一种稀土金属质电致变色薄膜电极及其制备方法和应用

文档序号:1086243 发布日期:2020-10-20 浏览:19次 >En<

阅读说明:本技术 一种稀土金属质电致变色薄膜电极及其制备方法和应用 (Rare earth metal electrochromic film electrode and preparation method and application thereof ) 是由 高太恒 张�成 黄越楷 廖兆贤 廖德艺 廖兆雄 于 2020-07-02 设计创作,主要内容包括:本发明提供一种稀土金属质电致变色薄膜电极及其制备方法和应用,该薄膜电极按照上下顺序依次为透明变色功能层、透明导电层和基材;所述透明变色功能层由稀土变色金属和间隙金属混合而成。制备方法包括:通过磁控溅射在基材上形成透明导电层;将稀土变色金属和间隙金属混合均匀后冲击成块,形成金属溅射靶材;在透明导电层上磁控溅射所述金属溅射靶材形成透明变色功能层,既得。本发明的变色功能层采用的是变色金属与间隙金属混合的技术方案,具有空穴多、空穴直径大、对离子嵌入与抽出阻碍小的特点,使得该薄膜电极变色响应快速,且颜色较深。(The invention provides a rare earth metal electrochromic film electrode and a preparation method and application thereof, wherein the film electrode sequentially comprises a transparent color-changing functional layer, a transparent conductive layer and a base material from top to bottom; the transparent color-changing functional layer is formed by mixing rare earth color-changing metal and gap metal. The preparation method comprises the following steps: forming a transparent conductive layer on a substrate by magnetron sputtering; uniformly mixing rare earth allochroic metal and gap metal, and then impacting into blocks to form a metal sputtering target material; and performing magnetron sputtering on the metal sputtering target material on the transparent conductive layer to form a transparent color-changing functional layer, thereby obtaining the metal sputtering target material. The color-changing functional layer adopts the technical scheme that the color-changing metal and the gap metal are mixed, and has the characteristics of more cavities, large cavity diameter and small obstruction to ion embedding and extraction, so that the thin-film electrode has quick color-changing response and darker color.)

一种稀土金属质电致变色薄膜电极及其制备方法和应用

技术领域

本发明涉及电致变色膜制备技术领域,具体涉及一种稀土金属质电致变色薄膜电极及其制备方法和应用。

背景技术

电致变色膜属于电-光响应膜领域中最新型的产品,具有无角度,低雾度,低电压,低耗电,记忆性等优点。通常分为有机电致变色电极与无机电致变色电极两大门类,有机电致变色电极的相对耐候性差,不能长期应用于户外、高温高湿场合,所以应用前景低于无机电致变色电极。

现有的无机电致变色电极是基于稀土金属成靶,而后磁控溅射而成的电致变色层,一般选用不饱和过渡金属为变色主体金属,为了便于离子的嵌入与抽出,还需要搭配一定的间隙金属,使组合金属制成的磁控溅射层具有更多更大的空穴,从而形成要稳定,更长效,响应更快的变色功能层。但现有的无机电致变色电极耐候性较差,易老化,并且一般采用单金属溅射,变色反应慢,颜色较浅。

发明内容

为了克服现有技术的不足,本发明的目的在于提供一种稀土金属质电致变色薄膜电极及其制备方法和应用,该薄膜电机耐候等级和现有无机电致变色电极相比更高,能适应高温高湿高紫外环境,可广泛应用于建筑外墙、汽车玻璃等领域。

为解决上述问题,本发明所采用的技术方案如下:

第一个方面,本发明提供一种稀土金属质电致变色薄膜电极,按照上下顺序依次为透明变色功能层、透明导电层和基材;所述透明变色功能层由稀土变色金属和间隙金属混合而成。

进一步地,所述透明变色功能层的厚度为20nm-50nm。

进一步地,所述透明导电层为ITO层,厚度为5nm-50nm。

优选地,所述ITO层的四方电阻为80-300Ω。

进一步地,所述基材为PET,厚度为20μm-200μm,厚度误差不大于5μm。

进一步地,所述透明变色功能层中稀土变色金属的质量含量为70-95%,间隙金属的质量含量为5-30wt%。

优选地,所述稀土变色金属为Nb、W、Ir、Rh、Co或者前述金属氧化物中的至少一种。

优选地,所述间隙金属包括Ti、Ni、Ta、Mo或者前述金属氧化物中的至少一种。

第二个方面,本发明提供一种稀土金属质电致变色薄膜电极的制备方法,包括以下步骤:

通过磁控溅射在基材上形成透明导电层;

将稀土变色金属和间隙金属混合均匀后冲击成块,形成金属溅射靶材;

在透明导电层上磁控溅射所述金属溅射靶材形成透明变色功能层,既得。

进一步地,所述在透明导电层上磁控溅射所述金属溅射靶材形成透明变色功能层,其磁控溅射的氧氛含量为1-30%。

第三个方面,本发明提供上述稀土金属质电致变色薄膜电极或者上述制备方法获得的稀土金属质电致变色薄膜电极的应用。

与现有技术相比,本发明的有益效果在于:

本发明采用稀土金属质变色功能层,耐候等级较比现有无机电致变色电极更高,能适应高温高湿高紫外环境,可广泛应用于建筑外墙、汽车玻璃等领域。并且本发明的变色功能层采用的是变色金属与间隙金属混合的技术方案,具有空穴多、空穴直径大、对离子嵌入与抽出阻碍小的特点,使得该薄膜电极变色响应快速,且颜色较深。此外,本发明实施简单,工艺成熟,通过两次磁控溅射就能生产,成本低,是电致变色材料能大规模廉价化的关键。

附图说明

图1为本发明实施例1的稀土金属质电致变色薄膜电极的结构示意图,其中,1-透明变色功能层,2-透明导电层,3-基材。

具体实施方式

在本发明的描述中,需要说明的是,实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。

下面结合附图和具体的实施例对本发明做进一步详细说明,所述是对本发明的解释而不是限定。

实施例1

本实施例提供一种稀土金属质电致变色薄膜电极,其结构如图1所示,按照上下顺序依次为透明变色功能层1、透明导电层2和基材3;透明变色功能层1由稀土变色金属W和间隙金属Ni混合而成。透明变色功能层的厚度为25nm。透明导电层为ITO层,厚度为20nm。ITO层的四方电阻为100Ω。基材为PET,厚度为30μm,厚度误差不大于5μm。透明变色功能层中稀土变色金属的质量含量W为92%,间隙金属Ni的质量含量为8wt%。该薄膜电极的制备方法为:

(1)通过磁控溅射在基材PET上形成透明导电层,其中磁控溅射的氧氛含量为12%;

(2)将稀土变色金属W和间隙金属Ni混合均匀后冲击成块,形成金属溅射靶材;

(3)在透明导电层上磁控溅射金属溅射靶材形成透明变色功能层,其中磁控溅射的氧氛含量为12%,既得。

将本实施例制备的薄膜电极进行电化学性能测试,结果如表1所示。

实施例2

本实施例提供一种稀土金属质电致变色薄膜电极,其结构如图1所示,按照上下顺序依次为透明变色功能层1、透明导电层2和基材3;透明变色功能层1由稀土变色金属Nb2O5和间隙金属Ti混合而成。透明变色功能层的厚度为20nm。透明导电层为ITO层,厚度为30nm。ITO层的四方电阻为200Ω。基材为PET,厚度为50μm,厚度误差不大于5μm。透明变色功能层中稀土变色金属的质量含量Nb2O5W为85%,间隙金属Ti的质量含量为15wt%。该薄膜电极的制备方法为:

(1)通过磁控溅射在基材PET上形成透明导电层,其中磁控溅射的氧氛含量为15%;

(2)将稀土变色金属Nb2O5和间隙金属Ti混合均匀后冲击成块,形成金属溅射靶材;

(3)在透明导电层上磁控溅射金属溅射靶材形成透明变色功能层,其中磁控溅射的氧氛含量为15%,既得。

将本实施例制备的薄膜电极进行电化学性能测试,结果如表1所示。

实施例3

本实施例提供一种稀土金属质电致变色薄膜电极,其结构如图1所示,按照上下顺序依次为透明变色功能层1、透明导电层2和基材3;透明变色功能层1由稀土变色金属IrO2和间隙金属Ta2O5混合而成。透明变色功能层的厚度为30nm。透明导电层为ITO层,厚度为10nm。ITO层的四方电阻为80Ω。基材为PET,厚度为100μm,厚度误差不大于5μm。透明变色功能层中稀土变色金属的质量含量IrO2W为80%,间隙金属Ta2O5的质量含量为20wt%。该薄膜电极的制备方法为:

(1)通过磁控溅射在基材PET上形成透明导电层,其中磁控溅射的氧氛含量为10%;

(2)将稀土变色金属IrO2和间隙金属Ta2O5混合均匀后冲击成块,形成金属溅射靶材;

(3)在透明导电层上磁控溅射金属溅射靶材形成透明变色功能层,其中磁控溅射的氧氛含量为10%,既得。

将本实施例制备的薄膜电极进行电化学性能测试,结果如表1所示。

实施例4

本实施例提供一种稀土金属质电致变色薄膜电极,其结构如图1所示,按照上下顺序依次为透明变色功能层1、透明导电层2和基材3;透明变色功能层1由稀土变色金属Rh/Co和间隙金属Mo混合而成。透明变色功能层的厚度为40nm。透明导电层为ITO层,厚度为50nm。ITO层的四方电阻为300Ω。基材为PET,厚度为30μm,厚度误差不大于5μm。透明变色功能层中稀土变色金属的质量含量Rh为40%,Co为50%,间隙金属Mo的质量含量为10wt%。该薄膜电极的制备方法为:

(1)通过磁控溅射在基材PET上形成透明导电层,其中磁控溅射的氧氛含量为20%;

(2)将稀土变色金属Rh/Co和间隙金属Mo混合均匀后冲击成块,形成金属溅射靶材;

(3)在透明导电层上磁控溅射金属溅射靶材形成透明变色功能层,其中磁控溅射的氧氛含量为20%,既得。

将本实施例制备的薄膜电极进行电化学性能测试,结果如表1所示。

对比例1

本对比例提供一种稀土金属质电致变色薄膜电极,与实施例1的区别在于:没有添加间隙金属。制备过程与实施例1相似。

将本对比例制备的薄膜电极进行电化学性能测试,测试结果如表1所示。

对比例2

本对比例提供一种稀土金属质电致变色薄膜电极,与实施例2的区别在于:没有添加间隙金属。制备过程与实施例2相似。

将本对比例制备的薄膜电极进行电化学性能测试,测试结果如表1所示。

对比例3

本对比例提供一种稀土金属质电致变色薄膜电极,与实施例3的区别在于:没有添加间隙金属。制备过程与实施例3相似。

将本对比例制备的薄膜电极进行电化学性能测试,测试结果如表1所示。

对比例4

本对比例提供一种稀土金属质电致变色薄膜电极,与实施例4的区别在于:没有添加间隙金属。制备过程与实施例4相似。

将本对比例制备的薄膜电极进行电化学性能测试,测试结果如表1所示。

表1实施例1~4和对比例1~4的薄膜电极的性能测试结果

案例 变色时间 颜色透明度 衰减效率
实施例1 15s 16% 1.1%/千次
实施例2 21s 30% 1.6%/千次
实施例3 18s 30% 2.1%/千次
实施例4 30s 35% 2.3%/千次
对比例1 45s 37% 4.5%/千次
对比例2 73s 42% 5.1%/千次
对比例3 64s 41% 6.8%/千次
对比例4 105s 53% 5.5%/千次
常规市售无机电致变色电极 40~120s >70% >4.5%/千次

通过表1的数据可以看出,本发明实施例1~4获得的电致变色薄膜电极的变色时间、颜色透明度、衰减效率明显较比对比例1~4获得的电致变色薄膜电极及常规市售无机电致变色电极更好。

综上所述,本发明的变色功能层采用的是变色金属与间隙金属混合的技术方案,具有空穴多、空穴直径大、对离子嵌入与抽出阻碍小的特点,变色响应快速,且颜色较深。此外,本发明实施简单,工艺成熟,通过两次磁控溅射就能生产,成本低,是电致变色材料能大规模廉价化的关键。

以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

7页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:显示面板、显示装置及显示面板的制造方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!