艺参数计算出当前工况变化情况下对应的所有可能的锌层厚度预测值,找出与锌层厚度设定值最接近的一组锌层厚度预测值,基于该组锌层厚度预测值对应的工艺参数对气刀对应参数进行调节控制。本发明通过计算出的刀唇到带钢距离以及气刀压力对气刀的对应参数进行调节控制,从而缩小锌层厚度与锌层厚度设定值之间的偏差,能够满足多种工况的锌层厚度控制要求,提高热镀锌机组锌层厚度控制精度与均匀性。(A method for controlling the thickness of a zinc layer of a hot galvanizing unit comprises the following steps: collecting technological parameters of a hot galvanizing unit for calculating a predicted value of the thickness of a zinc layer, wherein the technological parameters comprise strip steel speed, air knife height, distance from a knife lip to the strip steel, air knife pressure, a knife lip gap and strip steel thickness; and judging the change condition of the current working condition, calculating all possible zinc layer thickness predicted values corresponding to the change condition of the current working condition based on the process parameters, finding out a group of zinc layer thickness predicted values closest to the zinc layer thickness set value, and adjusting and controlling parameters corresponding to the air knife based on the process parameters corresponding to the group of zinc layer thickness predicted values. According to the invention, the corresponding parameters of the air knife are adjusted and controlled through the calculated distance between the knife lip and the strip steel and the air knife pressure, so that the deviation between the thickness of the zinc layer and the set value of the thickness of the zinc layer is reduced, the thickness control requirements of the zinc layer under various working conditions can be met, and the thickness control precision and uniformity of the zinc layer of the hot galvanizing unit are improved.)

一种热镀锌机组锌层厚度控制方法

技术领域

本发明涉及冷轧带钢热镀锌技术领域,具体涉及一种热镀锌机组锌层厚度控制方法。

背景技术

在热镀锌生产线上,衡量产品质量的一项重要技术指标就是镀层的厚度及其均匀性。镀层太厚,影响产品的点焊性、附着性和镀层的抗粉化性,而且会浪费锌锭等原材料;镀层太薄,影响产品的抗腐蚀性,用户一般不会接受。锌层厚度控制水平直接影响热镀锌板产品质量、产品成本和产品的市场竞争力。

宝钢开发的锌层厚度控制模型具有压力优先控制模式和距离优先控制两种模式,鞍钢开发的锌层厚度控制系统以气刀压力为主控制量,优先调节压力,当压力出现饱和时,方调节气刀距离修正镀层厚度偏差,在实际应用中,上述锌层厚度控制系统存在难以满足工况变化较大锌层厚度精确控制需求,现场还需要经验丰富的操作工操作气刀来控制热镀锌机组锌层厚度。

发明内容

为解决现有技术中的问题,本发明提供一种热镀锌机组锌层厚度控制方法,具体方案如下:

一种热镀锌机组锌层厚度控制方法,所述方法包括:

步骤1,采集热镀锌机组用于计算锌层厚度预测值的工艺参数,其中,所述工艺参数包括带钢速度、气刀高度、刀唇到带钢距离、气刀压力、刀唇间隙和带钢厚度;

步骤2,判断当前工况变化情况,基于工艺参数计算出当前工况变化情况下对应的所有可能的锌层厚度预测值,找出与锌层厚度设定值最接近的一组锌层厚度预测值,基于该组锌层厚度预测值对应的工艺参数对气刀对应参数进行调节控制。

进一步地,步骤2具体包括:

当工况变化大时,获取各时刻点的刀唇到带钢距离以及气刀压力,得到多组刀唇到带钢距离和多组气刀压力,基于多组刀唇到带钢距离以及多组气刀压力的任意两两组合以及当前时刻的带钢速度、气刀高度、刀唇间隙、带钢厚度计算锌层厚度预测值,得到多组锌层厚度预测值,找出与锌层厚度设定值最接近的一组锌层厚度预测值,基于该组锌层厚度预测值对应一组刀唇到带钢距离以及气刀压力作为目标值对气刀对应参数进行调节控制;

当工况变化小时,获取各时刻点的气刀压力,得到多组气刀压力,基于每组气刀压力以及当前时刻的刀唇到带钢距离、带钢速度、气刀高度、刀唇间隙和带钢厚度计算锌层厚度预测值,得到多组锌层厚度预测值,找出与锌层厚度设定值最接近的一组锌层厚度预测值,基于该组锌层厚度预测值对应气刀压力作为目标值对气刀对应参数进行调节控制。

进一步地,通过带钢速度变化率和带钢厚度变化率判断工况变化情况;当带钢速度变化率大于带钢速度变化率预设值s或带钢厚度变化率大于带钢厚度变化率预设值t时,判断工况变化大:当带钢速度变化率小于带钢速度变化率预设值s或带钢厚度变化率小于带钢厚度变化率预设值t时,判断工况变化小

进一步地,所述方法还包括:

当工况无变化时,利用锌层厚度测量仪测量出锌层厚度测量值,将该锌层厚度测量值作为当前时刻的锌层厚度预测值,基于该锌层厚度预测值以及当前时刻的刀唇到带钢距离、带钢速度、气刀高度、刀唇间隙和带钢厚度反推算气刀压力,基于该气刀压力作为目标值对气刀对应参数进行调节控制。

进一步地,基于学习训练后的锌层厚度预测神经网络模型计算锌层厚度预测值,所述锌层厚度预测神经网络模型输入层的输入参数为带钢速度、气刀高度、刀唇到带钢距离、气刀压力、刀唇间隙和带钢厚度,通过隐含层对输入参数进行转换后,在输出层的输出参数为锌层厚度预测值;

当工况变化大时,锌层厚度预测神经网络模型的输入参数为当前时刻的带钢速度、气刀高度、刀唇间隙、带钢厚度、所有时刻的刀唇到带钢距离和所有时刻的气刀压力的任意两两组合,针对每一个刀唇到带钢距离和气刀压力的组合,输出一组锌层厚度预测值,从而得到多组锌层厚度预测值;

当工况变化小时,锌层厚度预测神经网络模型的输入参数为当前时刻的带钢速度、气刀高度、刀唇间隙、带钢厚度、刀唇到带钢距离、任意时刻的气刀压力,针对每一时刻的气刀压力,输出一组锌层厚度预测值,从而得到多组锌层厚度预测值。

进一步地,所述方法还包括:对锌层厚度预测神经网络模型进行学习训练,学习训练的样本数据为各时刻采集的带钢速度、气刀高度、刀唇到带钢距离、气刀压力、刀唇间隙、带钢厚度以及锌层厚度测量值,学习训练的输入样本数据为各时刻采集的带钢速度、气刀高度、刀唇到带钢距离、气刀压力和刀唇间隙,学习训练的输出样本数据为对应时刻的锌层厚度测量值。

进一步地,所述方法还包括利用阈值、角度距离法和稳健回归法剔除样本数据中的异常数据,确保样本数据可靠性。

本发明具有以下有益效果:

本发明通过带钢速度、气刀高度、刀唇到带钢距离、气刀压力、刀唇间隙和带钢厚度等工艺参数计算锌层厚度预测值,以锌层厚度设定值为目标,通过各时刻点的刀唇到带钢距离以及气刀压力,可基于不同工况变化,计算出每种工况变化情况下最接近锌层厚度设定值对应的刀唇到带钢距离和气刀压力,通过计算出的刀唇到带钢距离以及气刀压力对气刀的对应参数进行调节控制,从而缩小锌层厚度与锌层厚度设定值之间的偏差,能够满足多种工况的锌层厚度控制要求,提高热镀锌机组锌层厚度控制精度与均匀性、降低锌锭消耗和降低机组的操作维护人力成本。

附图说明

图1为本发明实施例提供的一种热镀锌机组锌层厚度控制方法流程图;

图2为本发明实施例提供的锌层厚度预测神经网络模型示意图。

具体实施方式

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。

如图1所示,本发明实施例提供了一种热镀锌机组锌层厚度控制方法,所述方法包括:

步骤1,采集热镀锌机组用于计算锌层厚度预测值的工艺参数,其中,所述工艺参数包括带钢速度、气刀高度、刀唇到带钢距离、气刀压力、刀唇间隙和带钢厚度;

步骤2,判断当前工况变化情况,基于工艺参数计算出当前工况变化情况下对应的所有可能的锌层厚度预测值,找出与锌层厚度设定值最接近的一组锌层厚度预测值,基于该组锌层厚度预测值对应的工艺参数对气刀对应参数进行调节控制。

其中,步骤2具体包括:

当工况变化大时,获取各时刻点的刀唇到带钢距离以及气刀压力,得到多组刀唇到带钢距离和多组气刀压力,基于多组刀唇到带钢距离以及多组气刀压力的任意两两组合以及当前时刻的带钢速度、气刀高度、刀唇间隙、带钢厚度计算锌层厚度预测值,得到多组锌层厚度预测值,找出与锌层厚度设定值最接近的一组锌层厚度预测值,基于该组锌层厚度预测值对应一组刀唇到带钢距离以及气刀压力作为目标值对气刀对应参数进行调节控制。

当工况变化小时,获取各时刻点的气刀压力,得到多组气刀压力,基于每组气刀压力以及当前时刻的刀唇到带钢距离、带钢速度、气刀高度、刀唇间隙和带钢厚度计算锌层厚度预测值,得到多组锌层厚度预测值,找出与锌层厚度设定值最接近的一组锌层厚度预测值,基于该组锌层厚度预测值对应气刀压力作为目标值对气刀对应参数进行调节控。

当工况无变化时,利用锌层厚度测量仪测量出锌层厚度测量值,将该锌层厚度测量值作为当前时刻的锌层厚度预测值,基于该锌层厚度预测值以及当前时刻的刀唇到带钢距离、带钢速度、气刀高度、刀唇间隙和带钢厚度反推算气刀压力,基于该气刀压力作为目标值对气刀对应参数进行调节控制。

其中锌层厚度预测值和锌层厚度测量值对应的都是经过气刀处理的值。

其中,通过带钢速度变化率和带钢厚度变化率判断工况变化情况;当带钢速度变化率大于带钢速度变化率预设值s或带钢厚度变化率大于带钢厚度变化率预设值t时,判断工况变化大:当带钢速度变化率小于带钢速度变化率预设值s或带钢厚度变化率小于带钢厚度变化率预设值t时,判断工况变化小。

本发明通过带钢速度、气刀高度、刀唇到带钢距离、气刀压力、刀唇间隙和带钢厚度等工艺参数计算锌层厚度预测值,以锌层厚度设定值为目标,通过各时刻点的刀唇到带钢距离以及气刀压力,可基于不同工况变化,计算出每种工况变化情况下最接近锌层厚度设定值对应的刀唇到带钢距离和气刀压力,通过计算出的刀唇到带钢距离以及气刀压力对气刀的对应参数进行调节控制,从而缩小锌层厚度与锌层厚度设定值之间的偏差,能够满足多种工况的锌层厚度控制要求,提高热镀锌机组锌层厚度控制精度与均匀性、降低锌锭消耗和降低机组的操作维护人力成本。

其中,所述工艺参数为通过对热镀锌机组所有生产工艺参数进行主成分分析,分析出对锌层厚度影响较大的因素,经过主成分分析,选择带钢速度、气刀高度、刀唇到带钢距离、气刀压力、刀唇间隙和带钢厚度等因素为主成分因素,降低模型复杂性。

优选地,基于学习训练后的锌层厚度预测神经网络模型计算锌层厚度预测值,所述锌层厚度预测神经网络模型输入层的输入参数为带钢速度、气刀高度、刀唇到带钢距离、气刀压力、刀唇间隙和带钢厚度,通过隐含层对输入参数进行转换后,在输出层的输出参数为锌层厚度预测值;

当工况变化大时,锌层厚度预测神经网络模型的输入参数为当前时刻的带钢速度、气刀高度、刀唇间隙、带钢厚度、所有时刻的刀唇到带钢距离和所有时刻的气刀压力的任意两两组合,针对每一个刀唇到带钢距离和气刀压力的组合,输出一组锌层厚度预测值,从而得到多组锌层厚度预测值;

当工况变化小时,锌层厚度预测神经网络模型的输入参数为当前时刻的带钢速度、气刀高度、刀唇间隙、带钢厚度、刀唇到带钢距离、任意时刻的气刀压力,针对每一时刻的气刀压力,输出一组锌层厚度预测值,从而得到多组锌层厚度预测值。

上述实施例中,通过设计锌层厚度预测神经网络模型,以实际的生产数据作为学习与训练样本数据,贴近生产实际;系统建立的锌层厚度预测模块能够通过训练不断的进行学习,从而达到非常高的精度、非线性映射能力以及泛化能力。

优选地,还包括对锌层厚度预测神经网络模型进行学习训练,其中,模型可以选用人工神经网络、核偏最小二乘和线性偏最小二乘等方法,以人工神经网络方法为基础设计的锌层厚度预测神经网络模型,如图2所示,模型由三层组成,第一层为输入层,接收参数输入,第二层为隐含层,对输入数据进行转换,第三层为输出层,输出目标参数,另外,神经元之间存在多个连接,对应不同且可不断修正的权值,学习训练的样本数据为各时刻采集的带钢速度、气刀高度、刀唇到带钢距离、气刀压力、刀唇间隙、带钢厚度以及锌层厚度测量值,学习训练的输入样本数据为各时刻采集的带钢速度、气刀高度、刀唇到带钢距离、气刀压力和刀唇间隙,学习训练的输出样本数据为对应时刻的锌层厚度测量值。部分训练的样本数据如表1所示:

表1

训练完成之后,以采集的锌层厚度测量值样本数据为基础,对锌层厚度预测人工神经网络进行训练与验证。选择其中80%数据作为样本数据,20%数据作为验证数据,选择Sigmoid函数作为转换函数,采用BP算法对锌层厚度预测神经网络模型进行训练并验证,如果误差控制在允许范围之内,则认为训练效果好。结果见表2,满足现场要求。

表2

优选地,所述方法还包括利用阈值、角度距离法和稳健回归法剔除样本数据中的异常数据,确保样本数据可靠性。

以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

10页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种高沉积率的复合封严涂层粉末及其制备方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!