用于处理腔室的涂覆材料

文档序号:1486268 发布日期:2020-02-28 浏览:22次 >En<

阅读说明:本技术 用于处理腔室的涂覆材料 (Coating material for processing chamber ) 是由 元泰景 崔寿永 崔金贤 崔毅 古田学 于 2019-08-19 设计创作,主要内容包括:本文描述的实施方式涉及控制沉积在大基板上的SiN膜的均匀性的方法。当通过向腔室施加射频(RF)功率来激励所述腔室中的前驱物气体或气体混合物时,流过等离子体的RF电流在电极间间隙中产生驻波效应(SWE)。当基板或电极尺寸接近RF波长时,SWE变得显著。工艺参数,诸如工艺功率、工艺压力、电极间距和气体流量比都会影响所述SWE。这些参数可以更改,以便最小化SWE问题和实现可接受的厚度和性质均匀性。在一些实施方式中,在实现各种等离子体密度的同时在各种工艺功率范围下、在各种工艺压力范围下、在各种气体流率下在大基板上方沉积介电膜的方法将用于减小所述SWE,以产生更大等离子体稳定性。(Embodiments described herein relate to a method of controlling uniformity of a SiN film deposited on a large substrate. When a precursor gas or gas mixture in a chamber is excited by applying Radio Frequency (RF) power to the chamber, the RF current flowing through the plasma creates a Standing Wave Effect (SWE) in the inter-electrode gap. As the substrate or electrode size approaches the RF wavelength, the SWE becomes significant. Process parameters such as process power, process pressure, electrode spacing, and gas flow ratio all affect the SWE. These parameters can be altered to minimize SWE problems and achieve acceptable thickness and property uniformity. In some embodiments, methods of depositing dielectric films over large substrates at various process power ranges, at various process pressure ranges, at various gas flow rates while achieving various plasma densities will be used to reduce the SWE to produce greater plasma stability.)

用于处理腔室的涂覆材料

技术领域

本文描述的实施方式一般涉及控制沉积在基板上方的介电膜的均匀性的方法,并且更具体地涉及沉积在大基板上方的SiN膜。

背景技术

液晶显示器或平板显示器通常用于有源矩阵显示器,诸如计算机和电视机监视器。等离子体增强化学气相沉积(PECVD)一般用于在诸如用于平板显示器的透明基板、或半导体晶片的基板上沉积薄膜。PECVD一般通过将前驱物气体或气体混合物引入容纳有基板的真空腔室中完成。前驱物气体或气体混合物典型地被向下引导通过安置在腔室的顶部附近的分配板。通过将射频(RF)功率从耦接到腔室的一个或多个RF源施加到腔室,在腔室中的前驱物气体或气体混合物被激励(例如,激发)成等离子体。被激发的气体或气体混合物反应以在定位在温度受控的基板支撑件上的基板的表面上形成一层材料。在反应期间产生的挥发性副产物通过排气系统从腔室中泵出。

通过PECVD技术处理的平板典型地是大的。随着在TFT-LCD工业中基板尺寸不断增长,大面积PECVD的膜厚度和膜性质均匀性的控制成为问题。例如,在基板的中心和边缘之间的沉积速率和/或膜性质(诸如膜应力)的差异变得显著。随着在TFT-LCD工业中基板尺寸不断增长,大面积PECVD的膜厚度和性质均匀性变得更成问题。对于一些高沉积速率SiN膜,值得注意的均匀性问题的示例包括较高的沉积速率和在大基板的中心区域中更多的压缩膜。跨基板的厚度均匀性呈“圆顶形的”或“中心厚的”,其中中心区域中的膜比边缘区域厚。更大的基板具有更糟糕的中心厚度均匀性问题。

因此,本领域中需要改善薄膜、特别是在PECVD腔室中沉积在大基板上的SiN膜的膜沉积厚度和膜性质的均匀性。

发明内容

本文描述的一个或多个实施方式涉及在大基板上沉积SiN膜的方法。

在一个实施方式中,一种在具有大于约9m2的表面积的基板上方沉积介电膜的方法包括:在工艺腔室中以功率沉积所述介电膜,所述功率来自在约0.25W/cm2至约0.35W/cm2之间的功率密度;以工艺压力沉积所述介电膜,所述工艺压力在约1.0托至约1.5托之间;和从包括N2、NH3和SiH4的前驱物沉积所述介电膜,其中NH3/SiH4流量比在约1.5至约9之间,N2/SiH4流量比在约2.0至约6.0之间,N2/NH3流量比在约0.4至约2.0之间。

在另一个实施方式中,一种在具有大于约9m2的表面积的基板上方沉积介电膜的方法包括:以工艺功率密度沉积所述介电膜,所述工艺功率密度在约0.25W/cm2至约0.35W/cm2之间;以工艺压力沉积所述介电膜,所述工艺压力在约1.3托至约1.5托之间;和从包括N2、NH3和SiH4的前驱物沉积所述介电膜,其中NH3/SiH4流量比在约1.5至约7.0之间,N2/SiH4流量比在约2.0至约5.0之间,N2/NH3流量比在约0.4至约2.0之间。

在另一个实施方式中,一种在具有大于约9m2的表面积的基板上方沉积介电膜的方法包括:以工艺功率密度沉积所述介电膜,所述工艺功率密度在0.30W/cm2至约0.35W/cm2之间;以工艺压力沉积所述介电膜,所述工艺压力在约1.3托至约1.5托之间;和从包括N2、NH3和SiH4的前驱物沉积所述介电膜,其中NH3/SiH4流量比在约2.0至约4.5之间,N2/SiH4流量比在约2.0至约4.0之间,N2/NH3流量比在约0.6至约2.0之间。

附图说明

因此,可以详细地理解本公开内容的上述特征的方式,可以通过参考实施方式得到上面简要地概述的本公开内容的更特定的描述,其中一些在附图中示出。然而,应当注意,附图仅示出了本公开内容的典型实施方式,并且因此不应视为对本公开内容的范围的限制,因为本公开内容可以允许其它等效实施方式。

图1是根据本公开内容中描述的至少一个实施方式的系统的示意性剖视图;

图2是根据图1的示例性扩散板的局部截面图;以及

图3是根据本公开内容中描述的至少一个实施方式的方法的流程图。

为了便于理解,已经尽可能地使用相同的附图标记表示各图共有的相同元件。设想的是,一个实施方式的要素和/或特征可以有利地并入其它实施方式,而不进一步叙述。

具体实施方式

在以下描述中,阐述许多具体细节以提供对本公开内容的实施方式的更透彻的理解。然而,本领域的技术人员应当清楚,本公开内容的实施方式中的一个或多个可以在没有这些具体细节中的一个或多个的情况下实践。在其它情况下,还未描述所熟知的特征,以便避免模糊本公开内容的实施方式中的一个或多个。

本文描述的实施方式一般涉及控制沉积在基板上方的介电膜的均匀性的方法,并且更具体地涉及沉积在大面积基板上方的SiN膜。当PECVD系统在基板上沉积薄膜时,前驱物气体或气体混合物典型地被向下引导通过安置在腔室的顶部附近的分配板。当通过从耦接到可偏置的腔室部件的一个或多个RF源向腔室施加RF功率来激励大面积基板处理腔室中的前驱物气体或气体混合物时,流过等离子体的RF电流在电极间(inter-electrode)间隙中产生驻波效应(SWE)。SWE本身很清楚地被呈现为圆顶或在基板的中心处的膜厚度的增加。当基板或电极尺寸接近RF波长时,SWE变得显著。通过降低RF频率来增加波长是不期望的,因为较高等离子体电位(如峰-峰电压所示)引起离子轰击,这可能损坏基板和膜。出于其它原因,诸如但不限于增加沉积速率,可以增加RF频率,从而仅加剧驻波效应。因此,必须找到解决SWE问题和大基板问题的可靠解决方案。

如果已经发现工艺参数,诸如工艺功率、工艺压力、电极间距和气体流量比都会影响SWE。这些参数可以更改,以便最小化SWE问题和实现可接受的厚度和性质均匀性。在一些实施方式中,在实现各种等离子体密度的同时在各种工艺功率范围下、在各种工艺压力范围下、在各种气体流率下在大基板上方沉积介电膜的方法将用于减小所述SWE,以产生更大等离子体稳定性。使用这些工艺参数将有助于缓解或消除因SWE导致的在基板的中心区域处的膜厚度高于在边缘区域处的膜厚度的问题,并且导致跨整个基板的膜厚度更均匀。这些参数和范围将在本文中更详细地讨论。

图1是根据本公开内容中描述的至少一个实施方式的系统100的示意性剖视图。系统100一般是PECVD系统,但是也可以是其它合适的系统。系统100一般包括耦接到气源104的处理腔室102。处理腔室102具有壁106和底部108,它们部分地限定工艺空间110。典型地通过壁106中的端口(未示出)接近工艺空间110,该端口便于基板112移入和移出处理腔室102。壁106和底部108可以由整体铝块或与处理相容的其它材料制成。壁106支撑盖组件114,盖组件114包含将工艺空间110耦接到排气端口的泵送气室116(其包括各种泵送部件,未示出))。或者,排气端口(未示出)位于处理腔室102的地板中,并且工艺空间110不需要泵送腔室116。

温控支撑组件118居中地设置在处理腔室102内。支撑组件118在处理期间支撑基板112。在一个实施方式中,支撑组件118包括主体120,主体120封装至少一个嵌入式加热器122。设置在支撑组件118中的加热器122(诸如电阻元件)耦接到任选的功率源128,并且可控制地将支撑组件118和定位在之上的基板112加热到预定温度。典型地,在CVD工艺中,加热器122将基板112维持在约120摄氏度至至少约460摄氏度之间的均匀温度,这取决于所沉积的材料的沉积处理参数。

一般,支撑组件118具有上侧124和下侧126。上侧124支撑基板112。下侧126具有与之连接的杆127。杆127将支撑组件118耦接到升降系统(未示出),该升降系统使支撑组件118在升高的处理位置(如图所示)与降低的位置之间移动,该降低的位置便于向处理腔室102和从处理腔室102传送基板。杆127另外地提供用于在支撑组件118和与系统100的其它部件之间的电力和热电偶引线的导管。

支撑组件118一般是接地的,使得由功率源128供应到定位在盖组件114与基板支撑组件118之间的气体分配板组件130(或定位在腔室的盖组件内或附近的其他电极)的RF功率可以激发在支撑组件118与气体分配板组件130之间的工艺空间110中存在的气体。通常根据基板的尺寸选择来自功率源128的RF功率以驱动CVD工艺。

盖组件114为工艺空间110提供上边界。在一个实施方式中,盖组件114由铝(Al)制成。盖组件114包括形成在其中形成的泵送气室116,送气室116耦接到外部泵送系统(未示出)。泵送气室116用于将通道气体和处理副产物均匀地从工艺空间110引出并流出处理腔室102。盖组件114典型地包括入口端口132,由气源104提供的工艺气体通过入口端口132引入处理腔室102。入口端口132还耦接到清洁源134。清洁源134典型地提供清洁剂,诸如离解的氟,清洁剂被引入处理腔室102中,以从处理腔室硬件(包括气体分配板组件130)去除沉积副产物和膜。

气体分配板组件130耦接到盖组件114的内表面136。气体分配板组件130的形状典型地被配置成基本上符合基板112的周边,例如,用于大面积平板基板的多边形和用于晶片的圆形。气体分配板组件130包括穿孔区域138,从气源104供应的工艺和其它气体通过穿孔区域138而输送到工艺空间110。气体分配板组件130的穿孔区域138被配置为提供穿过气体分配板组件130进入处理腔室102的气体的均匀分布。气体分配板组件130典型地包括悬于吊挂板142上的扩散板140。扩散板140和吊挂板142可以替代地包括单个整体构件。穿过扩散板140形成多个气体通路144,以允许预定气体分布穿过气体分配板组件130并进入工艺空间110。气室146形成在吊挂板142、扩散板140、以及盖组件114的内表面136之间。气室146允许流过盖组件114的气体跨扩散板140的宽度均匀地分布,使得气体均匀地提供在穿孔区域138上方并以均匀分布流过气体通路144。

扩散板140典型地由不锈钢、铝(Al)、镍(Ni)或其它RF导电材料制成。扩散板140可以进行铸造、钎焊、锻造、热等静压或烧结。在一个实施方式中,扩散板140由裸露非阳极化铝制成。已经示出,用于扩散板140的非阳极化铝表面减少颗粒在其上形成,颗粒可能之后污染在系统100中处理的基板。另外,当未进行阳极化时,扩散板140的制造成本降低。扩散板140对于半导体晶片制造可以是圆形的,或对于平板显示器制造可以是多边形的,诸如矩形。

典型地,本领域中扩散板140的标准实践是被配置为基本上平坦的并平行于基板112,并且用于使相同的气体通路144的分布跨扩散板140的表面是基本上均匀的。扩散板140的这种配置在工艺空间110中提供足够的气流和等离子体密度均匀性,以在较小基板上沉积膜。然而,随着基板尺寸的增加,沉积膜、尤其是SiN膜的均匀性变得更难维持。具有均匀尺寸和形状的气体通路144的均匀分布的扩散板140一般不能将具有可接受的厚度和膜性质均匀性的膜沉积到大面积基板上。已经表明,对于沉积在较大基板上的SiN膜,可以通过使用下面描述的空心阴极梯度(HCG)来改善膜厚度和膜性质均匀性。

图2是包括HCG的图1的扩散板140的一部分的局部截面图。扩散板140包括面向盖组件114的第一或上游侧202和面向支撑组件118的相对的第二或下游侧204。每个气体通路144由第一钻孔206限定,第一钻孔206由孔口208耦接到第二钻孔210,这样组合以形成穿过气体分配板组件130的流体路径。第一钻孔206从气体分配板组件130的上游侧202延伸了第一深度212而到达底部214。第一钻孔206的底部214可以是渐缩的、倾斜的、倒角的或圆形的,以在气体从第一钻孔流入孔口208中时使流动限制最小化。第一钻孔206的直径一般为约0.093至约0.218英寸,并且在一个实施方式中为约0.156英寸。

第二钻孔210形成在扩散板140中并从下游侧(或端部)204延伸达约0.10英寸至约2.0英寸的深度216。优选地,深度216在约0.1英寸至约1.0英寸之间。第二钻孔210的开口直径218一般为约0.1英寸至约1.0英寸,并且可以以约10度至约50度的张开角度220张开。优选地,开口直径218在约0.1英寸至约0.5英寸之间,并且张开角度220在20度至约40度之间。第二钻孔210的表面积在约0.05平方英寸至约10平方英寸之间,并且优选地在约0.05平方英寸至约5平方英寸之间。第二钻孔210的直径是指与下游表面204相交的直径。用于处理大基板的扩散板140的示例具有直径为0.302英寸且张开角度220为约22度的第二钻孔210。相邻的第二钻孔210的轮缘222之间的距离228在约0英寸至约0.6英寸之间,优选地在约0英寸至约0.4英寸之间。第一钻孔206的直径通常但不限于至少等于或小于第二钻孔210的直径。第二钻孔210的底部224可以是渐缩的、倾斜的、倒角的或圆形的,以最小化从孔口208流出并进入第二钻孔210的气体的压力损失。此外,由于孔口208与下游侧204的接近用于使第二钻孔210和下游侧204的面向基板的暴露的表面区域最小化,扩散板140的暴露于在腔室清洁期间提供的氟的下游区域减小,从而减少沉积膜的氟污染的发生。

孔口208一般耦接第一钻孔206的底部214和第二钻孔210的底部224。孔口208一般具有约0.01英寸至约0.3英寸、优选地为约0.01英寸至约0.1英寸的直径,并且典型地具有约0.02英寸至约1.0英寸、优选地约0.02英寸至约0.5英寸的长度226。孔口208的长度226和直径(或其它几何属性)是气室146中的背压的主要源,它促进了气体跨气体分配板组件130的上游侧202的均匀分布。孔口208典型地在多个气体通路144间均匀地配置,然而,通过孔口208的限制可以在气体通路144间不同地配置,以促进更多的气体相对于另一个区域流过气体分配板组件130的一个区域。例如,孔口208可以在气体分配板组件130的更靠近处理腔室102的壁106的那些气体通路144中具有更大的直径和/或更短的长度226,使得更多的气体流过穿孔区域138的边缘以增加在基板的周边处的沉积速率。扩散板140的厚度在约0.8英寸至约3.0英寸之间,优选地在约0.8英寸至约2.0英寸之间。

使用图2中的设计为例,可以通过改变开口直径218、深度216和/或张开角度220来改变第二钻孔210的容积。改变直径、深度和/或张开角度也将改变第二钻孔210的表面积。据信,较高等离子体密度可能是在基板112的中心处具有较高沉积速率的原因(如图1所示)。通过使钻孔深度216、直径、张开角度220或这三个参数的组合从扩散板140的边缘到中心减小,可以在基板的中心区域减小等离子体密度以改善膜厚度和膜性质均匀性。例如,改善膜性质的一种方式是将扩散板140的下游表面204设计成具有凹形形状。在这种情况下,顶点可以大致位于基板112的中心点上方,其中电极间距从扩散板140的边缘到中心增大。

尽管如图2中描述的HCG设计也有助于改善膜均匀性,但是通过仔细地控制SiN栅极介电膜生产中、尤其是在大基板上使用的工艺参数,就会实现更大的改善。使用以下处理参数将有助于缓解或减少中心区域处的膜厚度比基板112的边缘区域处的膜厚度高的问题,并且产生跨整个基板112直至该基板的边缘的更均匀的边缘厚度。

例如,据信,使用相比N2来说流率较高的NH3气体是有用的,因为NH3气体中的弱N-H键强度允许施加较低功率以解离氮和氢元素。较低工艺功率有助于提高等离子体稳定性并缓解SWE。下表包含可在SiN膜沉积在大面积基板上的工艺中应用的处理参数。

表1:

Figure BDA0002171948680000071

Figure BDA0002171948680000081

图3是根据本公开内容的至少一个实施方式的示出方法300的流程图。已经发现,在方法300中出现的每个框特别地适用于在具有大于约9m2的表面积的基板上方沉积介电膜,然而可以使用具有更大或更小的表面积的其它基板尺寸。

在框302中,在特定工艺功率范围下沉积介电膜。如表1中所示,工艺功率密度范围可以在约0.25瓦(W)/cm2至约0.35W/cm2之间,优选地在0.30W/cm2至0.35W/cm2之间,但是其它范围是可能的。当与在各种流率下的各种气体相比时,在这些范围下的功率可以为膜基板提供更大的均匀性,这将在框306中更详细地讨论。

在框304中,以工艺压力沉积介电膜。还如表1中所示,工艺压力可以在约1.0托至约1.5托之间、优选地在1.3托与1.5托之间的范围内,但是其它范围是可能的。与功率很相似,当与在各种流率下的各种气体相比时,在这些范围下的压力可以为膜基板提供更大的均匀性,这将在框306中更详细地讨论。

在框306中,从前驱物气体沉积介电膜。在一些实施方式中,前驱物气体包括N2、NH3和SiH4,然而其它前驱物气体也是可能的。如表1中所示,前驱物气体具有各种流率范围。当与在工艺范围中的其它工艺参数组合时,以各种流率提供的各种气体可以用于提供期望的膜结果。例如,N2/NH3、NH3/SiH4、N2/SiH4的各种流量比可以在各种工艺功率和压力下组合以产生期望的结果。改变任一个参数可以将不期望的膜结果改变为期望的膜结果。在一些实施方式中,在处理期间提供的前驱物包括N2、NH3和SiH4,其中NH3/SiH4流量比在约1.5至约9之间,N2/SiH4流量比在约2.0至约6.0之间,并且N2/NH3流量比在约0.4至约2.0之间。在另一个实施方式中,在处理期间提供的前驱物包括N2、NH3和SiH4,其中流量比中的至少一个从以下中选择:NH3/SiH4流量比在约2.0至约4.5之间,N2/SiH4流量比在约2.0至约4.0之间,并且N2/NH3流量比在约0.6至约2.0之间。在又一个实施方式中,在处理期间提供的前驱物包括N2、NH3和SiH4,其中流量比中的至少一个从以下中选择:NH3/SiH4流量比在约2.3至约4.4之间,N2/SiH4流量比在约2.6至约4.0之间,并且N2/NH3流量比在约0.6至约1.0之间。

例如,在一个实施方式中,SiH4流率可以在约0.05sccm/cm2至约0.07sccm/cm2之间的范围内;工艺功率密度可以在约0.30W/cm2至约0.35W/cm2之间变化;并且工艺压力可以在约1.3托至约1.5托之间变化,以获得期望的结果。在另一个实施方式中,工艺功率密度可以在约0.30W/cm2至约0.35W/cm2的范围内;工艺压力可以在约1.3托至约1.5托之间变化;并且处理腔室102中的温度可以在约240摄氏度至约320摄氏度之间变化,以获得期望的结果。在另一个实施方式中,SiH4流率可以在约0.05sccm/cm2至约0.07sccm/cm2之间的范围内;工艺功率密度可在约0.30W/cm2至约0.35W/cm2之间变化;工艺压力可以在约1.3托至约1.5托之间变化;并且处理腔室102中的温度在约240摄氏度至约320摄氏度之间,以获得期望的结果。在另一个实施方式中,工艺功率密度可以在约0.30W/cm2至约0.35W/cm2之间的范围内;工艺压力可以在约1.3托至约1.5托之间变化;处理腔室102中的温度可以在约240摄氏度至约320摄氏度之间变化;并且在基板112的中心处距扩散板140的电极间距可以在约900密耳至约1000密耳之间变化,以获得期望的结果。在另一个实施方式中,SiH4流率可以在约0.05sccm/cm2至约0.07sccm/cm2之间的范围内;工艺功率密度可在约0.30W/cm2至约0.35W/cm2之间变化;工艺压力可以在约1.3托至约1.5托之间变化;处理腔室102中的温度可以在约240摄氏度至约320摄氏度之间变化;并且在基板112的中心处距扩散板140的电极间距可以在约900密耳至约1000密耳之间变化,以获得期望的结果。以上实施方式仅表示了可用于形成具有期望的性质的膜的在表1中提供的范围内的工艺参数的许多示例中的一些。在一个实施方式中,在这些示例和框306中实现的期望的结果是缓解或消除在基板112的中心区域处的膜厚度比在边缘区域处高的问题,并且产生跨整个基板112的更均匀的膜厚度。

方法300中的每个框用于改善膜均匀性,同时还维持等离子体稳定性并有助于缓解SWE。更具体地,方法300有助于缓解或消除在基板112的中心区域处的膜厚度比在边缘区域处的膜厚度高的问题,并且因SWE而产生跨整个基板112从中心区域到边缘的更均匀的膜厚度。这对于大基板和处理腔室尤其重要。

尽管前述内容涉及本公开内容的实施方式,但是在不脱离本公开内容的基本范围的情况下,可以设想本公开内容的其它和进一步实施方式,并且本公开内容的范围由所附权利要求书确定。

13页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:可变传导性气体分布装置和方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!