Method for adjusting perpendicularity of telescopic arm of elevating platform fire truck

文档序号:1870775 发布日期:2021-11-23 浏览:18次 中文

阅读说明:本技术 一种登高平台消防车伸缩臂垂直度调整方法 (Method for adjusting perpendicularity of telescopic arm of elevating platform fire truck ) 是由 李祥啟 朱玉莘 李文明 于 2021-09-09 设计创作,主要内容包括:本发明实施例公开了一种登高平台消防车伸缩臂垂直度调整方法,属于消防和救援装备技术领域,包括以下步骤:(1)将前液压支腿伸出和过渡液压油缸伸出,使汽车底盘保持水平;(2)将伸缩臂翻转至竖直状态;(3)将安装于所述伸缩臂上远离汽车的驾驶室位置左右两侧的后液压支腿伸出;(4)伸缩臂升降过程中,安装于伸缩臂上的倾角传感器随时监测伸缩臂的倾斜状况,并反馈至控制单元,控制单元控制相应方位的液压执行元件,对伸缩臂的倾斜量进行补偿,使伸缩臂保持在竖直状态。本发明解决了现有伸缩臂升降过程中的垂直度无法调整的技术问题,广泛应用于高空消防或救援中。(The embodiment of the invention discloses a verticality adjusting method for a telescopic arm of a fire truck of an ascending platform, belonging to the technical field of fire fighting and rescue equipment and comprising the following steps: (1) extending the front hydraulic support leg and the transition hydraulic oil cylinder to keep the automobile chassis horizontal; (2) turning the telescopic arm to a vertical state; (3) extending out the rear hydraulic support legs which are arranged on the left side and the right side of the telescopic arm far away from the cab of the automobile; (4) in the lifting process of the telescopic arm, the inclination angle sensor arranged on the telescopic arm monitors the inclination condition of the telescopic arm at any time and feeds the inclination condition back to the control unit, and the control unit controls the hydraulic actuating element in the corresponding direction to compensate the inclination amount of the telescopic arm so as to keep the telescopic arm in a vertical state. The invention solves the technical problem that the verticality in the lifting process of the traditional telescopic boom cannot be adjusted, and is widely applied to high-altitude fire fighting or rescue.)

1. A perpendicularity adjusting method for a telescopic arm of a fire truck of an ascending platform is characterized by comprising the following steps: (1) front hydraulic support legs which are arranged on the left side and the right side of the automobile chassis and close to the cab of an automobile are extended out, and transition hydraulic oil cylinders which are arranged on the left side and the right side of the tail end of the automobile chassis are extended out, so that the automobile chassis is in a horizontal position; (2) turning a telescopic arm which is hinged to the tail of the automobile chassis to a vertical state through a turning hydraulic oil cylinder; (3) extending the rear hydraulic support legs which are arranged on the left side and the right side of the telescopic arm far away from the cab of the automobile to keep the telescopic arm in a vertical state; (4) in the lifting process of the telescopic arm, the inclination angle sensor arranged on the telescopic arm monitors the inclination condition of the telescopic arm at any time and feeds the inclination condition back to the control unit, and the control unit controls the hydraulic actuating element in the corresponding direction to compensate the inclination amount of the telescopic arm so as to keep the telescopic arm in a vertical state.

2. The method for adjusting the perpendicularity of the telescopic boom of the elevating platform fire truck according to claim 1, wherein two working ports of each front hydraulic leg are respectively connected with an oil inlet pipeline and an oil return pipeline through a first reversing valve, two working ports of each rear hydraulic leg are respectively connected with the oil inlet pipeline and the oil return pipeline through a second reversing valve, two working ports of each transition hydraulic cylinder are respectively connected with the oil inlet pipeline and the oil return pipeline through a third reversing valve, and two working ports of each overturning hydraulic cylinder are respectively connected with the oil inlet pipeline and the oil return pipeline through a fourth reversing valve.

3. The method for adjusting the verticality of the telescopic boom of the elevating platform fire truck according to claim 2, wherein the first reversing valve, the second reversing valve, the third reversing valve and the fourth reversing valve are all Y-shaped three-position four-way electromagnetic reversing valves, and the first reversing valve, the second reversing valve, the third reversing valve and the fourth reversing valve are all connected with the control unit.

4. The verticality adjusting method for the telescopic arm of the elevating platform fire truck according to claim 3, wherein the rodless cavity of the front hydraulic support leg is connected with the oil port A of the first reversing valve through a first hydraulic control one-way valve, the rod cavity of the front hydraulic support leg is connected with the oil port B of the first reversing valve through a second hydraulic control one-way valve, the hydraulic control port of the first hydraulic control one-way valve is connected with the oil port B of the first reversing valve, the hydraulic control port of the second hydraulic control one-way valve is connected with the oil port A of the first reversing valve, the oil port P of the first reversing valve is communicated with an oil inlet pipeline, and the oil port T of the first reversing valve is communicated with an oil return pipeline; the rodless cavity of the rear hydraulic support leg is connected with the oil port A of the second reversing valve through a third hydraulic control one-way valve, the rod cavity of the rear hydraulic support leg is connected with the oil port B of the second reversing valve through a fourth hydraulic control one-way valve, the hydraulic control port of the third hydraulic control one-way valve is connected with the oil port B of the second reversing valve, the hydraulic control port of the fourth hydraulic control one-way valve is connected with the oil port A of the second reversing valve, the oil port P of the second reversing valve is communicated with an oil inlet pipeline, and the oil port T of the second reversing valve is communicated with an oil return pipeline; the rodless cavity of the transition hydraulic oil cylinder is connected with an oil port A of the third reversing valve through a fifth hydraulic control one-way valve, the rod cavity of the transition hydraulic oil cylinder is connected with an oil port B of the third reversing valve through a sixth hydraulic control one-way valve, a hydraulic control port of the fifth hydraulic control one-way valve is connected with the oil port B of the third reversing valve, the hydraulic control port of the sixth hydraulic control one-way valve is connected with the oil port A of the third reversing valve, an oil port P of the third reversing valve is communicated with an oil inlet pipeline, and an oil port T of the third reversing valve is communicated with an oil return pipeline.

Technical Field

The embodiment of the invention relates to the technical field of fire fighting and rescue equipment, in particular to a perpendicularity adjusting method for a telescopic arm of a fire fighting truck with an ascending platform.

Background

At present, the telescopic boom of a high-altitude fire-fighting rescue vehicle usually has two forms, one is a crank arm structure, the other is a telescopic cylinder structure, the number of the sections of the crank arm structure is small, the number of the sections of the telescopic cylinder structure is large, and in the telescopic boom of the existing telescopic cylinder structure, the sliding gap between the telescopic joints is large, so that the telescopic joints are seriously shaken after being stretched out, most of the telescopic booms adopt inclined lifting, and the dead weight of the telescopic booms is utilized to overcome the sliding gap between the telescopic joints. However, in the vertically lifting telescopic arm, the superposition of the sliding gaps can lead to the telescopic arm to tilt, so that the gravity center of the automobile chassis is unstable, and even the vehicle can roll over. Therefore, how to keep the perpendicularity of the telescopic boom in the lifting process is a technical problem troubling the technical personnel in the field.

Therefore, in the technical field of fire fighting and rescue equipment, research and improvement needs still exist for the perpendicularity adjusting method of the telescopic arm of the elevating platform fire truck, which is also a research focus and a focus in the technical field of fire fighting and rescue equipment at present and is a starting point of the invention.

Disclosure of Invention

Therefore, the embodiment of the invention provides a method for adjusting the verticality of a telescopic arm of a fire truck of a climbing platform, which aims to solve the technical problem that the verticality cannot be adjusted in the lifting process of the conventional telescopic arm.

In order to achieve the above object, the embodiments of the present invention provide the following technical solutions:

according to the embodiment of the invention, the verticality adjusting method for the telescopic arm of the elevating platform fire truck comprises the following steps: (1) front hydraulic support legs which are arranged on the left side and the right side of the automobile chassis and close to the cab of an automobile are extended out, and transition hydraulic oil cylinders which are arranged on the left side and the right side of the tail end of the automobile chassis are extended out, so that the automobile chassis is in a horizontal position; (2) turning a telescopic arm which is hinged to the tail of the automobile chassis to a vertical state through a turning hydraulic oil cylinder; (3) extending the rear hydraulic support legs which are arranged on the left side and the right side of the telescopic arm far away from the cab of the automobile to keep the telescopic arm in a vertical state; (4) in the lifting process of the telescopic arm, the inclination angle sensor arranged on the telescopic arm monitors the inclination condition of the telescopic arm at any time and feeds the inclination condition back to the control unit, and the control unit controls the hydraulic actuating element in the corresponding direction to compensate the inclination amount of the telescopic arm so as to keep the telescopic arm in a vertical state.

Furthermore, every two working ports of the front hydraulic support leg are respectively connected with an oil inlet pipeline and an oil return pipeline through a first reversing valve, every two working ports of the rear hydraulic support leg are respectively connected with the oil inlet pipeline and the oil return pipeline through a second reversing valve, every two working ports of the transition hydraulic oil cylinder are respectively connected with the oil inlet pipeline and the oil return pipeline through a third reversing valve, and the two working ports of the turnover hydraulic oil cylinder are respectively connected with the oil inlet pipeline and the oil return pipeline through a fourth reversing valve.

Furthermore, the first reversing valve, the second reversing valve, the third reversing valve and the fourth reversing valve are Y-shaped three-position four-way electromagnetic reversing valves, and the first reversing valve, the second reversing valve, the third reversing valve and the fourth reversing valve are all connected with the control unit.

Furthermore, the rodless cavity of the front hydraulic support leg is connected with the oil port A of the first reversing valve through a first hydraulic control one-way valve, the rod cavity of the front hydraulic support leg is connected with the oil port B of the first reversing valve through a second hydraulic control one-way valve, the hydraulic control port of the first hydraulic control one-way valve is connected with the oil port B of the first reversing valve, the hydraulic control port of the second hydraulic control one-way valve is connected with the oil port A of the first reversing valve, the oil port P of the first reversing valve is communicated with an oil inlet pipeline, and the oil port T of the first reversing valve is communicated with an oil return pipeline; the rodless cavity of the rear hydraulic support leg is connected with the oil port A of the second reversing valve through a third hydraulic control one-way valve, the rod cavity of the rear hydraulic support leg is connected with the oil port B of the second reversing valve through a fourth hydraulic control one-way valve, the hydraulic control port of the third hydraulic control one-way valve is connected with the oil port B of the second reversing valve, the hydraulic control port of the fourth hydraulic control one-way valve is connected with the oil port A of the second reversing valve, the oil port P of the second reversing valve is communicated with an oil inlet pipeline, and the oil port T of the second reversing valve is communicated with an oil return pipeline; the rodless cavity of the transition hydraulic oil cylinder is connected with an oil port A of the third reversing valve through a fifth hydraulic control one-way valve, the rod cavity of the transition hydraulic oil cylinder is connected with an oil port B of the third reversing valve through a sixth hydraulic control one-way valve, a hydraulic control port of the fifth hydraulic control one-way valve is connected with the oil port B of the third reversing valve, the hydraulic control port of the sixth hydraulic control one-way valve is connected with the oil port A of the third reversing valve, an oil port P of the third reversing valve is communicated with an oil inlet pipeline, and an oil port T of the third reversing valve is communicated with an oil return pipeline.

The embodiment of the invention has the following advantages:

(1) the tilt angle sensor on the telescopic arm monitors the tilt condition of the telescopic arm at any time and feeds the tilt condition back to the control unit, the control unit controls the hydraulic actuating elements in corresponding directions, the hydraulic actuating elements comprise a turnover hydraulic oil cylinder, a front hydraulic support leg, a rear hydraulic support leg and a transition hydraulic oil cylinder, the tilt amount of the telescopic arm is compensated, and the telescopic arm is kept in a vertical state, so that the technical problem that the verticality cannot be adjusted in the lifting process of the conventional telescopic arm is solved.

(2) Because the front hydraulic support leg, the rear hydraulic support leg and the transition hydraulic oil cylinder are all provided with the two hydraulic control one-way valves, the current pressure of the front hydraulic support leg, the rear hydraulic support leg and the transition hydraulic oil cylinder can be kept, the leakage of hydraulic oil caused by the change of bearing is avoided, and the current verticality of the telescopic boom is ensured.

Drawings

In order to more clearly illustrate the embodiments of the present invention or the technical solutions in the prior art, the drawings used in the description of the embodiments or the prior art will be briefly described below. It should be apparent that the drawings in the following description are merely exemplary, and that other embodiments can be derived from the drawings provided by those of ordinary skill in the art without inventive effort.

The structures, ratios, sizes, and the like shown in the present specification are only used for matching with the contents disclosed in the specification, so as to be understood and read by those skilled in the art, and are not used to limit the conditions that the present invention can be implemented, so that the present invention has no technical significance, and any structural modifications, changes in the ratio relationship, or adjustments of the sizes, without affecting the effects and the achievable by the present invention, should still fall within the range that the technical contents disclosed in the present invention can cover.

FIG. 1 is a schematic structural diagram of an embodiment of the present invention;

FIG. 2 is a layout diagram of the cylinders according to the embodiment of the present invention;

FIG. 3 is a hydraulic control schematic of an embodiment of the present invention;

in the figure: 1. automobile chassis, 2, telescopic boom, 3, preceding hydraulic leg, 4, back hydraulic leg, 5, upset hydraulic cylinder, 6, transition hydraulic cylinder, 7, oil inlet pipeline, 8, return oil pipeline, 9, first switching-over valve, 10, second switching-over valve, 11, third switching-over valve, 12, fourth switching-over valve, 13, first liquid accuse check valve, 14, second liquid accuse check valve, 15, third liquid accuse check valve, 16, fourth liquid accuse check valve, 17, fifth liquid accuse check valve, 18, sixth liquid accuse check valve.

Detailed Description

The present invention is described in terms of particular embodiments, other advantages and features of the invention will become apparent to those skilled in the art from the following disclosure, and it is to be understood that the described embodiments are merely exemplary of the invention and that it is not intended to limit the invention to the particular embodiments disclosed. All other embodiments, which can be derived by a person skilled in the art from the embodiments given herein without making any creative effort, shall fall within the protection scope of the present invention.

In the present specification, the terms "front", "rear", "left", "right" and "middle" are used for clarity of description only, and are not intended to limit the scope of the present invention, and changes or modifications of the relative relationship thereof are also regarded as the scope of the present invention without substantial changes in the technical content.

As shown in fig. 1 and 2, an embodiment of the present invention provides a perpendicularity adjusting method for a telescopic boom of a fire truck for a platform ascending, including the following steps: (1) front hydraulic support legs 3 which are arranged on the left side and the right side of a cab position of an automobile and are arranged on an automobile chassis 1 are extended out, and transition hydraulic oil cylinders 6 which are arranged on the left side and the right side of the tail end of the automobile chassis 1 are extended out, so that the automobile chassis 1 is in a horizontal position; (2) a telescopic arm 2 which is hinged and installed at the tail part of an automobile chassis 1 is turned to be in a vertical state through a turning hydraulic oil cylinder 5; (3) extending out the rear hydraulic support legs 4 which are arranged on the telescopic arm 2 and are far away from the left side and the right side of the cab of the automobile, so that the telescopic arm 2 is kept in a vertical state; (4) in the lifting process of the telescopic arm 2, the inclination angle sensor arranged on the telescopic arm 2 monitors the inclination condition of the telescopic arm 2 at any time and feeds back the inclination condition to the control unit, the control unit controls hydraulic actuators in corresponding directions, the hydraulic actuators comprise a turning hydraulic oil cylinder 5, a front hydraulic support leg 3, a rear hydraulic support leg 4 and a transition hydraulic oil cylinder 6, the inclination amount of the telescopic arm 2 is compensated, so that the telescopic arm 2 is kept in a vertical state, the verticality of the telescopic arm 2 is corrected by preferentially adjusting the expansion amounts of the transition hydraulic oil cylinder 6 closest to the telescopic arm 2 and the rear hydraulic support leg 4 during adjustment, the front hydraulic support leg 3 far away is used as driven adjustment by considering the deformation amount of the automobile chassis 1, so as to achieve the effect of stable support, when the telescopic arm 2 is seriously inclined, and the adjustment amounts of the rear hydraulic support leg 4 and the transition hydraulic oil cylinder 6 cannot meet normal correction, the inclination angle of the telescopic boom 2 is changed by turning the hydraulic cylinder 5 to ensure the verticality of the telescopic boom 2.

As shown in fig. 3, two working ports of each front hydraulic leg 3 are respectively connected with an oil inlet pipeline 7 and an oil return pipeline 8 through a first reversing valve 9, two working ports of each rear hydraulic leg 4 are respectively connected with the oil inlet pipeline 7 and the oil return pipeline 8 through a second reversing valve 10, two working ports of each transition hydraulic cylinder 6 are respectively connected with the oil inlet pipeline 7 and the oil return pipeline 8 through a third reversing valve 11, and two working ports of the turnover hydraulic cylinder 5 are respectively connected with the oil inlet pipeline 7 and the oil return pipeline 8 through a fourth reversing valve 12. The first reversing valve 9, the second reversing valve 10, the third reversing valve 11 and the fourth reversing valve 12 are Y-shaped three-position four-way electromagnetic reversing valves, and the first reversing valve 9, the second reversing valve 10, the third reversing valve 11 and the fourth reversing valve 12 are all connected with the control unit.

Specifically, a rodless cavity of the front hydraulic support leg 3 is connected with an oil port A of the first reversing valve 9 through a first hydraulic control one-way valve 13, a rod cavity of the front hydraulic support leg 3 is connected with an oil port B of the first reversing valve 9 through a second hydraulic control one-way valve 14, a hydraulic control port of the first hydraulic control one-way valve 13 is connected with the oil port B of the first reversing valve 9, a hydraulic control port of the second hydraulic control one-way valve 14 is connected with the oil port A of the first reversing valve 9, an oil port P of the first reversing valve 9 is communicated with the oil inlet pipeline 7, and an oil port T of the first reversing valve 9 is communicated with the oil return pipeline 8; the rodless cavity of the rear hydraulic support leg 4 is connected with the oil port A of the second reversing valve 10 through a third hydraulic control one-way valve 15, the rod cavity of the rear hydraulic support leg 4 is connected with the oil port B of the second reversing valve 10 through a fourth hydraulic control one-way valve 16, the hydraulic control port of the third hydraulic control one-way valve 15 is connected with the oil port B of the second reversing valve 10, the hydraulic control port of the fourth hydraulic control one-way valve 16 is connected with the oil port A of the second reversing valve 10, the oil port P of the second reversing valve 10 is communicated with the oil inlet pipeline 7, and the oil port T of the second reversing valve 10 is communicated with the oil return pipeline 8; the rodless cavity of the transition hydraulic oil cylinder 6 is connected with the oil port A of the third reversing valve 11 through the fifth hydraulic control one-way valve 17, the rod cavity of the transition hydraulic oil cylinder 6 is connected with the oil port B of the third reversing valve 11 through the sixth hydraulic control one-way valve 18, the hydraulic control port of the fifth hydraulic control one-way valve 17 is connected with the oil port B of the third reversing valve 11, the hydraulic control port of the sixth hydraulic control one-way valve 18 is connected with the oil port A of the third reversing valve 11, the oil port P of the third reversing valve 11 is communicated with the oil inlet pipeline 7, and the oil port T of the third reversing valve 11 is communicated with the oil return pipeline 8. In the embodiment of the invention, the front hydraulic support leg 3, the rear hydraulic support leg 4 and the transition hydraulic oil cylinder 6 are respectively provided with two hydraulic control one-way valves, so that the current pressure of the hydraulic control one-way valves can be kept, the leakage of hydraulic oil caused by bearing change is avoided, and the current verticality of the telescopic arm 2 is ensured.

Preceding hydraulic leg 3, transition hydraulic cylinder 6 all stretch out and support in ground, and upset hydraulic cylinder 5 supports telescopic boom 2 in vertical direction, and back hydraulic leg 4 stretches out and supports in ground for vehicle chassis 1 keeps the level, and telescopic boom 2 begins to stretch out, and when inclination sensor detected telescopic boom 2 and leaned on to a certain direction, the hydraulic cylinder of the relevant position of control unit control stretched out, compensated inclination at any time, made telescopic boom 2 be in vertical state always. For example, the tilt sensor detects that the telescopic boom 2 inclines towards the left front hydraulic leg 3, at this time, the control unit controls the third reversing valve 11 to be switched to the rodless cavity oil inlet position of the direction transition hydraulic cylinder 6, at this time, the sixth hydraulic control one-way valve 18 is opened by hydraulic oil, the rodless cavity oil inlet of the transition hydraulic cylinder 6 is realized, the hydraulic oil in the rod cavity flows into the oil return pipeline 8 through the sixth hydraulic control one-way valve 18, the piston rod of the transition hydraulic cylinder 6 extends out, the telescopic boom 2 is righted to be in a vertical state, in the adjustment process, the control unit controls the front hydraulic leg 3 in the direction to correspondingly extend out for a certain distance, the overall level of the automobile chassis 1 is met, the control process of the control unit is the same as that of the transition hydraulic cylinder 6, and the description is omitted here.

Although the invention has been described in detail above with reference to a general description and specific examples, it will be apparent to one skilled in the art that modifications or improvements may be made thereto based on the invention. Accordingly, such modifications and improvements are intended to be within the scope of the invention as claimed.

8页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种深基坑作业智能机的工作方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!

技术分类