红细胞膜包被载药纳米粒/探针及其在脑胶质母细胞瘤诊疗中的应用

文档序号:99323 发布日期:2021-10-15 浏览:21次 >En<

阅读说明:本技术 红细胞膜包被载药纳米粒/探针及其在脑胶质母细胞瘤诊疗中的应用 (Erythrocyte membrane coated drug-loaded nanoparticle/probe and application thereof in diagnosis and treatment of glioblastoma multiforme ) 是由 张军 刘先平 王剑虹 庞志清 耿道颖 于 2021-07-19 设计创作,主要内容包括:本发明公开了一种红细胞膜包被载药纳米粒/探针及其在脑胶质母细胞瘤诊疗中的应用;所述红细胞膜包载药纳米粒由人或动物的红细胞膜包被载盐酸阿霉素的聚乳酸-羟基乙酸共聚物(PLGA)所得。本发明获得的红细胞膜包载药纳米粒具有相似的粒径和形状、提供相对稳定的内环境、动物体内血液中循环时间长和生物相容性、肿瘤中靶向蓄积含量高等特点,可通过荧光成像实现肿瘤诊断,并可使药物在肿瘤部位释放,在体内抑制肿瘤生长、延长动物生存时间。(The invention discloses a drug-loaded nanoparticle/probe coated with an erythrocyte membrane and application thereof in diagnosis and treatment of glioblastoma; the erythrocyte membrane-loaded drug nanoparticles are prepared by coating human or animal erythrocyte membranes with polylactic-co-glycolic acid (PLGA) loaded with doxorubicin hydrochloride. The erythrocyte membrane-coated drug-loaded nanoparticles obtained by the invention have the characteristics of similar particle size and shape, relatively stable internal environment, long circulation time and biocompatibility in blood of animals, high targeted accumulation content in tumors and the like, can realize tumor diagnosis through fluorescence imaging, can release drugs at tumor parts, inhibit tumor growth in vivo and prolong the survival time of animals.)

红细胞膜包被载药纳米粒/探针及其在脑胶质母细胞瘤诊疗 中的应用

技术领域

本发明属分子影像及生物

技术领域

,涉及肿瘤诊疗的纳米药物,具体涉及一种红细胞膜包载药纳米粒/探针及其制备方法和在脑胶质母细胞瘤诊疗中的应用。

背景技术

胶质母细胞瘤是最常见的原发性脑肿瘤,由于其具有浸润生长的特点,使之成为最难治愈的恶性肿瘤之一。有资料显示,胶质母细胞瘤经确诊后1年生存率仅为30%左右,平均生存期仅53周,即使在联合了手术、放疗和替莫唑胺化疗等治疗后,胶质母细胞瘤患者的平均生存期也只有19.6个月。由于血脑屏障(blood-brain barrier,BBB)的存在,使98%的小分子化合物和几乎所有大分子物质不能达到胶质瘤所在部位,造成了早期诊断困难,并限制了对化疗药物的选择。

近年来,关于脑靶向药物递送策略的研究日益受到重视。纳米颗粒(nanoparticles,NP)的研究在很大程度上推动了胶质瘤成像和示踪技术的发展。NP是一类大小介于10~1000nm的固体胶状颗粒,虽然NP在机体内的吸收、分布、代谢、排泄和毒性尚未明确,但NP作为对比剂、化疗药物的载体具有穿透BBB、特异性结合于肿瘤细胞、减少体内毒副反应、增加药物生物相容性、延长药物半衰期、降低肿瘤耐药性等优点,因此成为胶质瘤诊断、治疗研究中的前沿热点之一。

聚乳酸-羟基乙酸共聚物[poly(lactic-co-glycolicacid),PLGA]是一类可生物讲解的高分子聚合物,具有良好的生物相容性,被广泛应用于微球、微囊、纳米粒以及膜剂等的制备。用PLGA包封的药物一般粒径都在纳米级,能够提高肿瘤部位的药物,减少化疗药物的不良反应;同时,也可以延长化疗药物在体内的循环时间,改善药物的药动学性质。目前,没有任何关于红细胞膜包被载药纳米粒/探针治疗胶质母细胞瘤的报道。

发明内容

本发明的目的在于提供针对脑胶质母细胞瘤诊疗的纳米药物,具体涉及一种红细胞膜包载药纳米粒/探针及其在脑胶质母细胞瘤诊疗中的应用,该纳米药物具有良好的生物相容性、提供相对稳定的内环境、动物体内血液中循环时间长、肿瘤中靶向蓄积含量高等特点,可通过荧光成像实现肿瘤诊断,并可使药物在肿瘤部位释放,在体内抑制肿瘤生长、延长动物生存时间。

本发明的目的是通过以下技术方案来实现的:

本发明提供了一种红细胞膜包载药纳米粒,所述的红细胞膜包载药纳米粒由生物材料红细胞膜包被载盐酸阿霉素的聚乳酸-羟基乙酸共聚物(PLGA)所形成。

本发明中,生物材料红细胞膜来源于人、大鼠或小鼠血液中的红细胞。

本发明中,聚乳酸-羟基乙酸共聚物(PLGA)具有低毒性和良好的生物相容性。还具有粒径小、分散均匀的优势。

本发明中,聚乳酸-羟基乙酸共聚物(PLGA)表面为羧基。

本发明还涉及一种红细胞膜包载药纳米粒的制备方法,包括以下步骤:

S1、提取人或动物红细胞膜;

S2、利用纳米沉淀法,将盐酸阿霉素及聚乳酸-羟基乙酸共聚物共同溶解至丙酮溶液中,通过旋蒸仪吸收挥发的丙酮,制备得载药纳米粒;

S3、采用超声法将红细胞膜包被在所述载药纳米粒表面。

本发明中,利用红细胞膜磷脂双分子层和膜蛋白与羧基化的载药纳米粒的亲水、疏水作用,超声法将红细胞膜包被在纳米粒表面。

进一步的,步骤S1中,利用低渗破膜法提取人或动物红细胞膜。

步骤S2中,制备得半透明的均一载药纳米粒,表面为羧基。

进一步的,红细胞膜、盐酸阿霉素及聚乳酸-羟基乙酸共聚物的用量比为8:10:5。

进一步的,步骤S3中,超声水浴锅50~55kHz,100W,超声1.5~2.5min。

本发明还涉及一种针对高表达c-Met受体的胶质母细胞瘤的靶向仿生纳米探针,所述红细胞膜包载药纳米粒连接c-Met受体的Aptamer适配体分子,构建得到所述靶向仿生纳米探针。

进一步的,所述靶向仿生纳米探针为RBC-PLGA-DOX-SL1。本发明主要利用PLGA作为载体,包裹化疗药物阿霉素,然后经红细胞膜修饰,外面连接c-Met受体的Aptamer适配体分子,构建针对高表达c-Met受体的胶质母细胞瘤的靶向仿生纳米探针RBC-PLGA-DOX-SL1,该探针通过经受体介导转运透过血脑屏障将阿霉素递送至肿瘤部位,达到治疗肿瘤的目的,为胶质母细胞瘤的靶向治疗以及治疗后疗效的评价奠定实验基础和理论依据。

本发明还涉及一种所述的靶向仿生纳米探针的制备方法,包括以下步骤:

S1、提取人或动物红细胞膜;

S2、利用纳米沉淀法,将盐酸阿霉素及聚乳酸-羟基乙酸共聚物共同溶解至丙酮溶液中,通过旋蒸仪吸收挥发的丙酮,制备得载药纳米粒;

S3、将所述载药纳米粒与提取得到的红细胞膜溶液和Aptamer适配体分子(SL1)溶液混合,超声分散,得到靶向仿生纳米探针。

本发明还涉及一种红细胞膜包载药纳米粒或靶向仿生纳米探针在制备肿瘤诊断和/或治疗制剂中的应用。

与现有技术相比,本发明具有如下有益效果:

1)本发明将红细胞膜包被载药纳米粒首次应用于治疗脑胶质母细胞瘤,成功制备了红细胞膜包被载药纳米粒,使其具备了不易被免疫系统清除和血液长循环、延长药物的全身作用时间的的特点。

2)红细胞膜的包被有效的提高了纳米粒的生物安全性和生物应用性。

3)本发明获得的红细胞包被载药纳米粒可提高肿瘤中的靶向蓄积,可通过荧光成像实现肿瘤诊断,并可使药物在肿瘤部位释放,在体内抑制肿瘤生长、延长动物生存时间。

附图说明

通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:

图1为红细胞膜包被载药纳米粒的制备方法示意图;

图2为红细胞膜包被载药纳米粒的理化表征,其中:(A)透射电镜图;(B、C)粒径分布图;(D)Zeta电位图;(E)粒径稳定性图;

图3为本发明的红细胞膜包被载药纳米粒的体外细胞研究图,其中:(A-D)对照组和实验组细胞与纳米粒特异性结合图;

图4为本发明的红细胞膜包被载药纳米粒的体外细胞研究图,其中:(A)红细胞膜包被纳米粒诱导细胞凋亡图;(B-D)MTT评价红细胞膜包被纳米粒毒性实验图;

图5为建立原位胶质母细胞瘤动物模型,分析红细胞膜包被纳米粒在体及离体主要器官中的分布结果示意图,其中:(A)小动物活体成像仪直观显示靶向纳米粒;(B)离体主要器官和肿瘤荧光成像;

图6为本发明的红细胞膜包被纳米粒抗胶质母细胞瘤的治疗效果图,其中:(A)生存曲线图(B)动物体重变化曲线(C)离体肿瘤切片图;

图7为红细胞膜包被纳米粒体内各主要器官的毒性研究H&E染色。

具体实施方式

下面结合实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干调整和改进。这些都属于本发明的保护范围。

本发明提供一种红细胞膜包载药纳米粒的制备方法及其在脑胶质母细胞瘤诊疗中的应用;包括:

(1)利用低渗破膜法提取人或动物红细胞膜,利用纳米沉淀法,将盐酸阿霉素及聚乳酸-羟基乙酸共聚物共同溶解至丙酮溶液中,通过旋蒸仪吸收挥发的丙酮,制备得半透明的均一载药纳米粒,表面为羧基,利用红细胞膜磷脂双分子层和膜蛋白与羧基化的载药纳米粒的亲水、疏水作用,超声法将红细胞膜包被在纳米粒表面,制备获得红细胞膜包被载药纳米粒。

(2)对红细胞膜包被载药纳米粒的理化性质进行表征,如采用Zeta/激光粒度仪测定其粒径和电位,透射电子显微镜观察其形态,并考察其体外4℃PBS中贮藏稳定性。

(3)评价红细胞膜包被载药纳米粒的体外细胞特异性结合能力、抗肿瘤效果及MTT法评价红细胞膜包被载药纳米粒的细胞毒性。

(4)以U 87MG细胞为模型肿瘤细胞,立体定位建立脑胶质母细胞瘤原位肿瘤模型。通过小鼠活体成像仪检测,诊断肿瘤和分析肿瘤内的纳米粒分布。

(5)通过肿瘤生长抑制实验,评价红细胞膜包被载药纳米粒治疗胶质母细胞瘤的效果。

(6)通过病理切片,评价红细胞膜包被载药纳米粒的体内安全性。

具体示例见以下各实施例:

实施例1、红细胞膜包被载药纳米粒的制备

(1)采用等渗离心低渗破膜法提取人或动物红细胞膜:向10mL磷酸盐缓冲液中依次加入1mM EDTANa2、肝素钠500U/L,混匀后加入2mL新鲜人或动物外周血,五次低速离心高速离心弃上清后得到沉淀红细胞,用磷酸盐缓冲液稀释为2mL后,加入7.6mL 0.25mMEDTANa2溶液中涡旋5min,加入380μL的20x磷酸盐缓冲液,离心弃上清,重复三次后沉淀用0.25mM EDTANa2溶液分散得到2mL红细胞膜悬浊液。

(2)制备载盐酸阿霉素的聚乳酸-羟基乙酸共聚物(PLGA-DOX)纳米粒:取PLGA20mg溶于1mL丙酮溶液中,超声分散;取1mg盐酸阿霉素溶于1mL丙酮溶液中,超声分散;取500μLPLGA-丙酮溶液和200μL DOX-丙酮溶液混匀,然后将混匀后的溶液快速注入1.4mL水溶液中,避光,用旋蒸仪去除丙酮,形成PLGA-DOX纳米粒。

(3)红细胞膜包被载药纳米粒的制备及SL1的连接:将步骤2制备的PLGA-DOX溶液及步骤1制备的红细胞膜溶液按体积比5:8混匀,并加入10μL经过变性-复性(85℃水浴锅内放置10分钟,取出后快速放入冰水内10分钟)的SL1溶液。应用超声分散法,将上述溶液置于超声分散仪内2分钟后取出,红细胞膜可包裹于PLGA纳米粒表面,SL1可插入红细胞膜表面,即制备得到靶向纳米探针:PLGA-DOX-RBC-SL1。离心去除未连接的SL1溶液。研究中将PLGA-DOX-RBC作为阴性对照组。制备方法及流程图如图1所示。

实施例2、红细胞膜包被载药纳米粒的表征

(1)取适量PLGA-DOX-RBC-SL1纳米粒溶液,经ddH2O稀释后,超声分散,滴少许(10μL)在有支撑膜的铜网上(滴网法),静置5分钟,用滤纸小片将铜网边缘的多余液体吸干。干燥后再用1%磷钨酸负染10分钟,再次用滤纸小片将铜网边缘多余液体吸干。红外灯下静置充分干燥后,置于透射电子显微镜(transmission electron microscopy,TEM)下观察纳米粒子的大小和形态,通过测量100个微粒的直径,计算纳米粒PLGA-DOX-RBC-SL1的平均粒径。

(2)取适量纳米粒(PLGA-DOX-RBC-SL1)溶液经ddH2O稀释后,超声分散,置于测量杯中。采用粒径/Zeta电位测量仪,动态光散射法(Dynamic Light Scattering,DLS)测定其光散射粒径和Zeta电位。

(3)PLGA-DOX-RBC-SL1纳米探针的体外稳定性测定主要是通过连续7天测量纳米探针置于4℃保存于PBS(1mM,PH7.4)中的粒径大小,根据粒径变化来判断纳米探针的稳定性。

(4)如图2A所示,经修饰的PLGA纳米粒呈高电子密度影,形态呈单向分散的球形和椭圆球形,比较规则圆、大小均一。边缘可见一层状的薄的颜色较淡的膜状物,为单层膜包裹,边界非常清晰,呈壳-核结构,证实红细胞膜成功修饰PLGA-DOX纳米粒。如图2B-D所示,PLGA-DOX-RBC-SL1纳米粒粒径基本呈正态分布,平均粒径为67.4±3.6nm,Zeta电位为-28.8±1.0mV,PLGA-DOX-RBC纳米粒的平均粒径为85.4±5.6nm,Zeta电位为-30.0±0.2mV,PLGA-DOX的平均粒径为57.2±2.2nm,Zeta电位为-33.5±2.0mV。PLGA-DOX-RBC-SL1粒径与未连接SL1的纳米粒相比有所减小,可能原因是因为SL1是插入到红细胞膜表面导致了粒径的减小。PLGA-DOX-RBC-SL1电位与未连接SL1的纳米粒相比有所增加,表明SL1与红细胞膜包被的PLGA-DOX纳米粒耦联成功。如图2E所示,PLGA-DOX-RBC-SL1在一周内粒径依然保持良好的稳定性,无明显聚集。

实施例3、红细胞膜包被载药纳米粒的体外靶向功能测定

3.1荧光显微镜测定纳米探针与U87 MG细胞的靶向性结合能力

(1)在24孔板中培养U87 MG细胞和对照组细胞HUVEC,细胞密度为1×104。在两组细胞中分别加入香豆素-6(50μg/mL)荧光标记的PLGA-DOX-RBC-SL1及PLGA-DOX-RBC溶液0.2mL,置37℃恒温孵育箱孵育15分钟。

(2)弃去纳米探针溶液,PBS充分清洗3次,每次5分钟。

(3)实验设空白对照组,加入PBS代替纳米探针,其余同法处理。

(4)用4%的多聚甲醛溶液将细胞固定,室温放置15分钟。

(5)PBS充分清洗3次,每次5分钟。

(6)应用DAPI染细胞核,室温染色5分钟。

(7)PBS充分清洗3次,每次5分钟。

(8)荧光显微镜观察并拍照,整个步骤全程注意避光。

3.2流式细胞术测定纳米探针与U87 MG细胞的靶向性结合能力

(1)在24孔板中培养U87 MG细胞,细胞密度为1×104。在两组细胞中分别加入香豆素-6(50μg/mL)荧光标记的PLGA-DOX-RBC-SL1及PLGA-DOX-RBC溶液0.2mL,置37℃恒温孵育箱孵育15分钟。

(2)弃去纳米探针溶液,PBS充分清洗3次,每次5分钟。

(3)实验设空白对照组,加入PBS代替纳米探针,其余同法处理。

(4)用0.25%胰蛋白酶-0.02%EDTA消化上述细胞,离心,1000rpm,5分钟,将细胞重悬于PBS溶液中。

(5)采用流式细胞仪进行分析,激发波长为466nm,发射波长为504nm,收集Cou-6荧光。

3.3PLGA-DOX-RBC-SL1及PLGA-DOX-RBC纳米探针对U87 MG细胞的凋亡实验检测

(1)在12孔板中培养U87 MG细胞,细胞密度为1×105。细胞贴壁生长后,弃去培养液,每孔中分别加入含PLGA-DOX-RBC-SL1及PLGA-DOX-RBC(DOX浓度为0.1mM)的培养液500μL,置37℃恒温孵育箱孵育24小时。实验设空白对照组,加入PBS代替纳米探针。

(2)弃去纳米探针溶液,PBS充分清洗3次,每次5分钟。

(3)用0.25%胰蛋白酶-0.02%EDTA消化上述细胞,离心,1000rpm,5分钟,将细胞重悬于PBS溶液中。

(4)根据Annexin V-FITC凋亡试剂盒的步骤,依次加入FITC及DAPI染液,室温下避光反应。

(5)流式细胞仪分析:FITC激发光波波长为488nm,发射光波波长为525nm,产生绿色荧光;DAPI激发光波波长为340nm,发射光波波长488nm,产生蓝色荧光。分析绿色荧光对蓝色荧光的散点图或地形图。

3.4细胞的抑制实验:取适量Free DOX、PLGA-DOX-RBC和PLGA-DOX-RBC-SL1溶液,用无菌微孔滤膜(0.22μm)过滤,得到的滤液调整其浓度为0、25、50、100、200μg/mL,设置5个不同浓度梯度。采用MTT法测定。胰蛋白酶消化对数生长期的U87 MG细胞,用高糖DMEM培养液(含终浓度为100U/mL的青链霉素,质量分数10%FBS)调整细胞密度为2.5×103/mL,每孔0.1mL接种于96孔培养板,每孔设3个复孔,每组设空白对照、细胞对照。细胞贴壁生长后,吸出每孔中的细胞培养液,PBS清洗1次。分别向各孔加入100μL一系列上述不同浓度的纳米粒和PBS(阴性对照),空白对照孔中加入100μL DMEM。在37℃、5%CO2的条件下培养72小时。培养结束后取出96孔板,吸出培养液,PBS冲洗,每孔加入20μL MTT溶液,37℃继续孵育4h后,小心吸弃孔内上清。每孔加入DMSO溶剂150μL,震荡器室温下震荡10min,使紫色结晶物充分溶解。在酶联免疫仪上选择490nm波长测定吸光度A值,同时设置调零孔与对照孔,每组实验重复3次,每个浓度设置3复孔,取其平均值。应用Graphpad Prism 6.02软件计算Free DOX、PLGA-DOX-RBC-SL1及PLGA-DOX-RBC溶液对U87 MG细胞的半抑制浓度(half-maximalinhibitory concentrations,IC50)。

3.5如图3A、C所示,U87 MG细胞与PLGA-DOX-RBC-SL1纳米探针共孵育后,与空白组相比较,细胞膜表面可见明显的绿色荧光。与PLGA-DOX-RBC纳米探针共孵育后,未见明显绿色荧光或荧光很弱,与空白组细胞无明显差异。HUVEC细胞与PLGA-DOX-RBC-SL1和PLGA-DOX-RBC纳米探针共孵育后,未见明显绿色荧光,与空白组细胞无明显差异。证实了SL1对U87 MG细胞表面过表达的c-Met受体具有明显的特异靶向结合性。如图3B、D所示,利用纳米探针上连接荧光标志物Cou-6,直接采用流式细胞仪定量检测纳米探针与U87 MG细胞结合特性。U87 MG PLGA-DOX-RBC-SL1和PLGA-DOX-RBC纳米探针共孵育后,与PLGA-DOX-RBC共孵育的细胞其荧光峰轻度右移,而与靶向纳米探针PLGA-DOX-RBC-SL1结合的阳性细胞可见荧光峰明显右移,与空白组相比较,有明显的统计学差异。如图4A、B所示,应用Annexin V-FITC凋亡试剂盒,根据流式细胞仪分析,U87 MG与PLGA-DOX-RBC-SL1共培养后,该纳米探针引起细胞的早期凋亡与晚期凋亡,其细胞总凋亡率为23.1%;U87 MG与PLGA-DOX-RBC共培养后,该纳米探针引起细胞的早期凋亡与晚期凋亡,其细胞总凋亡率为13.6%;两组相比,有明显的统计学差异(P<0.05)。如图4C、D所示,不同浓度的Free DOX、PLGA-DOX-RBC和PLGA-DOX-RBC-SL1溶液与U87 MG细胞共孵育72h后,对细胞的抑制作用大小依次为:freeDOX>PLGA-DOX-RBC-SL1>PLGA-DOX-RBC。Free DOX、PLGA-DOX-RBC和PLGA-DOX-RBC-SL1半抑制浓度IC50值分别为:0.198μM、3.07μM、1.21μM,PLGA-DOX-RBC-SL1半抑制率为PLGA-DOX-RBC的2.53倍,证实由于SL1的靶向结合作用,使探针与细胞特异性结合并抑制其生长。

实施例4、原位胶质母细胞瘤动物模型的建立及红细胞膜包被纳米粒在体及离体主要器官中的分布

4.1裸鼠原位脑胶质母细胞瘤模型的制作

(1)腹腔注射5%水合氯醛将裸鼠常规麻醉。

(2)将裸鼠固定于脑立体定位仪上,沿颅顶双眼连线中心处切开头皮,暴露前囟,记录其为原坐标。

(3)定位中线右下方(中线旁2mm,前囟后2mm,硬膜下4mm),用三棱针钻开颅骨。

(4)微量注射器缓慢注入溶解有细胞(5×105/只)的PBS(0.01M,PH7.4)溶液5μL,停针4min,然后缓慢向上撤针1mm,停针1min,然后缓慢撤针。

(5)用骨蜡将颅骨钻孔封好,缝合切口,并用酒精消毒。

4.2裸鼠原位脑胶质母细胞瘤光学成像

(1)荷瘤裸鼠随机分为两组,每组6只,由尾静脉注射DIR荧光标记的PLGA-DOX-RBC-SL1和PLGA-DOX-RBC纳米探针,注射剂量为100μL/只(DIR的浓度为100μg/mL)。

(2)尾静脉注射上述荧光标记纳米探针后,分别于2小时、8小时、24小时和48小时进行活体扫描。腹腔注射5%水合氯醛将裸鼠常规麻醉,采用小动物活体成像仪In VivoIVIS spectrum Imaging System(PerkinElmer,USA)进行光学成像。激发波长750nm,发射波长780nm。感兴趣区(ROI)选取肿瘤组织部位,比较注射纳米探针后不同时间点在肿瘤组织中的浓聚情况。

4.3脑组织及主要器官光学成像

(1)尾静脉注射荧光标记的纳米探针48小时后,腹腔注射5%水合氯醛将裸鼠常规麻醉。

(2)将小鼠硬卧位固定于解剖板上,剑突下剪开胸部充分暴露心脏,找到心尖处,剪开右心耳,直视下将注射器针头经左心室插入,给予30mL生理盐水快速灌注,至流出液体血色较浅,基本澄清。

(3)取下脑组织及主要脏器:肝脏、心脏、脾脏、肺、肾脏,用PBS溶液充分洗涤后,用滤纸吸干多余的液体。

(4)将脑及主要脏器置于小动物活体成像仪中检测,激发波长750nm,发射波长780nm。

4.4如图5A所示,采用IVIS活体成像仪检测靶向纳米探针PLGA-DOX-RBC-SL1对过表达c-Met的胶质母细胞瘤的荧光显像能力。裸鼠接受尾静脉注射相应荧光标记的纳米材料后,分别于2、8、24和48小时后进行光学扫描,PLGA-DOX-RBC-SL1在小鼠脑肿瘤部位随着时间的延长浓聚的越来越明显,而对照组的小鼠脑肿瘤部位未见明显的荧光探针浓聚。小鼠麻醉灌流后,取出主要器官:脑、心脏、肝脏、脾脏、肾脏及肺,进行离体器官成像,检测PLGA-DOX-RBC-SL1对小鼠胶质母细胞瘤c-Met的靶向显像能力及组织器官分布。如图5B所示:PLGA-DOX-RBC-SL1组大脑局部荧光强度是PLGA-DOX-RBC组的2.19倍(9.25±0.16×107vs.4.26±0.05×107,P<0.001)。纳米探针在主要脏器内的分布主要集中于肝脏,肺内也有少许。肺内纳米探针的残留可能是由于小鼠行心脏灌注时,肺内淤血,从而使肺内纳米探针的含量增加。肝脏是纳米粒代谢的主要途径,符合纳米载体在体内的组织分布。

实施例5、红细胞膜包被纳米粒治疗小鼠体内胶质母细胞瘤的疗效评估

5.1纳米探针对裸鼠原位瘤的治疗监测(体重和生存时间)

(1)荷瘤裸鼠随机分为三组,每组8只,于种瘤3、6、9、12天分别由尾静脉注射PLGA-DOX-RBC-SL1和PLGA-DOX-RBC纳米探针,注射的DOX浓度为5mg/kg。对照组注射生理盐水。

(2)小鼠体重监测:每2天称一次体重并记录。

(3)生存时间根据生存曲线分析,对比不同纳米探针组小鼠的中位生存期时间。

5.2脑组织切片TUNEL染色

(1)尾静脉注射纳米探针12天后,腹腔注射5%水合氯醛将裸鼠常规麻醉。

(2)将小鼠硬卧位固定于解剖板上,剑突下剪开胸部充分暴露心脏,找到心尖处,剪开右心耳,直视下将注射器针头经左心室插入,给予30mL生理盐水快速灌注,至流出液体血色较浅,基本澄清。

(3)取下主要脏器:肝脏、心脏、脾脏、肺、肾脏,固定于4%多聚甲醛24h以上。将组织从固定液取出在通风橱内用手术刀将目的部位组织修平整,将修切好的组织和对应的标签放于脱水盒内。

(4)石蜡包埋切片方法同第一章第三部分H&E染色包埋处理。

(5)TUNEL染色法根据试剂盒步骤进行。

5.3如图6A所示,荷瘤裸鼠分为三组,生理盐水组、PLGA-DOX-RBC-SL1组和PLGA-DOX-RBC组,每2天称一次体重并记录,由于小鼠荷瘤生长,体重一直在下降,但注射PLGA-DOX-RBC-SL1组与其他两组比较,其小鼠体重下降较缓慢。根据生存曲线分析,注射包裹阿霉素的纳米探针后,PLGA-DOX-RBC-SL1组的中位生存时间为23天,PLGA-DOX-RBC组的中位生存时间为15.5天,生理盐水组的中位生存时间为13天,PLGA-DOX-RBC-SL1组与其他两组比较,小鼠的生存时间明显延长,统计学有差异。如图6B所示,瘤裸鼠尾静脉注射相应纳米探针12天后,荧光显微镜观察脑组织切片,肿瘤区细胞核染色呈均一的蓝色,PLGA-DOX-RBC-SL1组可见肿瘤组织区明显的绿色荧光,提示肿瘤细胞在纳米探针的治疗作用下细胞凋亡坏死。

实施例6

将实施例5中的两组裸鼠随机各取一只离体主要器官(心、肝、脾、肺、肾),做石蜡组织切片后H&E染色,光学显微镜拍照如图7所示,与空白组小鼠比较,实验组及对照组小鼠肝脏、心脏、脾脏、肺及肾脏染色无明显异常病理改变,对主要脏器无明显生物毒性。

以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变形或修改,这并不影响本发明的实质内容。

16页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:囊封有生物活性成分的空心二氧化硅纳米粒子、其制备方法和应用

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!