耐热脱模片和热压接方法

文档序号:638928 发布日期:2021-05-11 浏览:35次 >En<

阅读说明:本技术 耐热脱模片和热压接方法 (Heat-resistant release sheet and thermocompression bonding method ) 是由 秋叶府统 于 2019-10-01 设计创作,主要内容包括:本申请的耐热脱模片是在利用热加压头进行压接对象物的热压接时配置在压接对象物与热加压头之间而用于防止压接对象物与热加压头的固着的片,其包含聚四氟乙烯(PTFE)或改性PTFE的片。其中,改性PTFE中的四氟乙烯(TFE)单元的含有率为99质量%以上。根据本申请的耐热脱模片,能够更可靠地应对缩短热压接所需的时间(操作时间)这一要求。(The heat-resistant release sheet of the present application is a sheet which is arranged between an object to be pressure-bonded and a heat pressing head when the object to be pressure-bonded is thermally pressure-bonded by the heat pressing head, and which is used for preventing the object to be pressure-bonded and the heat pressing head from being fixed to each other, and includes a sheet of Polytetrafluoroethylene (PTFE) or modified PTFE. The modified PTFE has a Tetrafluoroethylene (TFE) unit content of 99 mass% or more. According to the heat-resistant release sheet of the present application, it is possible to more reliably meet the demand for shortening the time (operation time) required for the thermal compression bonding.)

耐热脱模片和热压接方法

技术领域

本发明涉及耐热脱模片和使用了其的热压接方法。

背景技术

在使用了NCF(非导电膜,Non-Conductive Film)和NCP(非导电糊剂,Non-Conductive Paste)等底部填充物的半导体芯片的制造和倒装芯片安装、以及印刷电路基板(PCB)的制造中使用热压接的方法。热压接的方法也被用于使用了各向异性导电薄膜(ACF)的PCB与电子部件的连接等。在压接对象物的热压接中,通常使用作为热源和压力源的热加压头。为了防止热压接时的压接对象物与热加压头的固着,在压接对象物与热加压头之间通常配置耐热脱模片。

专利文献1中虽未公开耐热脱模片自身,但公开了配置在压接对象物与热加压头之间来使用的聚酰亚胺薄膜。

现有技术文献

专利文献

专利文献1:日本特开2014-91763号公报

发明内容

发明要解决的问题

聚酰亚胺作为耐热性优异的树脂是已知的。通过在耐热脱模片中使用聚酰亚胺薄膜而能够提高热压接温度,由此,可期待半导体芯片的制造效率和安装效率的提高。但是,为了进一步提高上述效率,需要缩短热压接所需的时间(操作时间,work time)。根据本发明人等的研究可以明确:在将聚酰亚胺薄膜用于耐热脱模片时,难以充分应对操作时间的缩短。

本发明的目的在于,提供对于缩短操作时间的要求也能够更可靠地应对的耐热脱模片。

用于解决问题的方案

本发明提供一种耐热脱模片,其是在利用热加压头进行压接对象物的热压接时配置在前述压接对象物与前述热加压头之间而用于防止前述压接对象物与前述热加压头的固着的耐热脱模片,

其包含聚四氟乙烯(以下记作“PTFE”)或改性PTFE的片。

其中,前述改性PTFE中的四氟乙烯(以下记作“TFE”)单元的含有率为99质量%以上。

从其它方面出发,本发明提供一种热压接方法,

其为利用热加压头进行的压接对象物的热压接方法,其中,

以将耐热脱模片配置在前述热加压头与前述压接对象物之间的状态,利用前述热加压头对前述压接对象物进行热压接,

前述耐热脱模片为上述本发明的耐热脱模片。

发明的效果

本发明的耐热脱模片所含的PTFE片或改性PTFE片具有来自PTFE或改性PTFE的高耐热性。此外,与聚酰亚胺薄膜相比,PTFE片和改性PTFE片在使用热加压头的热压接时向压接对象物的导热性优异。因此,根据本发明的耐热脱模片,对于缩短操作时间的要求也能够更可靠地应对。

附图说明

图1是示意性地示出本发明的耐热脱模片的一例的剖视图。

图2是用于说明使用了本发明的耐热脱模片的热压接方法的一例的示意图。

图3是用于说明针对实施例和比较例的耐热脱模片评价向使用热加压头进行热压接时的压接对象物的导热性的方法的示意图。

具体实施方式

以下,针对本发明的实施方式,参照附图进行说明。

[耐热脱模片]

将本发明的耐热脱模片的一例示于图1。图1所示的耐热脱模片1由PTFE片2构成。图1的耐热脱模片1具有PTFE片2的单层结构。耐热脱模片1具有来自片2所含的PTFE的高耐热性和脱模性。

在工业上的热压接工序中,通常在压接对象物的输送路径中配置热加压头,对在该路径中输送的压接对象物依次进行热压接。在该热压接工序中,有时通过输送而向热加压头与压接对象物之间供给带状的耐热脱模片。该情况下,通常在每1次热压接中供给新的耐热脱模片。换言之,在每次热压接中,耐热脱模片从常温被加热至热压接温度,向压接对象物传导必要的热。因此,耐热脱模片所具备的导热性的微小差异对操作时间造成的影响大。此外,随着热压接温度的上升,该影响进一步变大。但是,包含PTFE片2的耐热脱模片1在使用热加压头进行热压接时向压接对象物的导热性优异。因此,根据耐热脱模片1,在热压接温度上升的基础上,对于缩短操作时间的要求也能够更可靠的应对。

PTFE片2所含的PTFE优选满足选自以下特性(1)~(3)中的至少1种特性,更优选满足至少2种特性,进一步优选满足全部特性。

特性(1):利用升温速度为10℃/分钟的差示扫描量热测定(以下记作“DSC”)而评价的结晶熔解热量(以下简写为“熔解热量”)为25.0J/g以上。熔解热量可以为27.0J/g以上、28.0J/g以上、29.0J/g以上,进而可以为30.0J/g以上。熔解热量的上限例如为82.0J/g以下,可以为70.0J/g以下。PTFE满足特性(1)时,能够在保持优异导热性的同时,进一步提高耐热脱模片1的耐热性。需要说明的是,PTFE的熔解热量可以由使用DSC以规定的升温速度将PTFE升温时测得的“PTFE的基于结晶熔解的吸热峰”的峰面积来求出。评价熔解热量时的PTFE的升温例如从室温实施至370℃为止。PTFE片2所含的PTFE优选为历经了烧结的PTFE,该情况下,基于结晶熔解的吸热峰通常出现在250~340℃的温度区域。

特性(2):结晶度为33.0%以上。结晶度可以为34.0%以上、35.0%以上,进而可以为36.0%以上。结晶度的上限例如为100.0%以下,可以为85.4%以下。PTFE满足特性(2)时,能够在保持优异导热性的同时,进一步提高耐热脱模片1的耐热性。需要说明的是,PTFE的结晶度可通过上述熔解热量的测定值除以PTFE的完美晶体所具备的结晶熔解热量的理论值来求出。PTFE片2所含的PTFE典型而言是历经了烧结的PTFE,该情况下,上述理论值为82.0J/g。

特性(3):上述“PTFE的基于结晶熔解的吸热峰”的峰温度(以下记作“峰温度”)为325.0℃以上。峰温度可以为326.0℃以上,进而可以为327.0℃以上。峰温度的上限例如为350.0℃以下。PTFE满足特性(3)时,能够在保持优异导热性的同时,进一步提高耐热脱模片1的耐热性。

PTFE的熔解热量、结晶度和峰温度根据例如PTFE的分子量、分子量分布、包括烧结在内的热历程、以及聚合方法和聚合历程而发生变化。

PTFE片2的厚度例如为1~50μm,可以为5~40μm、10~35μm、20~35μm,进而可以为25~35μm。

PTFE片2优选为包含历经了烧结的PTFE的烧结PTFE片。需要说明的是,本说明书中,PTFE的烧结是指将通过聚合而得到的PTFE加热至其熔点(327℃)以上的温度、例如340~380℃。

PTFE片2优选为非多孔层。PTFE片2基于PTFE所具有的高拒液性(拒水性和拒油性)而可以是不使水等流体(fluid)在厚度方向上透过的不透性层。此外,PTFE片2基于PTFE所具有的高绝缘性而可以是绝缘层(非导电层)。

PTFE片2的形状例如为包括正方形和长方形在内的多边形、圆形、椭圆形和带状。多边形的角可以带有弧度。其中,PTFE片2的形状不限定于这些例子。

PTFE片2可以为改性PTFE片。改性PTFE片以上述特性(1)~(3)为代表,可以按照任意的组合来具有在PTFE片2的说明中提及的各种特性。改性PTFE是TFE与改性共聚单体的共聚物。为了被分类为改性PTFE,共聚物中的TFE单元的含有率必须为99质量%以上。改性PTFE例如为TFE与选自乙烯、全氟烷基乙烯基醚和六氟丙烯中的至少1种改性共聚单体的共聚物。

改性PTFE的熔解热量、结晶度和峰温度因例如改性PTFE的分子量、分子量分布、包括烧结在内的热历程、聚合方法和聚合历程、以及作为与TFE单元共聚的成分的结构单元的种类和含有率而发生变化。

耐热脱模片1的厚度例如为1~50μm,可以为5~40μm、10~35μm、20~35μm,进而可以为25~35μm。

耐热脱模片1的拉伸强度例如为30.0MPa以上,可以为33.0MPa以上、34.0MPa以上、36.0MPa以上、40.0MPa以上、45.0MPa以上、50.0MPa以上、55.0MPa以上,进而可以为60.0MPa以上。拉伸强度的上限例如为100MPa以下。根据具有这些范围的拉伸强度的耐热脱模片1、尤其是具有50.0MPa以上的拉伸强度的耐热脱模片1,能够更可靠且稳定地实施基于输送的向热加压头与压接对象物之间的供给。

耐热脱模片1的最大拉伸伸长率例如为380%以下,可以为360%以下、340%以下、320%以下、300%以下、250%以下、200%以下、150%以下,进而可以为130%以下。最大拉伸伸长率的下限例如为30%以上。根据具有这些范围的最大拉伸伸长率的耐热脱模片1、尤其是具有150%以下的最大拉伸伸长率的耐热脱模片1,在通过输送而向热加压头与压接对象物之间供给耐热脱模片1时,在热加压头和/或压接对象物与耐热脱模片1之间局部地发生接合时,也能够抑制片1因伸长而追随于这些部件。换言之,能够进一步提高耐热脱模片1对于热加压头和/或压接对象物的脱模性。

耐热脱模片1中,可以在PTFE片2的主面上配置有其它层。但是,从能够更可靠地应对缩短操作时间这一要求的方面出发,优选不在PTFE片2的主面上配置其它层。即,耐热脱模片1优选具有PTFE片2的单层结构。

耐热脱模片1的形状例如为包括正方形和长方形在内的多边形、圆形、椭圆形和带状。多边形的角可以带有弧度。其中,耐热脱模片1的形状不限定于这些例子。多边形、圆形和椭圆形的耐热脱模片1可以以单片的形式流通,带状的耐热脱模片1可以以卷绕于卷芯而成的卷绕体(卷)的形式流通。带状的耐热脱模片1的宽度和将带状的耐热脱模片1卷绕而成的卷绕体的宽度可自由设定。

[耐热脱模片的制造方法]

耐热脱模片1可通过例如以下方法来制造。

首先,将PTFE粉末(模塑粉末)导入至模具中,对模具内的粉末施加规定时间的规定压力来进行预成形。预成形可以在常温下实施。为了能够利用后述切削机床进行切削,模具的内部空间的形状优选为圆柱状。该情况下,能够获得圆柱状的预成形品和PTFE预制件。接着,将所得预成形品从模具中取出,以PTFE的熔点(327℃)以上的温度烧结规定时间,得到PTFE预制件。接着,通过将所得PTFE预制件切削成规定厚度而得到作为切削片(skivedsheet)的PTFE片2。所得PTFE片2可直接用作耐热脱模片1,也可以在历经规定处理、其它层的层叠等后用作耐热脱模片1。PTFE预制件为圆柱状时,可以利用边使预制件旋转边连续地切削表面的切削机床,能够高效地形成PTFE片2和耐热脱模片1。此外,利用切削机床,比较容易控制所形成的PTFE片2和耐热脱模片1的厚度,也能够形成带状的PTFE片2和耐热脱模片1。此外,通过使用改性PTFE粉末来代替PTFE粉末,可利用上述方法来形成改性PTFE片。

耐热脱模片1也可以通过以下方法来制造。

首先,准备要在表面涂布PTFE分散液的基材片。基材片例如由树脂、金属、纸和它们的复合材料构成。可以对基材片的要涂布PTFE分散液的表面实施用于使PTFE片2容易自基材片剥离的剥离处理。剥离处理可以应用公知的方法。接着,在基材片的表面形成PTFE分散液的涂布膜。PTFE分散液的涂布可以使用公知的各种涂布机。也可以通过将基材片浸渍于PTFE分散液,在基材片的表面涂布PTFE分散液。接着,通过干燥和烧结而由在基材片的表面形成的PTFE分散液的涂布膜形成PTFE片。接着,将所形成的PTFE片自基材片剥离,得到作为流延片的PTFE片2。所得PTFE片2可以直接用作耐热脱模片1,也可以在历经规定处理、其它层的层叠等后用作耐热脱模片1。在该方法中,可根据对基材片涂布的PTFE分散液的涂布厚度和/或涂布次数来控制所形成的PTFE片2和耐热脱模片1的厚度。需要说明的是,通过使用改性PTFE分散液来代替PTFE分散液,可利用上述方法来形成改性PTFE片。

为了提高耐热脱模片1的拉伸强度或抑制最大拉伸伸长率,也可以对PTFE片2进行拉伸和/或压延。

[耐热脱模片的使用]

如图2所示那样,耐热脱模片1可用作在利用热加压头21进行压接对象物22的热压接时配置在热加压头21与压接对象物22之间来防止两者固着的耐热脱模片。耐热脱模片1的脱模性优异。根据耐热脱模片1,能够防止由热压接时的热导致的该片1对于热加压头21和/或压接对象物22的固着(热固着)。

耐热脱模片1可通过输送而向热加压头21与压接对象物22之间供给和配置。通过输送而供给和配置的耐热脱模片1例如为带状。

压接对象物22例如为半导体芯片、PCB、电子部件。耐热脱模片1可用于例如基于热压接的半导体芯片的制造和倒装芯片安装、PCB的制造、以及电子部件的连接等。

[热压接方法]

可以使用本发明的耐热脱模片1对压接对象物22进行热压接。该热压接方法是利用热加压头21进行的压接对象物22的热压接方法,以将耐热脱模片1配置在热加压头21与压接对象物22之间的状态,利用热加压头21对压接对象物22进行热压接。例如,可通过输送而向热加压头21与压接对象物22之间供给和配置耐热脱模片1。

[热压接物的制造方法]

可以使用本发明的耐热脱模片1来制造热压接物。该热压接物的制造方法包括如下工序:以将耐热脱模片1配置在热加压头21与压接对象物22之间的状态,使用热加压头21来实施压接对象物22的热压接,从而得到压接对象物22的热压接体、即热压接物。热压接物的例子为PCB和电子部件。

实施例

以下,通过实施例更详细地说明本发明。本发明不限定于以下的实施例。

首先,示出在本实施例中制作的耐热脱模片的评价方法。

[熔解热量、结晶度和峰温度]

针对具有PTFE片或改性PTFE片的单层结构的实施例1~6的耐热脱模片和具有四氟乙烯-全氟烷氧基乙烯共聚物(以下记作“PFA”)片的单层结构的比较例1的耐热脱模片,通过以下方法来评价构成该片的氟树脂(PTFE、改性PTFE和PFA)的熔解热量。

从作为评价对象的耐热脱模片中采取构成该片的氟树脂的样品10mg。接着,将采取的样品置于DSC装置(NETZSCH公司制、DSC200F3)中,得到以10℃/分钟的升温速度从室温升温至400℃时的DSC曲线。对所得DSC曲线的在250~340℃的温度区域中出现的氟树脂的基于结晶熔解的吸热峰进行分析,求出氟树脂的峰温度和熔解热量。此外,通过烧结PTFE所具有的结晶熔解热量的理论值(82.0J/g)除以上述求出的各熔解热量,求出PTFE和改性PTFE(实施例1~6)以及PFA(比较例1)各自的结晶度。

[拉伸强度和最大拉伸伸长率]

拉伸强度(拉伸断裂强度)和最大拉伸伸长率通过使用了拉伸试验机(岛津制作所制、AG-I)的拉伸试验来求出。拉伸方向设为耐热脱模片的长度方向(MD方向)。试验片的形状设为JIS K6251:1993中规定的哑铃1号形。测定条件设为:测定温度25℃、试验片的标线间距离40mm、夹具间距离70mm和拉伸速度200mm/分钟。最大拉伸伸长率由试验前的上述标线间距离和断裂时的标线间距离来计算。

[热压接时的脱模性]

如下那样地评价热压接时的脱模性。

在具备热加压头和基座的热压接装置(东丽工程公司制、倒装芯片焊接机FC-3000W)的基座上,作为模拟压接对象物而配置半导体芯片(尺寸为7.3mm×7.3mm、厚度为725μm),进一步在该半导体芯片上配置尺寸裁切为75mm×75mm的作为评价对象的耐热脱模片。耐热脱模片以从与基座的配置面垂直的方向来看半导体芯片位于耐热脱模片的大致中央的方式进行配置。基座的设定温度设为120℃。接着,使热加压头以加压压力达到20N的方式下降后,将该头升温至300℃来实施加压时间为10秒的热压接试验,评价是否发生耐热脱模片对于热加压头或作为压接对象物的半导体芯片的热固着。将在热压接试验后耐热脱模片自然地或通过用手拉扯该片而自热加压头或半导体芯片剥离的情况判断为脱模性良好(○),将即使用手拉扯该片也未剥离的情况判断为脱模性不合格(×)。

[热压接时的导热性]

如下那样地评价热压接时的导热性。参照图3来说明具体的评价方法。

假定模拟性的倒装芯片安装,在具备热加压头57和基座51的热压接装置(东丽工程公司制、倒装芯片焊接机FC-3000W)的基座51上,依次配置硅底座52(厚度为360μm)、假定为NCF的粘接片53(日东电工公司制、EM-350ZT-P、厚度为60μm)和半导体芯片54(尺寸为7.3mm×7.3mm、厚度为725μm)。需要说明的是,向粘接片53中埋入用于测定热压接试验时的粘接片53的最大到达温度的热电偶55。热电偶55以从与基座51的配置面垂直的方向来看其前端的测定部位于粘接片53的大致中央的方式进行配置。接着,在半导体芯片54上配置尺寸裁切为150mm×150mm的作为评价对象的耐热脱模片56。耐热脱模片56以从与基座51的配置面垂直的方向来看半导体芯片54位于耐热脱模片56的大致中央的方式进行配置。基座51的设定温度设为120℃。接着,使热加压头57以加压压力达到20N的方式下降后,将该头升温至280℃来实施加压时间为10秒的热压接试验,利用热电偶55来测定试验时的粘接片53的最大到达温度。根据所测得的最大到达温度来评价使用热加压头进行热压接时的耐热脱模片的导热性。

[耐热性]

通过按压设定至280℃、290℃或300℃的烙铁的前端来评价耐热性。具体而言,将设定至上述各温度的烙铁的前端向评价对象的耐热脱模片的表面按压10秒,将耐热脱模片的表面未因烙铁的热而熔融的情况判断为耐热性良好(○),将发生了熔融的情况判断为耐热性不合格(×)。

(实施例1)

将PTFE粉末(Daikin Industries公司制、Polyflon PTFE M-18)导入至圆筒状的模具中,在温度为23℃、压力为8.5MPa且压力施加时间为1小时的条件下进行预成形。接着,将所形成的预成形品从模具中取出,以370℃烧结24小时,得到高度300mm、外径470mm的圆柱状的PTFE预制件。接着,利用切削机床对所得PTFE预制件进行切削而制作厚度30μm的PTFE片,将其作为实施例1的耐热脱模片。

(实施例2)

除了使用改性PTFE粉末(3M公司制、Dyneon TFM改性PTFE TFM1700、TFE单元的含有率为99质量%以上)来代替PTFE粉末之外,与实施例1同样操作,制作厚度30μm的改性PTFE片,将其作为实施例2的耐热脱模片。

(实施例3)

相对于市售的PTFE分散液(旭硝子公司制的Fluon AD911E),以PTFE固体成分作为基准而添加0.67重量%的氟系表面活性剂(CF3(CF2)7CH2CH2-(OCH2CH2)mOH:m=3~5),制备用于在基材片上形成涂布膜的PTFE分散液。接着,将作为基材片的带状铝箔(MitsubishiAluminum公司制、厚度60μm)浸渍在上述制备的PTFE分散液中,并向上提拉,在基材片的表面形成PTFE分散液的涂布膜。接着,在设定至100℃的加热炉内将基材片加热而使涂布膜干燥后,在设定至380℃的加热炉内进一步加热,对干燥后的膜进行烧结。边以0.7m/分钟的速度对基材片进行辊输送边连续地实施基材片在PTFE分散液中的浸渍、以及浸渍后的干燥和烧结。接着,再次反复进行在上述PTFE分散液中的浸渍、以及其后的干燥和烧结,在基材片上形成厚度30μm的PTFE片。接着,将所形成的PTFE片自基材片上剥离,将其作为实施例3的耐热脱模片。

(实施例4)

利用切削机床对实施例1中制作的PTFE预制件进行切削,得到厚度50μm的PTFE切削薄膜。接着,利用具备保持至170℃的一对金属辊的辊压延装置对所得切削薄膜进行压延,制作厚度30μm的PTFE片,将其作为实施例4的耐热脱模片。

(实施例5)

将形成在基材片上的PTFE片的厚度设为5μm,将其自基材片上剥离而制成耐热脱模片,除此之外,与实施例3同样操作,得到实施例5的耐热脱模片。

(实施例6)

将在基材片上形成的PTFE片的厚度设为10μm,将其自基材片上剥离而制成耐热脱模片,除此之外,与实施例3同样操作,得到实施例6的耐热脱模片。

(比较例1)

作为比较例1的耐热脱模片,准备厚度25μm的PFA片(Daikin Industries公司制、NEOFLON PFA AF-0025、全氟烷氧基乙烯单元的含有率为1质量%以上)。

(比较例2)

作为比较例2的耐热脱模片,准备厚度25μm的聚酰亚胺片(Dupont-Toray公司制、KAPTON 100H)。

将针对实施例和比较例的各耐热脱模片的特性的评价结果示于以下的表1。比较例1的导热性(最大到达温度)因耐热脱模片发生熔融而无法测定。

[表1]

※表中的“-”是指未测定。

产业上的可利用性

本发明的耐热脱模片能够在利用热加压头进行压接对象物的热压接时配置在热加压头与压接对象物之间而用于防止两者的固着。使用了本发明的耐热脱模片的热压接可应用于例如半导体芯片的制造和倒装芯片安装、PCB的制造、以及电子部件的连接等。

11页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:耐热脱模片和热压接方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!