一种复合稀土类异方性粘结磁体及其制备方法

文档序号:1522672 发布日期:2020-02-11 浏览:35次 >En<

阅读说明:本技术 一种复合稀土类异方性粘结磁体及其制备方法 (Composite rare earth anisotropic bonded magnet and preparation method thereof ) 是由 罗阳 王子龙 杨远飞 于敦波 廖一帆 谢佳君 王仲凯 胡州 于 2019-11-06 设计创作,主要内容包括:一种复合稀土类异方性粘结磁体及其制备方法,该复合稀土类异方性粘结磁体包括Nd-Fe-B系磁粉、Sm-Fe-N系磁粉、粘结剂以及无机纳米分散剂;该制备方法包括用HDDR法制备Nd-Fe-B系磁粉,用粉末冶金法制备Sm-Fe-N系磁粉,将Nd-Fe-B系磁粉、Sm-Fe-N系磁粉、粘结剂和无机纳米分散剂按特定比例混合,最终制成复合稀土类异方性粘结磁体。本发明通过加入无机纳米分散剂,使得在粘结剂与Nd-Fe-B系磁粉和Sm-Fe-N磁粉混合过程中,可以对细微Sm-Fe-N粉末进行充分的分散,使细微Sm-Fe-N粉末和粘结剂均匀地包覆在异方性Nd-Fe-B系磁粉表面,能够进一步提升复合磁体的综合磁性能、密度及组织均匀性。(A composite rare earth anisotropic bonded magnet and a preparation method thereof, the composite rare earth anisotropic bonded magnet comprises Nd-Fe-B series magnetic powder, Sm-Fe-N series magnetic powder, a binder and an inorganic nano dispersant; the preparation method comprises the steps of preparing Nd-Fe-B series magnetic powder by an HDDR method, preparing Sm-Fe-N series magnetic powder by a powder metallurgy method, mixing the Nd-Fe-B series magnetic powder, the Sm-Fe-N series magnetic powder, a binder and an inorganic nano dispersant according to a specific proportion, and finally preparing the composite rare earth anisotropic bonded magnet. According to the invention, by adding the inorganic nano dispersing agent, the fine Sm-Fe-N powder can be fully dispersed in the mixing process of the binder, the Nd-Fe-B system magnetic powder and the Sm-Fe-N magnetic powder, so that the fine Sm-Fe-N powder and the binder are uniformly coated on the surface of the anisotropic Nd-Fe-B system magnetic powder, and the comprehensive magnetic performance, density and tissue uniformity of the composite magnet can be further improved.)

一种复合稀土类异方性粘结磁体及其制备方法

技术领域

本发明涉及磁性材料技术领域,特别涉及一种复合稀土类异方性粘结磁体及其制备方法。

背景技术

用于粘结钕铁硼永磁材料的磁粉主要分为各向同性和异方性两大类。目前各向同性钕铁硼磁粉采用熔体快淬法制备,最大磁能积为12-16MGOe,由此制备的同性钕铁硼粘结磁体最大磁能积不超过12MGOe;而异方性钕铁硼粘结磁粉,通常采用HDDR法制备,由于其微观组织的特殊性,即细小晶粒(200-500nm)在[001]易磁化轴方向的平行排列,使得其最大磁能积可达到各向同性粘结磁粉的2-3倍,经模压或者注塑成型工艺,可以制备高性能异方性粘结磁体,符合电机器件小型化、轻量化和精密化的发展趋势。

在磁体成型过程中,单一粒度尺寸范围不利于成型磁体密度的提升。最好的方式就是粗粉和一定比例的细粉进行合理的配比,使得细粉可以填充到粗粉形成的空隙中,从而提升磁体的压制密度。而HDDR法制备的Nd-Fe-B系磁粉是通过吸氢-歧化-脱氢-再聚合过程制备的,其磁粉粒度尺寸在50-200微米之间。由于其活性较高,通过后续破碎,会导致磁粉氧含量大幅上升,磁性能降低,不易通过破碎制备更细粉。

通过添加更细粒度(1-12微米)的异方性Sm-Fe-N磁粉,则可以有效提升成型磁体的密度。专利文献ZL200410085531.1中,公开了粘结磁体由特定的平均颗粒直径和配合比的表面被界面活性剂覆盖的含有6at%以下Co的R1系d-HDDR粗磁铁粉末和表面被界面活性剂覆盖的R2系细微磁铁粉末、以及作为粘结剂的树脂所构成。但是由于R2系细微磁铁(Sm-Fe-N)的颗粒尺寸在1-10微米范围,易团聚,不容易分散,势必对成型磁体过程中细微磁铁粉末的分布均匀性以及压制磁体综合磁性能和密度产生不利影响。对如何克服易团聚的问题,未做任何描述和记载。

发明内容

为了解决上述问题,本发明提供了一种复合稀土类异方性粘结磁体及其制备方法,该方法通过加入无机纳米分散剂,使得在粘结剂与Nd-Fe-B系磁粉和Sm-Fe-N系磁粉混合过程中,可以对细微Sm-Fe-N粉末进行充分的分散,使细微Sm-Fe-N粉末和粘结剂均匀地包覆在异方性Nd-Fe-B系磁粉表面,能够进一步提升复合磁体的综合磁性能、密度及组织均匀性。

为了实现以上目的,本发明拟采用以下方案:

本发明的第一方面提供了一种复合稀土类异方性粘结磁体,包括Nd-Fe-B系磁粉、Sm-Fe-N系磁粉、粘结剂和无机纳米分散剂;

其中,Sm-Fe-N系磁粉含量为5-30wt.%,粘结剂含量为1-10wt.%,无机纳米分散剂含量为0.1-2wt.%,余量为Nd-Fe-B系磁粉。

进一步的,所述无机纳米分散剂是Al2O3、SiO2或TiO2中的任何一种或几种,粒度大小为30-100nm。

进一步的,所述Nd-Fe-B系磁粉的圆形度为0.6-0.8。

进一步的,所述Sm-Fe-N系磁粉的平均粒度为1-12微米。

进一步的,所述异方性粘结磁体的方形度大于30%。

进一步的,所述Sm-Fe-N系磁粉表面包覆含F有机物。

进一步的,所述含F有机物为含氟烷烃或含氟烯烃。

以上为本发明的复合稀土类异方性粘结磁体的详细描述。

本发明的第二方面提供了一种复合稀土类异方性粘结磁体的制备方法,包括如下步骤:

用HDDR法制备Nd-Fe-B系磁粉;

用粉末冶金法制备Sm-Fe-N系磁粉;

将所述Nd-Fe-B系磁粉、Sm-Fe-N系磁粉、粘结剂和无机纳米分散剂按特定比例混合,制作成混胶粉;

将所述混胶粉通过模压、注射、压延或挤出制作成复合稀土类异方性粘结磁体。

进一步的,将所述Nd-Fe-B系磁粉、Sm-Fe-N系磁粉、粘结剂和无机纳米分散剂按特定比例混合,制作成混胶粉的步骤包括:

用有机溶剂将所述粘结剂溶解,制成第一有机溶液;

在所述第一有机溶液中加入无机纳米分散剂,制成第二有机溶液;

将所述Sm-Fe-N系磁粉加入到所述第二有机溶液中,用超声进行均匀分散,制成第三有机溶液;

将所述Nd-Fe-B系磁粉加入到所述第三有机溶液中,充分搅拌使所述第三有机溶液中的有机溶剂完全挥发,制作成混胶粉。

进一步的,所述制备Sm-Fe-N系磁粉的步骤还包括:

在所述Sm-Fe-N系磁粉的表面包覆上含F有机物:

将所述Sm-Fe-N系磁粉加入到含F有机物的有机溶液中并充分搅拌,制成充分搅拌后的有机溶液;

充分搅拌后的有机溶液中的有机溶剂完全挥发,使所述含F有机物包覆在所述Sm-Fe-N系磁粉的表面。

以上为本发明的复合稀土类异方性粘结磁体的制备方法的详细描述。

综上所述,本发明提供了一种复合稀土类异方性粘结磁体及其制备方法,该复合稀土类异方性粘结磁体包括Nd-Fe-B系磁粉、Sm-Fe-N系磁粉、粘结剂、和无机纳米分散剂;该制备方法包括用HDDR法制备Nd-Fe-B系磁粉、用粉末冶金法制备Nd-Fe-B系磁粉、在Sm-Fe-N系磁粉的表面包覆上含F有机物、将Nd-Fe-B系磁粉、表面包覆上含F有机物的Sm-Fe-N系磁粉、粘结剂和无机纳米分散剂按特定比例混合制作成混胶粉,将所述混胶粉通过模压、注射、压延或挤出制作成复合稀土类异方性粘结磁体。

本发明的上述技术方案具有如下有益的技术效果:

本发明旨在通过加入无机纳米分散剂,对细微粉末Sm-Fe-N系磁粉进行充分的分散,使细微粉末Sm-Fe-N系磁粉和粘结剂均匀地包覆在异方性Nd-Fe-B系磁粉表面,能够进一步提升复合磁体的综合磁性能、密度及组织均匀性。

附图说明

图1是复合稀土类异方性粘结磁体制备方法的流程图;

图2是将Nd-Fe-B系磁粉、Sm-Fe-N系磁粉、粘结剂和无机纳米分散剂按特定比例混合从而制作成混胶粉的方法流程图;

图3是在Sm-Fe-N系磁粉的表面包覆上含F有机物的方法流程图。

具体实施方式

为使本发明的目的、技术方案和优点更加清楚明了,下面结合具体实施方式并参照附图,对本发明进一步详细说明。应该理解,这些描述只是示例性的,而并非要限制本发明的范围。此外,在以下说明中,省略了对公知结构和技术的描述,以避免不必要地混淆本发明的概念。

术语解释:

圆形度的计算:

通过SEM(扫描电镜)对磁粉进行拍照并对照片进行分析,计算圆形度。

计算圆形度的公式为:

圆形度=(4π*面积)/(周长*周长)

所以,圆形的圆形度为1;所述计算的圆形度越接近1,代表其圆形度越好。

为了实现以上目的,本发明采用以下方案:

本发明的第一方面提供了一种复合稀土类异方性粘结磁体,包括Nd-Fe-B系磁粉、Sm-Fe-N系磁粉、粘结剂和无机纳米分散剂;其中,Sm-Fe-N系磁粉含量为5-30wt.%,粘结剂含量为1-10wt.%,无机纳米分散剂含量为0.1-2wt.%,余量为Nd-Fe-B系磁粉。

进一步的,该粘结剂包括树脂;该无机纳米分散剂是Al2O3、SiO2或TiO2中的任何一种或几种,粒度大小为30-100nm;该Nd-Fe-B系磁粉的圆形度为0.6-0.8,该Sm-Fe-N系磁粉的平均粒度为1-12微米,该异方性粘结磁体的方形度大于30%,该Sm-Fe-N系磁粉表面包覆含F有机物。

具体的,该含F有机物为含氟烷烃或含氟烯烃。

Nd-Fe-B系磁粉圆形度小于0.6,则其流动性不好,不易于压制致密,导致性能不高;圆形度大于0.8,则磁粉大颗粒流动性太好,不易于与粒度更细的Sm-Fe-N混合均匀;因此使Nd-Fe-B系磁粉的圆形度为0.6-0.8。

Sm-Fe-N系磁粉在此粒度范围之内,活性强,易于氧化,因此需要在制备过程中通过表面处理,包覆上含F有机物,提高Sm-Fe-N磁粉的抗氧化性,含F有机物可以是含氟烷烃、含氟烯烃等。

Nd-Fe-B系粗磁粉、Sm-Fe-N系细磁粉以及粘结剂可以制备高压制密度的粘结磁体,但是Sm-Fe-N系细磁粉的颗粒尺寸在1-12微米范围,易团聚,不容易分散,势必对成型磁体过程中细微磁铁粉末的分布均匀性以及磁体综合磁性能和压制密度产生不利影响。因此通过加入无机纳米分散剂,对Sm-Fe-N系细磁粉进行充分的分散,使Sm-Fe-N系细磁粉和粘结剂均匀地包覆在异方性Nd-Fe-B系粗磁粉表面,能够进一步提升复合磁体的综合磁性能、密度及组织均匀性。

本发明的第二方面提供了一种各项异性粘结磁体的制备方法,如图1所示,包括如下步骤:

S100,用HDDR法制备Nd-Fe-B系磁粉;

S200,用粉末冶金法制备Sm-Fe-N系磁粉;

S300,将所述Nd-Fe-B系磁粉、Sm-Fe-N系磁粉、粘结剂和无机纳米分散剂按特定比例混合,制作成混胶粉;

进一步的,如图2所示,将所述Nd-Fe-B系磁粉、Sm-Fe-N系磁粉、粘结剂和无机纳米分散剂按特定比例混合,制作成混胶粉的步骤包括:

S310,用有机溶剂将所述粘结剂溶解,制成第一有机溶液;

S320,在所述第一有机溶液中加入无机纳米分散剂,制成第二有机溶液;

S330,将所述Sm-Fe-N系磁粉加入到所述第二有机溶液中,用超声进行均匀分散,制成第三有机溶液;

S340,将所述Nd-Fe-B系磁粉加入到所述第三有机溶液中,充分搅拌使所述第三有机溶液中的有机溶剂完全挥发,制作成混胶粉。

进一步的,该有机溶剂包括丙酮。

S400,将所述混胶粉通过模压、注射、压延或挤出制作成复合稀土类异方性粘结磁体。

进一步的,所述制备Sm-Fe-N系磁粉的步骤还包括,在所述Sm-Fe-N系磁粉的表面包覆上含F有机物,如图3所示::

将所述Sm-Fe-N系磁粉加入到含F有机物的有机溶液中并充分搅拌,制成充分搅拌后的有机溶液;

充分搅拌后的有机溶液中的有机溶剂完全挥发,使所述含F有机物包覆在所述Sm-Fe-N系磁粉的表面。

下面通过具体实施例对本发明进行详细描述。

选用HDDR法制备的Nd-Fe-B系磁粉,最大磁能积为38MGOe,内禀矫顽力为13.5kOe,平均颗粒直径为140微米;选用粉末冶金法制备的Sm-Fe-N系磁粉,最大磁能积为36MGOe,内禀矫顽力为11.0kOe,平均颗粒直径为3微米;选用丙酮作为有机溶剂;选用环氧树脂作为粘结剂。

实施例1

按照成分配方,用有机溶剂丙酮将占总质3%的粘结剂环氧树脂溶解,制成有机溶液A;

在上述有机溶液A中加入占总质量0.1%的平均粒径30nm的Al2O3无机纳米分散剂,制成有机溶液A11;

将占总质量20%的Sm-Fe-N系磁粉加入到含F有机物的有机溶液B中,充分搅拌,制成有机溶液B1;

待有机溶液B1中的有机溶剂完全挥发,使所述含F有机物包覆在所述Sm-Fe-N系磁粉的表面;

将上述占总质量20%的含F有机物包覆的Sm-Fe-N系磁粉加入有机溶液A12中,用超声进行均匀分散,制成有机溶液A12;

将占总质量76.5%的Nd-Fe-B系磁粉加入有机溶液A12中,充分搅拌使所述有机溶液A12的有机溶剂完全挥发,制作成混胶粉;

采用模压的方法将上述混胶粉制备成异方性粘结磁体。

实施例2

按照成分配方,用有机溶剂丙酮将占总质量3%的粘结剂环氧树脂溶解,制成有机溶液A;

在上述有机溶液A中加入占总质量0.5%的平均粒径30nm的Al2O3无机纳米分散剂,制成有机溶液A21;

将占总质量20%的Sm-Fe-N系磁粉加入到含F有机物的有机溶液B中,充分搅拌,制成有机溶液B1;

待有机溶液B1中的有机溶剂完全挥发,使所述含F有机物包覆在所述Sm-Fe-N系磁粉的表面;

将上述占总质量20%的含F有机物包覆的Sm-Fe-N系磁粉加入有机溶液A21中,用超声进行均匀分散,制成有机溶液A22;

将占总质量76.5%的Nd-Fe-B系磁粉加入有机溶液A22中,充分搅拌使所述有机溶液A22的有机溶剂完全挥发,制作成混胶粉;

采用模压的方法将上述混胶粉制备成异方性粘结磁体。

实施例3

按照成分配方,用有机溶剂丙酮将占总质量3%的粘结剂环氧树脂溶解,制成有机溶液A;

在上述有机溶液A中加入占总质量2%的平均粒径30nm的Al2O3无机纳米分散剂,制成有机溶液A31;

将占总质量20%的Sm-Fe-N系磁粉加入到含F有机物的有机溶液B中,充分搅拌,制成有机溶液B1;

待有机溶液B1中的有机溶剂完全挥发,使所述含F有机物包覆在所述Sm-Fe-N系磁粉的表面;

将上述占总质量20%的含F有机物包覆的Sm-Fe-N系磁粉加入有机溶液A31中,用超声进行均匀分散,制成有机溶液A32;

将占总质量76.5%的Nd-Fe-B系磁粉加入有机溶液A32中,充分搅拌使所述有机溶液A32中的有机溶剂完全挥发,制作成混胶粉;

采用模压的方法将上述混胶粉制备成异方性粘结磁体。

实施例4

按照成分配方,用有机溶剂丙酮将占总质量3%的粘结剂环氧树脂溶解,制成有机溶液A;

在上述有机溶液A中加入占总质量0.1%的平均粒径100nm的SiO2无机纳米分散剂,制成有机溶液A41;

将占总质量20%的Sm-Fe-N系磁粉加入到含F有机物的有机溶液B中,充分搅拌,制成有机溶液B1;

待有机溶液B1中的有机溶剂完全挥发,使所述含F有机物包覆在所述Sm-Fe-N系磁粉的表面;

将上述占总质量20%的含F有机物包覆的Sm-Fe-N系磁粉加入有机溶液A41中,用超声进行均匀分散,制成有机溶液A42;

将占总质量76.5%的Nd-Fe-B系磁粉加入有机溶液A42中,充分搅拌使所述有机溶液A42中的有机溶剂完全挥发,制作成混胶粉;

采用模压的方法将上述混胶粉制备成异方性粘结磁体。

实施例5

按照成分配方,用有机溶剂丙酮将占总质量3%的粘结剂环氧树脂溶解,制成有机溶液A;

在上述有机溶液A中加入占总质量0.5%的平均粒径100nm的SiO2无机纳米分散剂;

将占总质量20%的Sm-Fe-N系磁粉加入到含F有机物的有机溶液B中,充分搅拌,制成有机溶液B1;

待有机溶液B1中的有机溶剂完全挥发,使所述含F有机物包覆在所述Sm-Fe-N系磁粉的表面;

将上述占总质量20%的含F有机物包覆的Sm-Fe-N系磁粉加入有机溶液A51中,用超声进行均匀分散,制成有机溶液A52;

将占总质量76.5%的Nd-Fe-B系磁粉加入有机溶液A52中,充分搅拌使所述有机溶液A52中的有机溶剂完全挥发,制作成混胶粉;

采用模压的方法将上述混胶粉制备成异方性粘结磁体。

实施例6

按照成分配方,用有机溶剂丙酮将占总质量3%的粘结剂环氧树脂溶解,制成有机溶液A;

在上述有机溶液A中加入占总质量2%的平均粒径100nm的SiO2无机纳米分散剂;

将占总质量20%的Sm-Fe-N系磁粉加入到含F有机物的有机溶液B中,充分搅拌,制成有机溶液B1;

待有机溶液B1中的有机溶剂完全挥发,使所述含F有机物包覆在所述Sm-Fe-N系磁粉的表面;

将上述占总质量20%的含F有机物包覆的Sm-Fe-N系磁粉加入有机溶液A61中,用超声进行均匀分散,制成有机溶液A62;

将占总质量76.5%的Nd-Fe-B系磁粉加入有机溶液A62中,充分搅拌使所述有机溶液A62中的有机溶剂完全挥发,制作成混胶粉;

采用模压的方法将上述混胶粉制备成异方性粘结磁体。

实施例7

按照成分配方,用有机溶剂丙酮将占总质量3%的粘结剂环氧树脂溶解,制成有机溶液A;

在上述有机溶液A中加入占总质量0.1%的平均粒径50nm的TiO2无机纳米分散剂;

将占总质量20%的Sm-Fe-N系磁粉加入到含F有机物的有机溶液B中,充分搅拌,制成有机溶液B1;

待有机溶液B1中的有机溶剂完全挥发,使所述含F有机物包覆在所述Sm-Fe-N系磁粉的表面;

将上述占总质量20%的含F有机物包覆的Sm-Fe-N系磁粉加入有机溶液A71中,用超声进行均匀分散,制成有机溶液A72;

将占总质量76.5%的Nd-Fe-B系磁粉加入有机溶液A72中,充分搅拌使所述有机溶液A72中的有机溶剂完全挥发,制作成混胶粉;

采用模压的方法将上述混胶粉制备成异方性粘结磁体。

实施例8

按照成分配方,用有机溶剂丙酮将占总质量3%的粘结剂环氧树脂溶解,制成有机溶液A;

在上述有机溶液A中加入占总质量0.5%的平均粒径50nm的TiO2无机纳米分散剂;

将占总质量20%的Sm-Fe-N系磁粉加入到含F有机物的有机溶液B中,充分搅拌,制成有机溶液B1;

待有机溶液B1中的有机溶剂完全挥发,使所述含F有机物包覆在所述Sm-Fe-N系磁粉的表面;

将上述占总质量20%的含F有机物包覆的Sm-Fe-N系磁粉加入有机溶液A81中,用超声进行均匀分散,制成有机溶液A82;

将占总质量76.5%的Nd-Fe-B系磁粉加入有机溶液A82中,充分搅拌使所述有机溶液A82中的有机溶剂完全挥发,制作成混胶粉;

采用模压的方法将上述混胶粉制备成异方性粘结磁体。

实施例9

按照成分配方,用有机溶剂丙酮将占总质量3%的粘结剂环氧树脂溶解,制成有机溶液A;

在上述有机溶液A中加入占总质量2%的平均粒径50nm的TiO2无机纳米分散剂;

将占总质量20%的Sm-Fe-N系磁粉加入到含F有机物的有机溶液B中,充分搅拌,制成有机溶液B1;

待有机溶液B1中的有机溶剂完全挥发,使所述含F有机物包覆在所述Sm-Fe-N系磁粉的表面;

将上述占总质量20%的含F有机物包覆的Sm-Fe-N系磁粉加入有机溶液A91中,用超声进行均匀分散,制成有机溶液A92;

将占总质量76.5%的Nd-Fe-B系磁粉加入有机溶液A92中,充分搅拌使所述有机溶液A92中的有机溶剂完全挥发,制作成混胶粉;

采用模压的方法将上述混胶粉制备成异方性粘结磁体。

对比例:

与上述实施例相比,不加入无机纳米分散剂,其他步骤完全相同。

Figure BDA0002262537170000111

Figure BDA0002262537170000121

通过实施例与对比例可以看出,无机纳米分散剂的加入提升了磁体的剩磁、最大磁能积和方形度以及磁体密度,效果明显。上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其他不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见地变化或变动仍处于本发明创造的保护范围之中。

综上所述,一种复合稀土类异方性粘结磁体及其制备方法,该复合稀土类异方性粘结磁体包括Nd-Fe-B系磁粉、Sm-Fe-N系磁粉、粘结剂、和无机纳米分散剂;该粘结剂包括树脂;该制备方法包括用HDDR法制备Nd-Fe-B系磁粉,用粉末冶金法法制备Sm-Fe-N系磁粉,将所述Nd-Fe-B系磁粉、Sm-Fe-N系磁粉、粘结剂和无机纳米分散剂按特定比例混合,最终制成复合稀土类异方性粘结磁体。本发明通过引入无机纳米分散剂,使得Sm-Fe-N磁粉在与Nd-Fe-B系磁粉和粘结剂混合过程中,可以对细微Sm-Fe-N粉末进行充分的分散,使细微Sm-Fe-N粉末和粘结剂均匀地包覆在异方性Nd-Fe-B系磁粉表面,能够进一步提升复合磁体的密度及组织均匀性。

应当理解的是,本发明的上述具体实施方式仅仅用于示例性说明或解释本发明的原理,而不构成对本发明的限制。因此,在不偏离本发明的精神和范围的情况下所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。此外,本发明所附权利要求旨在涵盖落入所附权利要求范围和边界、或者这种范围和边界的等同形式内的全部变化和修改例。

12页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种段接式尼龙骨架罗式线圈固定结构

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!