一种锂硫电池用多功能隔膜涂层的制备方法

文档序号:22157 发布日期:2021-09-21 浏览:18次 >En<

阅读说明:本技术 一种锂硫电池用多功能隔膜涂层的制备方法 (Preparation method of multifunctional diaphragm coating for lithium-sulfur battery ) 是由 卢红斌 刘意成 赵则栋 郭屹轩 胡波 于 2021-05-25 设计创作,主要内容包括:本发明涉及一种锂硫电池用多功能隔膜涂层的制备方法,该多功能隔膜涂层由硒化镍铁/石墨烯复合物组成。采用抽滤的方法将石墨烯/原位生长的纳米立方笼硒化镍铁复合物修饰到朝向正极隔膜一侧,解决传统隔膜不能有效阻止多硫化物向锂金属负极扩散这一难题。具有催化活性的硒化镍铁可加速多硫化物和硫化锂之间的相互转化,提高活性物质的利用率的同时防止放电产物硫化锂阻塞孔道。此外,笼状镍铁硒化物的多孔结构有利于锂离子快速传输。此种复合设计使得具备硒化镍铁隔膜涂层的电池表现出高的比容量和出色的倍率性能。(The invention relates to a preparation method of a multifunctional diaphragm coating for a lithium-sulfur battery, wherein the multifunctional diaphragm coating is composed of a nickel-iron selenide/graphene compound. A suction filtration method is adopted to modify the graphene/in-situ grown nano cubic cage ferronickel selenide compound to one side facing the anode diaphragm, so that the problem that polysulfide cannot be effectively prevented from diffusing to the lithium metal cathode by the traditional diaphragm is solved. The nickel-iron selenide with catalytic activity can accelerate the mutual conversion between polysulfide and lithium sulfide, improve the utilization rate of active substances and prevent the discharge product lithium sulfide from blocking pore channels. In addition, the porous structure of the cage-shaped nickel iron selenide is beneficial to the rapid transmission of lithium ions. The composite design enables the battery with the nickel-iron selenide diaphragm coating to show high specific capacity and excellent rate capability.)

一种锂硫电池用多功能隔膜涂层的制备方法

技术领域

本发明属于材料

技术领域

,具体涉及一种锂硫电池用多功能隔膜涂层的制备方法。

背景技术

由于超高的理论能量密度(2600 瓦时/千克)以及低成本优势,锂硫电池已成为下一代能量存储体系的有力候选者。然而,硫的多步和多相反应行为所带来的多硫化锂复杂的穿梭效应将导致锂硫电池出现一系列的问题,比如活性物质的损失、严重的容量衰减以及较差的循环寿命,从而大大阻碍其进一步的商业化。

传统锂硫电池隔膜的作用是将正极和负极隔离,并为锂离子提供运输通道,却不能阻止多硫化锂向负极的扩散。一种有前途且简单的策略是在正极和隔膜之间引入多功能涂层来阻挡多硫化锂扩散。隔膜涂层的构筑一般有两种策略:第一种是利用多硫化物和锂离子的半径和所带电荷不同开发的分子筛型和静电排斥型涂层,此类涂层可以有效阻止多硫化锂的扩散路径,但是溶解在电解液中或堆积在隔膜上的多硫化锂很难参与随后的电化学反应,从而导致硫的利用率低。第二种是利用碳材料将电解液中的多硫化锂捕获后再利用,从而提高硫的利用率并同时抑制穿梭效应。由于非极性碳对极性多硫化锂亲和力弱,不足以阻止充放电过程中多硫化锂的穿梭;将一些极性氧化物引入隔膜涂层中,以物理化学相互作用有效地固定多硫化锂。但大多数金属氧化物电导率较差,导致多硫化锂转化反应动力学缓慢。此外,隔膜涂层通常会阻碍锂离子的扩散,并对锂硫电池的循环稳定性产生负面影响。因此,迫切需要设计一种多功能隔膜涂层,不仅可以有效阻挡多硫化物,而且能催化多硫化锂的转化提高多硫化物的转化率,关键的是还不影响离子传输。

发明内容

本发明的目的在于针对现有锂硫电池隔膜无法有效调控多硫化锂的缺陷,提供一种锂硫电池用多功能隔膜涂层的制备方法。本发明制备的立方笼状的(Ni,Fe)Se2/石墨烯涂层,可作为高性能锂硫电池的有效多硫化物阻挡层。石墨烯一方面物理作用阻挡多硫化物,另一方面提供良好的导电网络;此外,具有高电导率和极性特征的过渡金属硒化物因具有合适的d电子结构和催化活性从而对多硫化物有很好的催化转化作用。更关键的是,笼状镍铁硒化物的多孔结构确保了锂离子的快速传输。具有这些特性的(Ni,Fe)Se2/石墨烯隔膜涂层的电池能够实现出色的电化学性能。

本发明提出的一种锂硫电池用多功能隔膜涂层的制备方法,具体步骤如下:

(1)将1-10毫摩尔二价镍盐和1-20毫摩尔柠檬酸钠加入到100-1000毫升的氧化石墨烯溶液中配置成A溶液,另将1-10毫摩尔六氰合铁酸钾配置成B溶液。将B溶液慢慢滴加到A溶液中,并在一定温度下反应3-24小时,得到混合溶液;

(2)取步骤(1)中的混合溶液至反应釜中,水热反应3小时,经筛网洗涤干燥后得到镍铁普鲁士蓝/石墨烯复合物;

(3)取步骤(2)的镍铁普鲁士蓝/石墨烯复合物和硒粉分别放置在瓷舟的下游和上游,在管式炉中于特定气氛下进行高温煅烧3小时,得到硒化镍铁/石墨烯复合物;其中:镍铁普鲁士蓝/石墨烯和硒粉的质量比为1:(1-20);

(4)取步骤(3)的硒化镍铁/石墨烯复合物和胶粘剂溶液混合后抽滤到商用隔膜上,经干燥后得到硒化镍铁/石墨烯隔膜涂层;其中:硒化镍铁/石墨烯复合物和胶粘剂溶液的质量比为10:(0.1-10)。

本发明中,步骤(1)中所述二价镍离子为硫酸镍、硝酸镍、醋酸镍或氯化镍中的任一种。

本发明中,步骤(1)中所述氧化石墨烯的制备方法,具体步骤如下:以鳞片石墨为原料,加入高锰酸钾和浓硫酸,采用温和无搅拌的方式制备氧化石墨,后续通过剥离得到氧化石墨烯。

本发明中,步骤(1)中所述氧化石墨烯的浓度为0.1-8毫克/毫升。

本发明中,步骤(1)中所述的温度为10-100℃。

本发明中,步骤(2)中所述水热反应温度为100-400℃。

本发明中,步骤(3)中所述特定气氛为氩气、氮气或氢氩混合气中的任一种。

本发明中,步骤(3)中所述高温煅烧温度为250-800℃。

本发明中,步骤(4)中所述胶粘剂为聚偏氟乙烯、羧甲基纤维素钠、聚乙烯醇、丙烯腈多元共聚物中的任一种或混合。

本发明中,步骤(4)中所得隔膜涂层厚度为1-100微米。

本发明的有利优势在于:针对锂硫电池现有隔膜和相关技术存在的不足,经长期研究提出本发明的技术方案,该方案在可控反应条件下实现多功能硒化镍铁/石墨烯隔膜涂层材料的低成本制备。本发明制备的隔膜涂层能够合理调控多硫化锂以实现高性能的锂硫电池。具有催化活性的硒化镍铁可加速多硫化锂和硫化锂之间的相互转化。此外,来自普鲁士蓝多孔结构的硒化镍铁有利于锂离子的传输。本发明克服了与非活性材料相关的隔膜涂层的主要限制,为锂硫电池实用化提供了一种有效的解决途径。

附图说明

附图是用来提供对本发明的进一步理解,并且构成说明书的一部分,与下面的实施例一起用于解释本发明,但不构成对本发明的限制。

图1为硒化镍铁/石墨烯复合材料X射线衍射谱图。

图2为硒化镍铁/石墨烯复合材料(a)扫描电镜和(b)透射电镜图。

图3为本发明实施例1制得的硒化镍铁/石墨烯复合材料修饰隔膜的电池在0.1C下的恒流充放电曲线。

图4为本发明实施例1制得的硒化镍铁/石墨烯复合材料修饰隔膜的锂硫电池在0.1-5C下的倍率特性曲线。

图5为本发明实施例1制得的硒化镍铁/石墨烯复合材料修饰隔膜的锂硫电池在1C下,800次循环的放电比容量及库仑效率。

具体实施方式

以下结合附图对本发明的具体实施方式进行详细的说明。应当理解的是,本发明提到的一个或多个步骤不排斥在所述组合步骤前后还存在其它方法和步骤,或者这些明确提及的步骤之间还可以插入其它方法和步骤。还应理解,这些实例仅用于说明本发明而不用于限制本发明的范围。除非另有说明,各方法步骤的编号仅为鉴别各方法步骤的目的,而非为限制每个方法的排列次序或限定本发明的实施范围,其相对关系的改变或调整,在无实质技术内容变更的条件下,当亦视为本发明可实施的范畴。

实施例1

(1)将7.5毫摩尔硝酸镍和11.25毫摩尔柠檬酸钠加入到500毫升浓度为1.5毫克/毫升的氧化石墨烯溶液中配置成A溶液,另将5毫摩尔六氰合铁酸钾配置成500毫升B溶液。将B溶液缓慢滴加到A溶液中,并在30℃下反应24小时;

(2)取步骤(1)中的混合溶液至反应釜中,130℃水热反应3小时,经筛网洗涤干燥后得到镍铁普鲁士蓝/石墨烯复合物;

(3)取步骤(2)的镍铁普鲁士蓝/石墨烯复合物(100毫克)和硒粉(700毫克)分别放置在瓷舟的下游和上游,在管式炉中于氩气下进行350℃高温煅烧3小时,得到硒化镍铁/石墨烯复合物;

(4)取步骤(3)的硒化镍铁/石墨烯复合物和聚偏氟乙烯胶粘剂溶液混合后抽滤到隔膜上,经干燥后得到硒化镍铁/石墨烯隔膜涂层;其中硒化镍铁/石墨烯复合物和胶粘剂溶液的质量比为10: 1。

X射线衍射谱图(图1)证实,该方法成功制备硒化镍铁/石墨烯复合物。场发射扫描电镜(图2a)和透射电镜照片(图2b)显示,该方法制备的硒化镍铁呈现多孔立方笼结构,均匀地分布在石墨烯框架中。将碳纳米管/硫材料为正极,锂片为负极,上述硒化镍铁/石墨烯复合物涂层修饰的隔膜作为隔膜组装扣式锂硫电池。由恒流充放电曲线可知,带有该隔膜涂层的锂硫电池显示明显的两段放电平台(图3)。在0.1 C(1 C = 1675 mA g- 1)时,电池表现出1462 mAh g-1高的初始容量。而当电流密度增加到0.2、0.5、1.0、2.0和5.0C时,又分别保持了1050、870、772和584 mAh g- 1的高可逆容量(图4)。此外,带有该隔膜涂层的电池在1C的电流密度下表现出良好的循环性能,经过800次循环后放电容量保持在507mAh g-1,每圈容量衰减为0.033%(图5)。

实施例2

(1)将7.5毫摩尔硝酸镍和11.25毫摩尔柠檬酸钠加入到500毫升浓度为2毫克/毫升的氧化石墨烯溶液中配置成A溶液,另将5毫摩尔六氰合铁酸钾配置成500毫升B溶液。将B溶液缓慢滴加到A溶液并在30℃下反应24小时;

(2)取步骤(1)中的混合溶液至反应釜中,150℃水热反应2小时,经筛网洗涤干燥后得到镍铁普鲁士蓝/石墨烯复合物;

(3)取步骤(2)的镍铁普鲁士蓝/石墨烯复合物(100毫克)和硒粉(700毫克)分别放置在瓷舟的下游和上游,在管式炉中于氩气氛下进行350℃高温煅烧3小时,得到硒化镍铁/石墨烯复合物;

(4)取步骤(3)的硒化镍铁/石墨烯复合物和聚偏氟乙烯胶粘剂溶液混合后抽滤到隔膜上,经干燥后得到硒化镍铁/石墨烯隔膜涂层;其中硒化镍铁/石墨烯复合物和胶粘剂溶液的质量比为10: 1。

实施例3

(1)将7.5毫摩尔硝酸镍和11.25毫摩尔柠檬酸钠加入到500毫升浓度为2毫克/毫升的氧化石墨烯溶液中配置成A溶液,另将5毫摩尔六氰合铁酸钾配置成500毫升B溶液。将B溶液缓慢滴加到A溶液并在30oC下反应24小时;

(2)取步骤(1)中的混合溶液至反应釜中,130℃水热反应3小时,经筛网洗涤干燥后得到镍铁普鲁士蓝/石墨烯复合物;

(3)取步骤(2)的镍铁普鲁士蓝/石墨烯复合物(100毫克)和硒粉(1000毫克)分别放置在瓷舟的下游和上游,在管式炉中于氩气氛下进行350℃高温煅烧3小时,得到硒化镍铁/石墨烯复合物;

(4)取步骤(3)的硒化镍铁/石墨烯复合物和聚偏氟乙烯胶粘剂溶液混合后抽滤到隔膜上,经干燥后得到硒化镍铁/石墨烯隔膜涂层;其中硒化镍铁/石墨烯复合物和胶粘剂溶液的质量比为10: 0.5。

实施例4

(1)将7.5毫摩尔硝酸镍和22.5毫摩尔柠檬酸钠加入到500毫升浓度为1.5毫克/毫升的氧化石墨烯溶液中配置成A溶液,另将5毫摩尔六氰合铁酸钾配置成500毫升B溶液。将B溶液缓慢滴加到A溶液并在30℃下反应24小时;

(2)取步骤(1)中的混合溶液至反应釜中,150℃水热反应2小时,经筛网洗涤干燥后得到镍铁普鲁士蓝/石墨烯复合物;

(3)取步骤(2)的镍铁普鲁士蓝/石墨烯复合物(100毫克)和硒粉(700毫克)分别放置在瓷舟的下游和上游,在管式炉中于氢氩混合气氛下进行350oC高温煅烧3小时,得到硒化镍铁/石墨烯复合物;

(4)取步骤(3)的硒化镍铁/石墨烯复合物和丙烯腈多元共聚物胶粘剂溶液混合后抽滤到隔膜上,经干燥后得到硒化镍铁/石墨烯隔膜涂层;其中硒化镍铁/石墨烯复合物和胶粘剂溶液的质量比为10: 1。

实施例5

(1)将7.5毫摩尔硝酸镍和11.25毫摩尔柠檬酸钠加入到500毫升浓度为1毫克/毫升的氧化石墨烯溶液中配置成A溶液,另将5毫摩尔六氰合铁酸钾配置成500毫升B溶液。将B溶液缓慢滴加到A溶液并在30℃下反应24小时;

(2)取步骤(1)中的混合溶液至反应釜中,140oC水热反应3小时,经筛网洗涤干燥后得到镍铁普鲁士蓝/石墨烯复合物;

(3)取步骤(2)的镍铁普鲁士蓝/石墨烯复合物(100毫克)和硒粉(800毫克)分别放置在瓷舟的下游和上游,在管式炉中于氩气氛下进行350oC高温煅烧3小时,得到硒化镍铁/石墨烯复合物;

(4)取步骤(3)的硒化镍铁/石墨烯复合物和聚偏氟乙烯胶粘剂溶液混合后抽滤到隔膜上,经干燥后得到硒化镍铁/石墨烯隔膜涂层;其中硒化镍铁/石墨烯复合物和胶粘剂溶液的质量比为10: 0.5。

9页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种改性隔膜材料、改性隔膜和锂硫扣式电池

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!