沼气全组分转化生物甲醇催化剂SrNiO3/SiC-SiO2-Foam及其制备方法

文档序号:1747775 发布日期:2019-11-29 浏览:39次 >En<

阅读说明:本技术 沼气全组分转化生物甲醇催化剂SrNiO3/SiC-SiO2-Foam及其制备方法 (Biogas full constituent inverting biological catalyst for methanol SrNiO3/SiC-SiO2- Foam and preparation method thereof ) 是由 谢君 张止戈 于 2019-08-29 设计创作,主要内容包括:本发明涉及沼气全组分转化生物甲醇催化剂SrNiO_3/SiC-SiO_2-Foam及其制备方法。该SrNiO_3/SiC-SiO_2-Foam,SrNiO_3负载于载体SiC-SiO_2-Foam上,SrNiO_3的负载量为2~8%。本发明制备的SrNiO_3/SiC-SiO_2-Foam具有钙钛矿型晶胞结构,钙钛矿型SrNiO_3颗粒较小,分散性高,分散均匀,避免了高负载镍基催化剂在高温下易于团聚、催化性能受限的问题;将其进行还原后得到的Ni-SrO/SiC-SiO_2-Foam转化率高,可以很好地催化沼气全组分转化合成气用于合成生物甲醇反应中的应用。本发明的制备方法工艺简单,成本低廉,易于工业化推广生产。(The present invention relates to biogas full constituent inverting biological catalyst for methanol SrNiO 3 /SiC‑SiO 2 - Foam and preparation method thereof.The SrNiO 3 /SiC‑SiO 2 - Foam, SrNiO 3 It is carried on carrier S iC-SiO 2 On-Foam, SrNiO 3 Load capacity be 2~8%.SrNiO prepared by the present invention 3 /SiC‑SiO 2 - Foam has Ca-Ti ore type cell configuration, Ca-Ti ore type SrNiO 3 Particle is smaller, and dispersibility is high, is uniformly dispersed, and avoids the problem that high load nickel-base catalyst is easy to reunite, catalytic performance is limited at high temperature;The Ni-SrO/SiC-SiO obtained after being restored 2 - Foam high conversion rate can be catalyzed biogas full constituent transformation of synthetic gas for the application in the reaction of synthesising biological methanol well.Preparation method simple process and low cost of the invention is easy to industrialization promotion production.)

沼气全组分转化生物甲醇催化剂SrNiO3/SiC-SiO2-Foam及其 制备方法

技术领域

本发明属于催化剂技术领域,具体涉及沼气全组分转化生物甲醇催化剂SrNiO3/SiC-SiO2-Foam及其制备方法。

背景技术

当今世界的能源供应主要是以煤、石油、天然气这三种不可再生化石资源为主。现在全球化的脚步迈进新世纪,人口数量的急剧上升和经济总量的快速增长,导致了地球资源被大肆利用,虽然目前仍然存在深海油气、可燃冰、煤层气及页岩气等多种资源可供开发和利用,人类也开始关注不可再生化石燃料潜在的短缺问题,在2050年之前,石油、天然气等不可再生自然资源将被耗尽,这种观点得到了全社会的一致认同。化石燃料的大量使用导致大气中二氧化碳(CO2)含量逐年上升,温室效应越来越严重。据全球碳计划数据显示,2013年全球化石燃料燃烧产生的二氧化碳排放量达到360亿吨,上世纪90年代以来中国二氧化碳排放总量及人均排放量呈现快速增长态势。作为导致温室效应的主要气体,二氧化碳减排和合理利用已经成为全球性课题。二氧化碳减排不再单纯是一种道义和社会责任,其综合利用已经具有显著经济效益。二氧化碳重整甲烷制合成气是一条很有发展前景的二氧化碳利用技术路线,当H2/CO在0~0.9时,CH4-CO2转化成本最低,传统的CH4-CO2重整制得的合成气中H2/CO比一般>3.0,不适合作羰基合成和生产含氧有机化合物的原料,二氧化碳部分代替水与甲烷发生重整反应,可降低生产成本和能耗,制得适合费托合成与甲醇生产的合成气。因此,该技术对于环保与资源利用具有重大战略意义,其研究工作受到众多研究者关注。

合成气系指一氧化碳和氢气的混合气,合成气中CO和H2比值随原料和生产方法的不同而异,其摩尔比为1/2~3/1。合成气为有机合成原料之一,也是氢气和一氧化碳的来源,在化学工业中有着重要的作用。制备合成气的原料是多种多样的,许多含碳资源如煤、天然气、石油或渣油等均可用来制造合成气。利用合成气可以转化成液体和气体燃料、大宗化学品和高附加值的精细有机化工产品。因此利用可再生的沼气作为原料代替合成气能够有效的降低环境污染以及温室效应,开发出高效的催化沼气全组分转化合成气的催化剂对于我国目前的国情具有深远的意义。

在催化沼气全组分转化合成气用于合成生物甲醇反应中,目前应用较广泛的是贵金属催化剂例如(Pd和Pt),使用贵金属成本较高,应用困难;因此研发一种成本低廉,性能稳定,催化效果好的催化剂具有重大应用前景。

发明内容

本发明的目的在于克服现有技术中催化沼气全组分转化合成气用于合成生物甲醇的贵金属催化剂成本高,难以工业化应用的缺陷和不足,提供一种沼气全组分转化生物甲醇钙钛矿型催化剂SrNiO3/SiC-SiO2-Foam。本发明以SiC-Foam为原料,通过煅烧在SiC表面生成一层SiO2膜,得到载体SiC-SiO2-Foam;然后以SrNiO3为催化活性成分,通过负载量、煅烧条件的优化,使得钙钛矿型SrNiO3颗粒较小,分散性高,分散均匀,避免了高负载镍基催化剂在高温下易于团聚、催化性能受限的问题。通过进一步还原处理,得到的Ni-SrO/SiC-SiO2-Foam转化率高,可以很好地催化沼气全组分转化合成气用于合成生物甲醇反应中的应用。

本发明的另一目的在于提供一种沼气全组分转化生物甲醇催化剂Ni-SrO/SiC-SiO2-Foam。

本发明的另一目的在于提供上述Ni-SrO/SiC-SiO2-Foam在制备生物甲醇中的应用。

为实现上述发明目的,本发明采用如下技术方案:

一种沼气全组分转化生物甲醇催化剂SrNiO3/SiC-SiO2-Foam,SrNiO3负载于载体SiC-SiO2-Foam上,SrNiO3的负载量为3~7%;所述SrNiO3/SiC-SiO2-Foam通过如下步骤制备得到:

S1:将SiC-Foam在含氧氛围下于900~1050℃下煅烧2~4h得到SiC-SiO2-Foam;

S2:将锶源和镍源溶解后加入SiC-SiO2-Foam,粉碎处理,加入螯合剂,进行微波处理得凝胶,干燥,得SrNiO3/SiC-SiO2-Foam钙钛矿型前体;

S3:将SrNiO3/SiC-SiO2-Foam钙钛矿型前体在含氧气氛下于700~800℃下煅烧4~6h即得所述SrNiO3/SiC-SiO2-Foam。

研究表明以SiO2为载体的高负载镍基催化剂存在高温下易于团聚、催化性能受限的缺点。并且在工业上常规载体因为导热不均匀或者不稳定会产生冷点问题,从而导致载体上的活性组分因温度的差异活性发挥受到影响或者因为热量传导的问题导致大面积的失活。因而,本发明从载体和催化剂活性组分两方面对高负载镍基催化剂进行优化。

一方面,本发明以具有三维孔状结构的强大约束力和抗冷点作用的SiC-Foam为载体主体,通过高温煅烧使得碳化硅SiC的表面氧化生成一层碳化硅SiO2膜,碳化硅具有导热均匀热传导高效等特点,同时生成的SiO2膜能够增加活性组分与载体间的相互作用进而从冷点问题和活性问题两方面解决并促进了催化反应过程所遇到的问题以及催化活性问题。

另一方面,本发明以SrNiO3作为活性成分,具有钙钛矿型的晶胞结构,所有的镍锶元素都以一定规则有的顺序排列。同时通过氢气的还原使得钙钛矿型SrNiO3中的镍元素有序析出使得镍颗粒较小,分散性高,分散均匀,避免了高负载镍基催化剂在高温下易于团聚、催化性能受限的问题。

本发明制备得到的SrNiO3/SiC-SiO2-Foam催化剂前体具有较高的元素约束性,具有规则有序的元素排列结构由其钙钛矿型的晶胞结构所提供,性能稳定。将其进行还原后,金属镍从晶胞胞内位于中心的部位析出具有较好的分散性,锶元素则与晶胞内剩余的氧元素结合形成氧化锶提供了强力的活化碳的效果抑制了积碳,得到的Ni-SrO/SiC-SiO2-Foam的转化率高,可以很好地催化沼气全组分转化合成气用于合成生物甲醇反应中的应用。本发明的制备方法工艺简单,成本低廉,易于工业化推广生产。

镍源、锶源和SiC-SiO2-Foam的用量可根据SrNiO3的负载量进行调节选取。

SrNiO3的负载量对催化剂的性能具有一定的影响,如负载量太低,SrNiO3分布的稀疏无法达到Sr和Ni相互协同的作用;负载量太高,SrNiO3晶胞分布的太紧密还原后由于镍元素太紧密容易发生团聚。通过对负载量条件进行优化,可进一步提高SrNiO3/SiC-SiO2-Foam的催化活性。

应当理解的是负载量指的是催化活性成分SrNiO3在整个催化剂SrNiO3/SiC-SiO2-Foam中的质量分数。

优选地,所述SrNiO3的负载量为6%。

优选地,S1中所述煅烧的温度为1000℃,时间为3h。

优选地,S1中所述含氧氛围为空气氛围。

优选地,S1中以3~5℃/min的升温速率进行升温。

更为优选地,S1中以5℃/min的升温速率进行升温。

本领域常规的镍源和锶源均可用于本发明中。

优选地,S2中所述镍源为Ni(NO3)2或乙酸镍中的一种或几种。

优选地,S2中所述锶源为Sr(NO3)3、乙酸锶中的一种或几种。

优选地,S2中所述螯合剂为柠檬酸、氢氧化钠中的一种或几种。

优选地,S2镍源中的镍元素和锶源中的锶元素的摩尔比为1:1。

优选地,S2中镍源中的镍元素和锶源中的锶元素的总和和柠檬酸的摩尔比为1:1~3。

优选地,S3中所述煅烧的温度为750℃,时间为3h。

优选地,S3中所述含氧氛围为空气氛围。

优选地,S3中以3~5℃/min的升温速率进行升温。

更为优选地,S3中以5℃/min的升温速率进行升温。

本发明还请求保护一种沼气全组分转化生物甲醇催化剂Ni-SrO/SiC-SiO2-Foam,通过如下过程制备得到:将上述SrNiO3/SiC-SiO2-Foam在氢气氛围700~850℃下进行还原处理即得所述Ni-SrO/SiC-SiO2-Foam。

SrNiO3本身是不具备催化活性的,形成SrNiO3钙钛矿结构可使得镍锶元素更加有序的分布形成统一有序的整体,经氢气还原出金属镍后(还原后得到Ni-SrO/SiC-SiO2-Foam)具有催化活性,经晶胞结构还原出的镍分布的更加有规范性,更加有序,彼此间的间距几乎是定值,这样才更能发挥出镍元素的催化活性,在提高催化活性的同时不会被其他的一些因素如团聚积碳等方面所影响。

优选地,所述还原的时间为1~3h。

优选地,所述还原的温度为800℃,还原的时间为2h。

上述Ni-SrO/SiC-SiO2-Foam在制备生物燃料中的应用也在本发明的保护范围内。

优选地,所述Ni-SrO/SiC-SiO2-Foam在催化沼气全组分转化合成气中的应用。

Ni-SrO/SiC-SiO2-Foam可催化沼气转变为合成气(CO和H2),合成气可作为合成合成生物燃料甲醇的原料。

一般情况下,Ni-SrO/SiC-SiO2-Foam在催化沼气时的温度为750~950℃(常压),其中,以950℃最佳。

Ni-SrO/SiC-SiO2-Foam在催化沼气流速为80mL/min时的用量为0.2g。

与现有技术相比,本发明具有如下有益效果:

本发明以SiC-Foam为原料,通过煅烧在SiC表面生成一层SiO2膜,得到载体SiC-SiO2-Foam;然后以SrNiO3为催化活性成分,通过负载量、煅烧条件的优化,使得钙钛矿型SrNiO3颗粒较小,分散性高,分散均匀,避免了高负载镍基催化剂在高温下易于团聚、催化性能受限的问题;通过进一步还原处理,得到的Ni-SrO/SiC-SiO2-Foam转化率高,可以很好地催化沼气全组分转化合成气用于合成生物甲醇反应中的应用。

附图说明

图1为钙钛矿型催化剂SrNiO3/SiC-SiO2-Foam的XRD图;

图2为实施例1~4反应产物中甲烷和二氧化碳的转化率图;

图3为贵金属催化沼气的反应产物中甲烷和二氧化碳的转化率图。

具体实施方式

下面结合实施例进一步阐述本发明。这些实施例仅用于说明本发明而不用于限制本发明的范围。下例实施例中未注明具体条件的实验方法,通常按照本领域常规条件或按照制造厂商建议的条件;所使用的原料、试剂等,如无特殊说明,均为可从常规市场等商业途径得到的原料和试剂。本领域的技术人员在本发明的基础上所做的任何非实质性的变化及替换均属于本发明所要求保护的范围。

实施例1~4

本实施例提供一系列的钙钛矿型催化剂SrNiO3/SiC-SiO2-Foam通过如下方法制备得到。

1)SiC-SiO2-Foam的制备

将SiC-Foam在空气氛围下1000℃煅烧3h得到SiC-SiO2-Foam。

2)SrNiO3/SiC-SiO2-Foam钙钛矿型催化剂前体的制备

将Ni(NO3)2和Sr(NO3)3以相应的负载量质量溶解在30mL去离子水中持续搅拌,同时加入相应量的处理后的SiC-SiO2-Foam。将溶液放置在细胞破壁粉碎仪处理30min后,加入与硝酸盐摩尔量相同的柠檬酸,在微波条件下处理30min形成了绿色溶胶凝胶。凝胶在110℃的环境下干燥一晚,即得SrNiO3/SiC-SiO2-Foam钙钛矿型前体。对SrNiO3/SiC-SiO2-Foam钙钛矿型前体进行用水洗涤3~4次,使滤液至中性,乙醇洗三次,在35℃烘箱烘干8h,得到SrNiO3/SiC-SiO2-Foam钙钛矿型前体固体。

具体添加量见表1(SrNiO3的负载量=SrNiO3/(SrNiO3质量+SiC-SiO2-Foam质量))。

表1实施例1~4中钙钛矿型催化剂SrNiO3/SiC-SiO2-Foam及其用量控制

3)钙钛矿型催化剂SrNiO3/SiC-SiO2-Foam的制备

将得到的SrNiO3/SiC-SiO2-Foam钙钛矿型前体的制备,采用煅烧的方法,在马弗炉中空气氛围下煅烧。煅烧的升温速率为5℃每分钟,升温至750℃,煅烧3个小时。之后降温至室温,将得到固体加入至水中,磁力搅拌器600r/min转速搅拌8h,过滤,乙醇洗3次。放入35℃烘箱烘干3h,即得到钙钛矿型催化剂SrNiO3/SiC-SiO2-Foam。

实施例5

本实施例提供一种钙钛矿型催化剂SrNiO3/SiC-SiO2-Foam,其制备方法与实施例3基本一致,差异在于,本实施例步骤1)在煅烧制备SiC-SiO2-Foam时,煅烧的温度为900℃,煅烧的时间为2h;步骤3)在制备SrNiO3/SiC-SiO2-Foam时,煅烧的升温速率为3℃每分钟,煅烧的温度为750℃,时间为4h。

实施例6

本实施例提供一种钙钛矿型催化剂SrNiO3/SiC-SiO2-Foam,其制备方法与实施例3基本一致,差异在于,本实施例步骤1)在煅烧制备SiC-SiO2-Foam时,煅烧的温度为1050℃,煅烧的时间为4h;步骤3)在制备SrNiO3/SiC-SiO2-Foam时,煅烧的升温速率为3℃每分钟,煅烧的温度为800℃,时间为6h。

性能测试

(一)表征

采用以下手段,对上述实施例所制备得到的催化剂进行表征。

1)X射线衍射图谱(XRD):如图1所示。

图1为实施例3所得钙钛矿型催化剂SrNiO3/SiC-SiO2-Foam的XRD,图中分别给出了纯的钙钛矿型化合物SrNiO3图谱和SrNiO3负载之后的图谱,它们的衍射峰与SiC的衍射峰一致。列出钙钛矿型催化剂SrNiO3/SiC-SiO2-Foam的XRD图,可以得到与SrNiO3主要衍射峰符合。

催化活性

将实施例1~4所得的钙钛矿型催化剂SrNiO3/SiC-SiO2-Foam各0.2g分别反应器中。先使用氮气通气5~6次,排尽反应釜中空气,随后通入5%氢气原位还原后(700~850℃下还原1~3h,具体在800℃下还原2h后得到Ni-SrO/SiC-SiO2-Foam),随即升温至750~950℃下反应,反应稳定后进行采气。所得产气采用气相色谱进行检测,测试结果见图2。

一般来说,对于沼气全组分转化制备合成气的反应,主要是甲烷和二氧化碳的转化。反应后甲烷和二氧化碳含量越低,说明催化活性越高。

从图2可以看出,该SrNiO3/SiC-SiO2-Foam钙钛矿型催化剂催化沼气全组分转化合成气用于合成生物甲醇反应。通过实施例1~4的催化效果可以看出,不同的负载比例在不同的温度下对于催化的效果不尽相同,从负载量2wt%开始在同一温度下随着SrNiO3比例的增加转化率逐渐增加,随着温度增加转化率逐渐增加。当负载量为6wt%时转化率达到最大值,800℃和850℃时为6wt%的比例转化率最大。随着SrNiO3负载量不同,形成的晶体活性位点不同,比表面也发生变化,当SrNiO3达到一定时,形成的晶体活性位点达到最优,从而产生最好的催化效果。

另外,以实施例3提供的SrNiO3/SiC-SiO2-Foam为例,与Pd,Pt贵金属催化剂相比。例如文献F.Aldoghachi,U.Rashid,T.Y.Yun,Rsc Advances 6(2016)10372-10384.公开了在相同的900℃下,四种贵金属催化剂(如表2)催化沼气全组分转化制备合成气的测试结果,如图3((其中的1、2、3和4分别代表了(1)Pt,Pd,Ni/MgO,(2)Pt,Pd,Ni/Mg0.97Ce0.03 3+O,(3)Pt,Pd,Ni/Mg0.93Ce0.07 3+O和(4)Pt,Pd,Ni/Mg0.85Ce0.15 3+O))。

表2四种贵金属贵金属催化剂尺寸及组成

从图2和图3可知,本申请提供的SrNiO3/SiC-SiO2-Foam经还原后得到的Ni-SrO/SiC-SiO2-Foam在900℃时甲烷的转化率与含贵金属催化剂的转化率相似这也可以证明该催化剂在未来是一种极具潜力的发展方向。

由上述可知,本发明提供的催化剂转化率高,可以很好地催化沼气全组分转化合成气用于合成生物甲醇反应中的应用。

上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

9页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:沼气全组分转化生物甲醇催化剂LaNiO_3/SiC-SiO_2-Fiber及制备方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!