两种1,10-菲罗啉骨架配体及其铁络合物和制备方法及应用

文档序号:148864 发布日期:2021-10-26 浏览:48次 >En<

阅读说明:本技术 两种1,10-菲罗啉骨架配体及其铁络合物和制备方法及应用 (Two 1, 10-phenanthroline skeleton ligands and iron complex thereof, and preparation method and application thereof ) 是由 朱守非 胡梦阳 何鹏 于 2020-04-26 设计创作,主要内容包括:本发明涉及两种新型2,9-二取代的1,10-菲罗啉与其铁络合物的制备方法及其应用。具体的讲这两种1,10-菲罗啉骨架的配体是2,9-二-[3,5-二(2,4,6-三异丙基苯基)苯基]-1,10-菲罗啉和2,9-二-(2,4,6-三异丙基苯乙炔基)-1,10-菲罗啉。以2,9-二氯-1,10-菲罗啉与芳基硼酸酯或芳基乙炔进行偶联反应制备出这两种1,10-菲罗啉配体,将其与铁盐进行络合反应,可以制备相应的1,10-菲罗啉铁络合物。该1,10-菲罗啉铁络合物在添加剂存在下,能够催化多种炔烃与硅烷的硅氢化反应,表现出很高的活性和选择性,具有很好的应用前景。(The invention relates to a preparation method and application of two novel 2, 9-disubstituted 1, 10-phenanthroline and iron complexes thereof. Specifically, the two ligands with 1, 10-phenanthroline skeletons are 2, 9-bis- [3, 5-bis (2, 4, 6-triisopropylphenyl) phenyl ] -1, 10-phenanthroline and 2, 9-bis- (2, 4, 6-triisopropylphenylethynyl) -1, 10-phenanthroline. The two 1, 10-phenanthroline ligands are prepared by coupling reaction of 2, 9-dichloro-1, 10-phenanthroline and aryl boric acid ester or aryl acetylene, and are subjected to complex reaction with iron salt to prepare the corresponding 1, 10-phenanthroline iron complex. The 1, 10-phenanthroline iron complex can catalyze the hydrosilation reaction of various alkynes and silane in the presence of an additive, shows high activity and selectivity, and has a good application prospect.)

两种1,10-菲罗啉骨架配体及其铁络合物和制备方法及应用

技术领域

本发明涉及两种新型2,9-二取代的1,10-菲罗啉与其铁络合物的制备方法及其应用。具体的讲这两种1,10-菲罗啉骨架的配体是2,9-二-[3,5-二(2,4,6-三异丙基苯基)苯基]-1,10-菲罗啉和2,9-二-(2,4,6-三异丙基苯乙炔基)-1,10-菲罗啉。以2,9-二氯1,10-菲罗啉与芳基硼酸酯或芳基乙炔进行偶联反应制备出这两种1,10-菲罗啉配体,将其与铁盐进行络合反应,可以制备1,10-菲罗啉铁络合物。该1,10-菲罗啉铁络合物在添加剂存在下,能够催化多种炔烃与硅烷的硅氢化反应,表现出很高的活性和选择性,具有很好的应用前景。

背景技术

有机硅化合物因具有独特的结构,优异的性能,被广泛应用于多个重要领域[Ojima,I. In The Chemistry of Organic Silicon Compounds,Patai,S.,Rappoport,Z.,Eds.;Wiley: Chichester,U.K.,1989;Vol.1;Chapter 25]。烯基硅是一类重要的有机硅化合物,不仅可以用于合成具有特殊功能的高分子材料,还可以作为试剂应用于有机合成中,因而发展高效合成烯基硅化合物的方法是具有非常重要的理论和实际意义[Blumenkopf,T.A.;Overman, L.E.Chem.Rev.1986,86,857;Denmark,S.E.;Sweis,R.F.Acc.Chem.Res.2002,35,835]。

炔烃硅氢化反应是合成烯基硅化合物的有效的方法[Marciniec,B.(Ed.),Hydrosilylation,A Comprehensive Review on Recent Advances,Spring,2009]。虽然过渡金属催化的炔烃硅氢化反应被广泛研究,但是该反应仍然存在很多问题。一方面,目前用于炔烃硅氢化反应的金属主要是Pt、Rh、Ir等贵金属,这些贵金属催化剂通常只能用于催化三取代硅烷和炔烃的硅氢化反应得到四取代的烯基硅。而含有Si-H键的烯基硅具有重要应用价值,比如可以作为单体合成聚硅烷和聚硅氧烷,也可以发生偶联反应构筑碳碳键,因此发展能够高效、高选择性地催化单取代硅烷和炔烃硅氢化的催化剂具有重要研究价值。另一方面,内炔烃硅氢化的选择性调控仍然是一个挑战性课题。例如,对于芳基烷基乙炔的硅氢化,文献中报道的催化剂通常给出到硅烷加成在芳基一侧的硅氢化产物,而另一选择性的硅氢化反应报道较少。对于对称性较高的内炔,例如1,2-二烷基乙炔,其高选择性硅氢化就更为困难。

铁是地壳中储量最丰富的过渡金属,也是最廉价的金属,同时还有良好的生物兼容性,因此从可持续发展化学和绿色化学的角度来看,铁是最理想的催化剂。铁催化炔烃的硅氢化反应近年来受到广泛关注,也取得了一些重要进展[Bart,S.C.;Lobkovsky,E.;Chirik,P.J. J.Am.Chem.Soc.2004,126,13794;Greenhalg,M.D.;Frank,D.J.;Thomas,S.P.Adv.Synth. Catal.2014,356,584;Belger,C.;Plietker,B.Chem.Commun.2012,48,5419;Liu,Z.-K.; Zhang,G.-L;Li,D.-C.;Yang,Y.;Li.C.;Zhan,Z.-P.Synlett 2019,30,239]。但是目前文献中能够成功催化炔烃硅氢化反应的铁催化剂的种类还很少,并且存在诸如催化剂活性普遍不高,底物局限性大,官能团耐受性差,催化剂合成困难等问题。因此发展用于烯烃硅氢化反应的新型铁催化剂,克服已知催化剂存在的缺点,是本领域研究的重点之一。

发明内容

本发明的目的是提供两种2,9-二取代-1,10-菲罗啉与其铁络合物和制备方法及其应用,可以克服已有技术的缺点。

本发明所述的2,9-二取代1,10-非罗啉,其特征在于它是:

2,9-二-[3,5-二(2,4,6-三异丙基苯基)苯基]-1,10-菲罗啉;

2,9-二-(2,4,6-三异丙基苯乙炔基)-1,10-菲罗啉;

所述的2,9-二-[3,5-二(2,4,6-三异丙基苯基)苯基]-1,10-菲罗啉的制备方法,其特征在于它是经过如下步骤制备:在1,4-二氧六环与水的混合溶剂中,60~120℃下,Pd(PPh3)4为催化剂,K2CO3为碱,2,9-二氯-1,10-菲罗啉与芳基硼酸酯进行Suzuki偶联,反应10~48小时,制备得到2,9-二-[3,5-二(2,4,6-三异丙基苯基)苯基]-1,10-菲罗啉,其反应式为:

所述的2,9-二-(2,4,6-三异丙基苯乙炔基)-1,10-菲罗啉的制备方法,其特征在于它是经过如下步骤制备:在四氢呋喃溶剂中,70~110℃下,Pd(PPh3)4和CuI为催化剂,三乙胺为碱,2,9-二氯-1,10-菲罗啉与芳基乙炔进行Sonogashira偶联,反应10~48小时,制备得到2,9-二-(2,4,6-三异丙基苯乙炔基)-1,10-菲罗啉,其反应式为:

所述的1,10-菲罗啉铁络合物,其特征在于它是:

2,9-二-[3,5-二(2,4,6-三异丙基苯基)苯基]-1,10-菲罗啉合氯化亚铁;

2,9-二-(2,4,6-三异丙基苯乙炔基)-1,10-菲罗啉合氯化亚铁;

所述的1,10-菲罗啉铁络合物的制备方法,其特征在于它是经过如下步骤制备:在甲苯、苯、二甲苯、四氢呋喃、乙醚、1,4-二氧六环中的一种或几种有机溶剂中,0~140℃下,2,9-二取代1,10-菲罗啉与相应的铁盐络合1~72小时,制备得到2,9-二取代1,10-菲罗啉铁络合物,其反应式为:

其中:R是3,5-二(2,4,6-三异丙基苯基)苯基或2,4,6-三异丙基苯乙炔基。

所述的1,10-菲罗啉铁络合物的应用,其特征在于它作为催化剂用于炔烃和单取代硅烷的硅氢化反应:

其中:[Fe]为所述的1,10-菲罗啉铁络合物;R1~R3是C1~C8烷基、卤代烷基、苄基、苯乙基、苯乙烯基、取代苯乙烯基、苯基、取代的苯基、萘基、取代的萘基,R1~R3可以相同,也可以不同。

所述的1,10-菲罗啉铁络合物的应用,其特征在于所述的硅氢化反应条件是:所用溶剂是C1~C8的醚类,四氢呋喃,甲苯或烷烃;催化剂用量为0.01~5mol%;底物浓度为0.001~10.0 M;添加剂为格氏试剂、四氢铝锂、三乙基硼氢化钠、有机锂试剂中的一种或几种;反应温度为0~100℃;反应1~72小时。

所述的1,10-菲罗啉铁络合物的应用,其特征在于将催化剂加入反应瓶中,然后依次加入溶剂、硅烷、炔烃底物和添加剂,在指定温度下搅拌反应至结束。

总而言之,将2,9-二氯-1,10-菲罗啉与芳基硼酸酯或芳基乙炔进行催化偶联,可以制备 2,9-二-[3,5-二(2,4,6-三异丙基苯基)苯基]-1,10-菲罗啉和2,9-二-(2,4,6-三异丙基苯乙炔基)-1,10-菲罗啉;将取代的1,10-菲罗啉和氯化亚铁盐进行络合,可以得到相应的1,10-菲罗啉铁络合物2,9-二-[3,5-二(2,4,6-三异丙基苯基)苯基]-1,10-菲罗啉合氯化亚铁和2,9-二 -(2,4,6-三异丙基苯乙炔基)-1,10-菲罗啉合氯化亚铁。该新型1,10-菲罗啉铁络合物能够催化多种炔烃的硅氢化反应,并表现出以下特点:底物适用范围很广,对端炔、内炔都能给出很好的结果;对官能团的耐受性很好,卤素、烷氧基、芳氧基、硅基、硅氧基等取代基不影响反应结果;效率很高,转化数最高可达4500;区域选择性和立体选择性高;对于烷基乙炔,芳基乙炔,烯基乙炔的硅氢化反应,给出和已知铁催化剂不同的马氏加成的选择性;对内炔也能给出比较罕见的硅基加到位阻较大一端的烯基硅产物。上述特点表明,本发明所提供的新型1,10-菲罗啉铁络合物催化剂克服了已有技术的缺点,具有很好的应用前景。

具体实施方式

通过下述实施实例将有助于近一步理解本发明,但不应将此理解为本发明上述主题的范围仅限于以下的实施例,凡基于本发明上述内容所实现的技术均属于本发明的范围。

一般说明:

实施实例中使用了缩写,其含义如下:

Me是甲基,Et是乙基,iPr是异丙基,tBu是叔丁基,Ph是苯基,THF是四氢呋喃, DCM是二氯甲烷,PE是石油醚,EA是乙酸乙酯;

TLC是薄层色谱,NMR是核磁共振,HRMS是高分辨质谱,IR是红外吸收光谱;

TON为转化数。

所用溶剂在使用前用标准操作提纯,干燥;所用试剂均为市售或按照已有文献方法合成得到,并在使用前提纯。

实施例1:2,9-二-[3,5-二(2,4,6-三异丙基苯基)苯基]-1,10-菲罗啉2a的制备

在装有回流冷凝管、抽气头、橡胶塞的250mL两口瓶中依次称入反应物1(249mg,1mmol)、ArBPin(1.34g,2.2mmol)、K2CO3(0.69g,5mmol)、Pd(PPh3)4(57.8mg,0.05mmol),真空线上将体系置换为氮气氛围,氮气流下加入脱气的1,4-二氧六环(20mL)和水(5mL),开动搅拌,油浴升温至90℃。加热搅拌15h后,TLC确定反应物消耗完全,停止加热,冷却至室温。加入饱和NH4Cl溶液(50mL),DCM萃取(100mL×3),饱和食盐水洗涤,无水硫酸钠干燥,有机相真空脱溶后干法上样柱层析(PE/DCM=20∶1为淋洗剂),得目标产物2,9-二-[3,5-二(2,4,6-三异丙基苯基)苯基]-1,10-菲罗啉(2a)(936mg),为白色固体。产率:82%;熔点:310-312℃。

1H NMR(400MHz,CDCl3)δ8.29(d,J=8.4Hz,2H),8.07(dd,J=8.4,2.0Hz,2H,),8.00(d,J =1.7Hz,4H),7.79(s,2H),7.04-7.00(m,10H),2.98(p,J=6.9Hz,4H),2.82-2.73 (m,8H),1.35(dd,J=6.9,2.4Hz,24H),1.04-0.95(m,48H).

13C NMR(101MHz,CDCl3)δ158.7,147.6,146.5,146.4,141.1,139.9,137.0,136.7,132.9, 128.1,127.5,126.3,122.2,120.4,34.3,30.4,24.2,24.1,24.0.

HRMS(ESI)calcd for[M+H,C84H105N2]+:1141.8272,found 1141.8282.

实施例2:2,9-二-(2,4,6-三异丙基苯乙炔基)-1,10-菲罗啉2b的制备

在装有回流冷凝管、抽气头、橡胶塞的250mL两口瓶中依次称入反应物1(1g,4mmol)、芳基乙炔(2.0g,8.8mmol)、CuI(76mg,0.4mmol)、Pd(PPh3)4(231mg,0.2 mmol),真空线上将体系置换为氮气氛围,氮气流下加入脱气的四氢呋喃(24mL)和Et3N (8mL),开动搅拌,油浴升温至90℃。加热搅拌15h后,TLC确定反应物消耗完全,停止加热,冷却至室温。加入饱和NH4Cl溶液(50mL),DCM萃取(100mL×3),饱和食盐水洗涤,无水硫酸钠干燥,有机相真空脱溶后干法上样柱层析(PE/EA=20∶1为淋洗剂),得目标产物2,9-二-(2,4,6-三异丙基苯乙炔基)-1,10-菲罗啉(2b)(1.82g),为白色固体。产率:72%;熔点:203-207℃。

1H NMR(400MHz,CDCl3)δ8.21(d,J=8.2Hz,2H),7.82(d,J=8.2Hz,2H),7.78(s,2H), 7.05(s,4H),3.81(hept,J=6.9Hz,4H),2.93(hept,J=6.9Hz,2H),1.36(d,J=6.9Hz,24H),1.29(d,J=6.9Hz,12H).

13C NMR(101MHz,CDCl3)δ151.8,150.1,145.7,144.7,135.9,127.6,127.0,126.5,120.5, 117.5,97.2,89.2,34.6,31.9,23.9,23.6.

HRMS(ESI)calcd for[M+H,C46H53N2]+:633.4203,found 633.4207.

实施例3:2,9-二取代-1,10-菲罗啉铁络合物的制备

在手套箱中,在25mL反应瓶中称入2,9-双-2,4,6-三异丙基苯基-1,10-菲啰啉(2a)(1.001 g,2mmol)和FeCl2(253.5mg,2mmol),加入20mL四氢呋喃,于室温下反应24小时后,真空泵抽走部分四氢呋喃(体系剩余约5mL),加入15mL正己烷后有橙红色固体析出,过滤,并用正己烷(3×5mL)洗涤滤饼,将所得固体收集,真空干燥得目标产物2,9-二-[3,5-二(2,4,6-三异丙基苯基)苯基]-1,10-菲罗啉合氯化亚铁(3a),粉红色粉末(1.17g),收率46%,分解温度>300℃。

1H NMR(400MHz,CDCl3)δ58.42,24.68,6.67,5.35,3.11,2.76,1.32,1.27,1.23,1.21,0.88, -16.13.

IR(neat)3552m,3477m,3413s,3234w,2957w,2924m,2853w,2026w,1638m,1616w,1461w, 1275w,1261w,1081w,763m,624m cm-1.

2,9-二-(2,4,6-三异丙基苯乙炔基)-1,10-菲罗啉3b

通过和3a类似的合成方法,用配体2b代替2a制得。1.02g,67%收率,红色固体,分解温度:>300℃

1H NMR(400MHz,CDCl3)δ56.07,26.01,6.21,3.03,2.82,1.26,0.72,-1.50,-17.66.

IR(neat)3666w,3523w,2919m,1746s,1612m,1588s,1556m,1511s,1481s,1445m,1426m, 1031m,897s,865m,760w,729w cm-1.

实施例4:1,10-菲罗啉铁催化剂用于5-苯基-1-戊炔的硅氢化

在手套箱中称取催化剂3(0.005mmol)于装有搅拌子的10mL反应瓶中,加入THF(1mL)后搅拌1min,用微量注射器称取5-苯基-1-戊炔(72.1mg,0.5mmol)和苯硅烷(59.5mg,0.55mmol)加入体系。搅拌下,用微量注射器加入EtMgBr(1.0M,in THF,12μL,0.012mmol)后,立即加盖密封,置于电磁搅拌器上搅拌。于室温下反应10min后,将反应瓶取出手套箱,将反应液转移至圆底烧瓶中,旋蒸脱溶后,经硅胶柱层析(正己烷为洗脱液)得目标产物,为无色液体。

表1:1,10-菲罗啉铁络合物催化5-苯基-1-戊炔硅氢化的实验结果

实施例5:1,10-菲罗啉铁络合物3a催化1-辛炔的硅氢化

称取催化剂3a(6.3mg,0.005mmol)于装有搅拌子的100mL反应瓶中,加入THF(20mL),1-辛炔(5.51g,50mmol)和苯硅烷(5.59g,55mmol)后搅拌1min。冷却至 10℃后在搅拌状态下,用微量注射器加入EtMgBr(1.0M,in THF,12μL,0.012mmol),继续在10℃下反应2h。转移至室温下继续反应24h后,将反应瓶取出手套箱,将反应液转移至圆底烧瓶中,旋蒸脱溶后,经硅胶柱层析(正己烷为洗脱液)得目标产物4.90g, 45%产率(TON=4500),区域选择性>98%。

实施例6:1,10-菲罗啉铁络合物3a催化取代1-辛炔与不同硅烷的硅氢化

在手套箱中称取催化剂3a(0.005mmol)于装有搅拌子的10mL反应瓶中,加入THF(1mL)后搅拌1min,用微量注射器称取1-辛炔(0.5mmol)和硅烷(0.55mmol)加入体系。搅拌状态下,用微量注射器加入EtMgBr(1.0M,in THF,12μL,0.012mmol)后,立即加盖密封,置于电磁搅拌器上搅拌。于室温下反应10min后,将反应瓶取出手套箱,将反应液转移至圆底烧瓶中,旋蒸脱溶后,经硅胶柱层析(正己烷为洗脱液)得目标产物。

表2:1,10-菲罗啉铁络合物3a催化1-辛炔与不同硅烷的硅氢化的实验结果

实施例7:1,10-菲罗啉铁络合物3a催化烷基乙炔的硅氢化

在手套箱中称取催化剂3a(0.005mmol)于装有搅拌子的10mL反应瓶中,加入THF(1mL)后搅拌1min,用微量注射器称取炔烃(0.5mmol)和苯硅烷(59.5mg,0.55mmol) 加入体系。搅拌状态下,用微量注射器加入EtMgBr(1.0M,in THF,12μL,0.012mmol) 后,立即加盖密封,置于电磁搅拌器上搅拌。于室温下反应10min后,将反应瓶取出手套箱,将反应液转移至圆底烧瓶中,旋蒸脱溶后,经硅胶柱层析得目标产物。

表3:1,10-菲罗啉铁络合物3a催化烷基乙炔的硅氢化的实验结果

a使用2.2当量苯硅烷,得到双硅氢化产物

实施例8:1,10-菲罗啉铁络合物3a催化芳基乙炔的硅氢化

在手套箱中称取催化剂3a(0.005mmol)于装有搅拌子的10mL反应瓶中,加入THF(1mL),用微量注射器称取炔烃(0.5mmol)和苯硅烷(59.5mg,0.55mmol)加入体系,降温至-20℃。搅拌状态下,用微量注射器加入EtMgBr(1.0M,in THF,12μL,0.012mmol) 后,立即加盖密封,置于电磁搅拌器上搅拌。升至0℃反应1h后,将反应瓶取出手套箱,将反应液转移至圆底烧瓶中,旋蒸脱溶后,经硅胶柱层析得目标产物。

表4:1,10-菲罗啉铁络合物3a催化芳基乙炔的硅氢化的实验结果

实施例8:1,10-菲罗啉铁络合物3a催化内炔的硅氢化

在手套箱中称取催化剂3a(0.005mmol)于装有搅拌子的10mL反应瓶中,加入THF(1mL)后搅拌1min,用微量注射器称取炔烃(0.5mmol)和苯硅烷(59.5mg,0.55mmol) 加入体系。搅拌状态下,用微量注射器加入EtMgBr(1.0M,in THF,12μL,0.012mmol) 后,立即加盖密封,置于电磁搅拌器上搅拌。于室温下反应3h后,将反应瓶取出手套箱,将反应液转移至圆底烧瓶中,旋蒸脱溶后,经硅胶柱层析得目标产物。

表5:1,10-菲罗啉铁络合物3a催化内炔的硅氢化的实验结果

实施例9:1,10-菲罗啉铁络合物3b催化内炔的硅氢化

在手套箱中称取催化剂3b(0.005mmol)于装有搅拌子的10mL反应瓶中,加入THF(1mL)后搅拌1min,用微量注射器称取炔烃(0.5mmol)和苯硅烷(59.5mg,0.55mmol) 加入体系。搅拌状态下,用微量注射器加入EtMgBr(1.0M,in THF,12μL,0.012mmol) 后,立即加盖密封,置于电磁搅拌器上搅拌。于室温下反应3h后,将反应瓶取出手套箱,将反应液转移至圆底烧瓶中,旋蒸脱溶后,经硅胶柱层析得目标产物83.9mg,66%收率,区域选择性为91%。

16页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:作为JAK抑制剂的吡咯并[2,3-b]吡啶衍生物

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!