蒸发气体再液化系统以及船舶

文档序号:1580548 发布日期:2020-01-31 浏览:32次 >En<

阅读说明:本技术 蒸发气体再液化系统以及船舶 (Boil-off gas reliquefaction system and ship ) 是由 朴锺完 李振光 姜珉镐 崔在永 余炳瑢 李泰锡 金大洙 洪元锺 高允爱 于 2018-06-12 设计创作,主要内容包括:本发明涉及蒸发气体再液化系统以及船舶,该蒸发气体再液化系统的特征在于,包括:蒸发气体压缩机,其多段压缩在液化气体储存罐产生的蒸发气体并向需求处供给;蒸发气体热交换器,其使在所述蒸发气体压缩机压缩的蒸发气体和流向所述蒸发气体压缩机的蒸发气体进行热交换;减压阀,其对在所述蒸发气体压缩机压缩之后在所述蒸发气体热交换器进行了热交换的蒸发气体进行减压;以及气液分离器,其对在所述减压阀减压的蒸发气体进行气液分离,还包括高温蒸发气体传递线,其在高压段的所述蒸发气体压缩机中使用到的润滑油混入蒸发气体中并流入到所述蒸发气体热交换器,当向所述蒸发气体热交换器注入在所述蒸发气体压缩机压缩的高温蒸发气体以去除流入到所述蒸发气体热交换器的润滑油时,所述高温蒸发气体传递线从所述减压阀的上游向低压需求处传递从所述蒸发气体热交换器排出的高温蒸发气体。(The present invention relates to a boil-off gas reliquefaction system and a ship, the boil-off gas reliquefaction system including: an evaporation gas compressor for compressing evaporation gas generated in the liquefied gas storage tank in multiple stages and supplying the compressed evaporation gas to a demand place; an evaporation gas heat exchanger that exchanges heat between the evaporation gas compressed by the evaporation gas compressor and the evaporation gas flowing into the evaporation gas compressor; a pressure reducing valve that reduces the pressure of the boil-off gas that has been heat-exchanged in the boil-off gas heat exchanger after being compressed by the boil-off gas compressor; and a gas-liquid separator for performing gas-liquid separation of the boil-off gas decompressed by the decompression valve, and further comprising a high-temperature boil-off gas transfer line for transferring the high-temperature boil-off gas discharged from the boil-off gas heat exchanger from an upstream of the decompression valve to a low-pressure demand place when the lubricating oil used in the boil-off gas compressor at a high-pressure stage is mixed into the boil-off gas and flows into the boil-off gas heat exchanger and the high-temperature boil-off gas transfer line is injected into the boil-off gas heat exchanger to remove the lubricating oil flowing into the boil-off gas heat exchanger.)

蒸发气体再液化系统以及船舶

技术领域

本发明涉及蒸发气体再液化系统以及船舶。

背景技术

最近,随着技术的开发,用诸如液化天然气(Liquefied Natural Gas)、液化石油气(Liquefied Petroleum Gas)等液化气体替代汽油或柴油来用作发动机的燃料。

液化天然气是将对从气田提取的天然气进行精炼而得到的甲烷冷却液化的物质,是无色、透明的液体,几乎没有污染物质且热量高,因此是一种非常优异的燃料。相反,液化石油气是在常温条件下,对以和石油一起从油田提取到的丙烷(C3H8)和丁烷(C4H10)为主成分的气体进行压缩而制作成液体的燃料。与液化天然气同样地,液化石油气无色无臭,在家庭、商业、工业、汽车等领域作为燃料广泛使用。

如上所述的液化气体储存于在船舶设置的液化气体储存罐中,以用作设置于船舶的发动机的燃料,液化天然气的体积因液化而缩小为约1/600,而液化石油气的体积因液化而缩小为约1/260,具有储存效率高的优点。

但是,液化气体是将温度降低到沸点以下来强制液化并以极低的温度保管的,因此,随着热从外部渗透,一部分液化气体会自然气化而变为蒸发气体。

此时,由于相变为气体的蒸发气体的体积大幅度增加,因此成为液化气体储存罐的内部压力上升的因素,当液化气体储存罐的内压超过液化气体储存罐所能够承受的压力时,存在液化气体储存罐破损的隐患。

因此,在以往,为了保持液化气体储存罐的内压为恒定,采用了将蒸发气体放出到外部并燃烧来降低液化气体储存罐的内压的方式,或者通过使用额外的制冷剂的再液化装置来液化蒸发气体,之后将其回收至液化气体储存罐的方式。

但是,若单纯地向外部放出蒸发气体,会产生环境污染问题,而在使用再液化装置时,因为要设置并运转再液化装置,所以需要必要的费用、人力等问题。因此,目前的实情是需要开发有效地处理因外部热渗透而产生的蒸发气体的方法。

发明内容

发明要解决的问题

本发明为了改善现有技术而提出,其目的在于,提供一种能够通过热交换、减压使蒸发气体液化来省略或缩小再液化装置,并且在用于蒸发气体压缩机的润滑油流入到蒸发气体热交换器等的情况下,能够有效地处理润滑油的蒸发气体再液化系统以及船舶

解决问题的技术方案

本发明一实施例的蒸发气体再液化系统的特征在于,包括:蒸发气体压缩机,多段压缩在液化气体储存罐产生的蒸发气体并向需求处供给;蒸发气体热交换器,使在所述蒸发气体压缩机压缩的蒸发气体和流向所述蒸发气体压缩机的蒸发气体进行热交换;减压阀,对在所述蒸发气体压缩机压缩之后在所述蒸发气体热交换器进行了热交换的蒸发气体进行减压;以及气液分离器,对在所述减压阀减压的蒸发气体进行气液分离,还包括高温蒸发气体传递线,在高压段的所述蒸发气体压缩机中使用到的润滑油混入蒸发气体中并流入到所述蒸发气体热交换器,在向所述蒸发气体热交换器注入在所述蒸发气体压缩机压缩的高温蒸发气体以去除流入到所述蒸发气体热交换器的润滑油的情况下,所述高温蒸发气体传递线从所述减压阀的上游向低压需求处传递从所述蒸发气体热交换器排出的高温蒸发气体。

具体而言,还可以包括:蒸发气体迂回线,使从所述液化气体储存罐排出的蒸发气体迂回所述蒸发气体热交换器并向所述蒸发气体压缩机传递;以及蒸发气体迂回阀,控制所述蒸发气体迂回线的流动,在向所述蒸发气体热交换器注入在所述蒸发气体压缩机压缩的高温蒸发气体以去除流入到所述蒸发气体热交换器的润滑油的情况下,所述蒸发气体迂回阀可以使从所述液化气体储存罐排出的低温蒸发气体沿所述蒸发气体迂回线流动,以使注入到所述蒸发气体热交换器的蒸发气体能够保持高温状态。

具体而言,还可以包括:蒸发气体供给线,从所述液化气体储存罐经由所述蒸发气体压缩机连接到所述需求处;以及蒸发气体返回线,从所述蒸发气体供给线上的所述蒸发气体压缩机的下游分支并经由所述蒸发气体热交换器、所述减压阀、所述气液分离器连接到所述液化气体储存罐。

具体而言,所述高温蒸发气体传递线可从所述蒸发气体返回线上的所述减压阀的上游分支并连接到所述低压需求处。

具体而言,还可以包括:低压蒸发气体供给线,向所述低压需求处供给在低压段的所述蒸发气体压缩机压缩的蒸发气体;以及低压蒸发气体返回线,从所述低压蒸发气体供给线分支,向所述蒸发气体热交换器注入高温蒸发气体。

具体而言,还可以包括控制所述低压蒸发气体供给线的流动的低压蒸发气体供给阀,在向所述蒸发气体热交换器注入在低压段的所述蒸发气体压缩机压缩的高温蒸发气体以去除流入到所述蒸发气体热交换器的润滑油的情况下,所述低压蒸发气体供给阀可以被关闭。

具体而言,所述高温蒸发气体传递线可从所述低压蒸发气体供给线连接到所述低压蒸发气体供给阀的下游。

本发明一方面的船舶的特征在于,具有所述蒸发气体再液化系统。

发明效果

本发明的蒸发气体再液化系统以及船舶相比在为了将蒸发气体减压而液化以高压压缩的过程中,随着高压段的蒸发气体压缩机中使用的润滑油流入到蒸发气体热交换器等而妨碍蒸发气体的流动的情况,能够有效地去除润滑油而确保再液化效率。

附图说明

图1是具有本发明的蒸发气体再液化系统的船舶的侧视图。

图2是本发明第一实施例的蒸发气体再液化系统的概念图。

图3是本发明第一实施例的蒸发气体再液化系统的气液分离器的剖视图。

图4是本发明第二实施例的蒸发气体再液化系统的气液分离器的剖视图。

图5是本发明第三实施例的蒸发气体再液化系统的气液分离器的剖视图。

图6是本发明第四实施例的蒸发气体再液化系统的气液分离器的剖视图。

图7是本发明第五实施例的蒸发气体再液化系统的概念图。

图8是本发明第六实施例的蒸发气体再液化系统的概念图。

图9是本发明第七实施例的蒸发气体再液化系统的概念图。

图10是本发明第八实施例的蒸发气体再液化系统的概念图。

图11是本发明第九实施例的蒸发气体再液化系统的概念图。

图12是本发明第九实施例的蒸发气体再液化系统的概念图。

图13是本发明的蒸发气体再液化系统的概念图。

图14是本发明的气体处理系统的概念图。

图15是用于说明本发明的气体处理系统的气体处理状态的曲线。

具体实施方式

下面,通过与附图相关的详细说明和优选实施例会更加明确本发明的目的、特定优点以及新颖的特征。应该注意的是,在本说明书中,在对各附图的结构部分标注附图标记时,对相同的结构部分,即使在不同的附图中出现,也尽可能赋予相同的附图标记。另外,在说明本发明的过程中,判断为对相关公知技术的具体说明会模糊本发明的要旨时,省略对其的详细说明。

以下记载的液化气体是因沸点低于常温而在常温条件下成为气体状态的物质,可以是LPG、LNG、乙烷等,示例性地可以是LNG(Liquefied Natural Gas)。另外,蒸发气体可以是指自然气化的作为液化气体的BOG(Boil-Off Gas)。另外,需要说明的是,液化气体和蒸发气体的当前状态(气体、液体等)不被名称限定。作为一例,蒸发气体包括通过再液化而成为液体状态的情形。

以下,参照附图,对本发明的优选实施例进行详细的说明。

图1是具有本发明的蒸发气体再液化系统的船舶的侧视图。

参照图1,使用本发明的蒸发气体再液化系统2的船舶1可以是在船体内部沿长度方向装载有多个液化气体储存罐10的液化气体运输船,作为一例,船舶1可以是LNG运输船。

在船舶1的船内设置的液化气体储存罐10储存液化气体。液化气体储存罐10可将沸点低于常温的气体液化并以极低的温度储存。

液化气体储存罐10可形成为膜型、独立型、压力容器型等类型,但是对此不进行特别限制。然而,液化气体中的一部分会与类型无关地在液化气体储存罐10的内部自然气化而产生蒸发气体,蒸发气体会使液化气体储存罐10的内压上升,从而成为问题。

因此,本实施例可根据液化气体储存罐10的内压而向液化气体储存罐10的外部排出蒸发气体,并且排出的蒸发气体可以再次被液化并返回到液化气体储存罐10。

或者,本发明还可以将蒸发气体用作需求处3的燃料,此时需求处3可设置于船舶1,作为一例,可以是推进船舶1的高压发动机3a(ME-GI发动机、XDF发动机等)、用于负责船舶1内部电力负荷的低压发动机3b(DFDE发电发动机)和/或气体燃烧装置3c(GCU)等。

但是,需要说明的是,在本说明书中,需求处3可以限于除了低压发动机3b、气体燃烧装置3c之类的低压需求处3之外的高压发动机3a之类的高压需求处3。

当然,除了在液化气体储存罐10产生的蒸发气体之外,液化气体还可以用作需求处3的燃料,为此,在液化气体储存罐10与需求处3之间可设置有强制气化器(未图示)、重碳分离器(未图示)、高压泵(未图示)等用于液化气体供给所需的公知构成要素。

在船舶1的上甲板上设置有船舱(未图示)、发动机罩(未图示)等,蒸发气体再液化系统2的构成要素也可以设置在甲板上。但是,对构成蒸发气体再液化系统2的各个构成要素的设置位置可以不做特殊限定。

需要说明的是,本发明的船舶1除了液化气体运输船之外还可以包括能够储存液化气体的FPSO,FSRU等各种离岸工厂。

图2是本发明第一实施例的蒸发气体再液化系统的概念图,图3是本发明第一实施例的蒸发气体再液化系统的气液分离器的剖视图。

参照图2和图3,本发明第一实施例的蒸发气体再液化系统2包括蒸发气体压缩机20、蒸发气体热交换器30、减压阀40、气液分离器50、润滑油处理部60、润滑油过滤器70a、70b、70c。

蒸发气体压缩机20多段压缩在液化气体储存罐10产生的蒸发气体并向需求处3供给。蒸发气体压缩机20可以是离心式、往复移动式、涡旋式等,并且可以将多个串联设置并通过多段压缩蒸发气体,使其转换为高压。另外,蒸发气体压缩机20也可以并联设置,以用于备用或分担负荷。

蒸发气体压缩机20可将从液化气体储存罐10以1bar左右排出的蒸发气体压缩为200bar以上(作为一例,200bar至400bar)的高压。为此,作为一例,蒸发气体压缩机20可设置为五段。

五段的蒸发气体压缩机20可区分为低压段的蒸发气体压缩机20a和高压段的蒸发气体压缩机20b。可将五段中的一段至三段称作低压段的蒸发气体压缩机20a,将四段和五段称作高压段的蒸发气体压缩机20b。

区分低压段的蒸发气体压缩机20a和高压段的蒸发气体压缩机20b的基准取决于润滑油L是否混入蒸发气体中。在低压段的蒸发气体压缩机20a压缩蒸发气体的过程中,蒸发气体压缩机20驱动时使用的润滑油L不会流入蒸发气体中,相反在高压段的蒸发气体压缩机20b中随着将蒸发气体压缩为高压,蒸发气体压缩机20驱动时使用的润滑油L会流入蒸发气体。

因此,在五段的蒸发气体压缩机20中,三段压缩的蒸发气体是未混入润滑油L的状态,而四段以后压缩的蒸发气体是混有润滑油L的状态,因此品质会成问题。为了消除上述现象,本发明包括在以下说明的各种构成要素。

设置有从液化气体储存罐10到需求处3的蒸发气体供给线21,在蒸发气体供给线21配置有蒸发气体供给阀211a、211b和蒸发气体压缩机20,蒸发气体从液化气体储存罐10排出,并且经由蒸发气体压缩机20传递到需求处3。

但是,可能会产生无法在需求处3消耗的多余的蒸发气体,此时可将多余的蒸发气体液化并使其返回至液化气体储存罐10,为此,可在蒸发气体供给线21上的蒸发气体压缩机20的下游分支有蒸发气体返回线31。

从蒸发气体供给线21流向蒸发气体返回线31的蒸发气体的流动,可通过设置于蒸发气体返回线31和/或蒸发气体供给线21的高压蒸发气体返回阀311来控制。

在蒸发气体供给线21上的蒸发气体压缩机20的下游可设置有从蒸发气体过滤液体或没有必要向需求处3供给的物质的分离器22、聚结器23(coalescer)等,在需求处3的上游可设置有控制蒸发气体的流量的气体阀机构24(Gas valve train)等。

在蒸发气体供给线21上的高压段的蒸发气体压缩机20b的上游,可分支有低压蒸发气体供给线212。作为一例,低压蒸发气体供给线212可连接在低压段的蒸发气体压缩机20a中的二段下游,并且与低压需求处3连接。

与蒸发气体供给线21连接的需求处3可以是高压需求处3,与低压蒸发气体供给线212连接的需求处3可以是低压需求处3。另外,高压需求处3可以是推进发动机,低压需求处3可以是发电发动机等,可将蒸发气体供给线21称作主流动(main stream),而将低压蒸发气体供给线212称作侧流动(side stream)。

低压需求处3可以是如图所示的DFDE低压发动机3b,或燃烧蒸发气体的气体燃烧装置3c等。低压需求处3要求的蒸发气体的压力可以是10bar左右。

与设置于蒸发气体供给线21的蒸发气体供给阀211a、211b同样/相似地,在低压蒸发气体供给线212可设置有控制蒸发气体的流动的低压蒸发气体供给阀213。

在蒸发气体热交换器30中,在蒸发气体压缩机20压缩的蒸发气体和流入到蒸发气体压缩机20的蒸发气体进行热交换。前述的蒸发气体返回线31可在蒸发气体供给线21上从蒸发气体压缩机20的下游分支并经由蒸发气体热交换器30等连接到液化气体储存罐10。另外,蒸发气体供给线21可以从液化气体储存罐10依次经由蒸发气体热交换器30和蒸发气体压缩机20连接到需求处3。

因此,蒸发气体热交换器30可设置有与蒸发气体供给线21连接而供低压/低温的蒸发气体流动的流路(未图示),以及与蒸发气体返回线31连接而供高压/高温的蒸发气体流动的流路(未图示),还可以设置有与后述的气相蒸发气体传递线51连接而供低压/低温的气相蒸发气体(闪蒸气体,flash gas)流动的流路(未图示)。

蒸发气体热交换器30可用从液化气体储存罐10排出的低温的蒸发气体来冷却在蒸发气体压缩机20压缩之后沿蒸发气体返回线31流入的高温的蒸发气体。由于沿着蒸发气体返回线31流动的蒸发气体需要在液化之后返回到液化气体储存罐10,因此蒸发气体热交换器30可通过在液化之前进行预冷却来提高液化效率。

但是,在高压段的蒸发气体压缩机20b压缩的蒸发气体中可能会混有润滑油L,混有润滑油L的蒸发气体可能会沿着蒸发气体返回线31流入到蒸发气体热交换器30。

此时,润滑油L是相比于蒸发气体沸点非常高的物质,可以在常温下为液体状态,通过微弱的冷却也能够充分凝固,黏度可能会高。

若在蒸发气体热交换器30的流路内部持续进行流动则不会成问题,但是因不产生多余的蒸发气体等原因导致蒸发气体热交换器30内的流动减少时,润滑油L会混入蒸发气体热交换器30的流路并妨碍流动。

因此,本发明可利用高温气体等,将润滑油L熔化并将其推动,以消除润滑油L混入蒸发气体热交换器30和设置于蒸发气体热交换器30的下游的构成要素中并妨碍蒸发气体的流动的问题。对此将在后面进行说明。

本实施例可设置有辅助蒸发气体热交换器32,辅助蒸发气体热交换器32可用从气液分离器50排出的气相蒸发气体来冷却在蒸发气体热交换器30冷却的高压的蒸发气体冷却。

为此,辅助蒸发气体热交换器32可以是具有从蒸发气体返回线31连接到蒸发气体热交换器30的下游的流路(未图示),以及从后述的气相蒸发气体传递线51连接到蒸发气体热交换器30的上游的流路(未图示)的结构。但是,辅助蒸发气体热交换器32可以没有供从液化气体储存罐10排出并向蒸发气体压缩机20传递的蒸发气体流动的流路。

辅助蒸发气体热交换器32可用气相蒸发气体来对在蒸发气体热交换器30中被气相蒸发气体冷却的高压的蒸发气体进行追加冷却。即,在蒸发气体压缩机20压缩并沿蒸发气体返回线31流动的高压的蒸发气体可以首次在蒸发气体热交换器30中被从液化气体储存罐10排出的低温的蒸发气体和从辅助蒸发气体热交换器32传递到的气相蒸发气体冷却,之后在辅助蒸发气体热交换器32第二次被从气液分离器50传递到的气相蒸发气体冷却。

当然,可以省略辅助蒸发气体热交换器32,另外,蒸发气体热交换器30和辅助蒸发气体热交换器32可设置为一体。即,也可以是从内部流路结构上,辅助蒸发气体热交换器32包括于蒸发气体热交换器30的形态。

减压阀40对在蒸发气体压缩机20压缩并在蒸发气体热交换器30进行了热交换的蒸发气体进行减压。需要说明的是,在本发明中,减压阀40可以是焦耳-汤普森阀,但是可用如膨胀器等能够降低压力的多种部件来替代。

蒸发气体被低压段的蒸发气体压缩机20a压缩为50bar左右,被高压段的蒸发气体压缩机20b压缩为200bar以上,之后可在蒸发气体热交换器30冷却。即便蒸发气体被压缩为高压使得沸点上升,但是在蒸发气体热交换器30的冷却不能充分液化蒸发气体。

因此,本发明可利用通过减压阀40来进行减压时温度下降的效果。减压阀40可将200bar以上的高压蒸发气体减压为与液化气体储存罐10的内压近似的1bar左右,在减压时,蒸发气体的温度可下降至沸点以下。

减压阀40设置在蒸发气体返回线31上,可以与附图不同地,以串联的方式在蒸发气体返回线31上设置有多个。或者,将焦耳-汤普森阀和膨胀器串联设置的形态也完全可行。

气液分离器50对在减压阀40进行了减压的蒸发气体进行气液分离。虽然,蒸发气体可通过在蒸发气体热交换器30冷却,在减压阀40减压而被液化,但是,也可以根据状况,不能实现完全再液化,包含在蒸发气体内且沸点非常低的如氮气的一部分物质可能会保留而不被液化。

此时,以气体状态保留的气相蒸发气体可能不会在气液分离器50分离并流入液化气体储存罐10,而液体状态的液相蒸发气体G会经由气液分离器50并沿着连接到液化气体储存罐10的蒸发气体返回线31返回到液化气体储存罐10。此时,在气液分离器50与液化气体储存罐10之间的蒸发气体返回线31上,可设置有液相蒸发气体返回阀312。

气液分离器50可以使液相蒸发气体G返回至液化气体储存罐10,并向蒸发气体热交换器30传递气相蒸发气体。由于从气液分离器50传递到蒸发气体热交换器30的气相蒸发气体是通过减压阀40的减压而被冷却的气相蒸发气体,因此可用于冷却在蒸发气体压缩机20压缩并流入到蒸发气体热交换器30的高压的蒸发气体。

另外,气液分离器50可使气相蒸发气体经由蒸发气体热交换器30传递到蒸发气体压缩机20。为此,在气液分离器50设置有气相蒸发气体传递线51,气相蒸发气体传递线51可从气液分离器50经由蒸发气体热交换器30并连接到蒸发气体供给线21,在气相蒸发气体传递线51可设置有在蒸发气体热交换器30的上游和/或下游控制气相蒸发气体的流动的气相蒸发气体传递阀511。

气相蒸发气体传递线51与蒸发气体供给线21连接的部位可以是蒸发气体压缩机20的上游,因此蒸发气体压缩机20除了从液化气体储存罐10排出的蒸发气体之外还会追加接收到气相蒸发气体,因此可确保规定以上的运转,从而会提高效率。

如此前说明,在高压段的蒸发气体压缩机20b使用的润滑油L可能会混入蒸发气体中,气液分离器50可通过防止润滑油L混入向液化气体储存罐10返回的蒸发气体中,来防止储存于液化气体储存罐10的液化气体的品质下降。

关于此,如图3所述,气液分离器50包括罩体52、蒸发气体流入部53、液相蒸发气体排出部54、堰55(weir)、润滑油阻断板56、润滑油排出线57。

罩体52储存被减压阀40减压的蒸发气体。如图所示,罩体52可以是圆筒形状,但是对于罩体52的形状不做特别的限定。

但是,由于罩体52需要储存被减压而液化的低压/低温的蒸发气体,并且防止蒸发气体气化,因此可设置有隔热设备用于阻断热从外部渗透。

罩体52可以看作设置在蒸发气体返回线31上,蒸发气体返回线31可在以下说明到的蒸发气体流入部53与液相蒸发气体排出部54之间通过罩体52的内部空间连接。

蒸发气体流入部53使蒸发气体流入罩体52的内部。蒸发气体流入部53设置于从减压阀40连接到气液分离器50的蒸发气体返回线31的一端,可以是下侧开放的半开放入口(half open inlet)。这是为了防止在低压/低温的蒸发气体流入罩体52内部时,发生蒸发气体的飞散。

蒸发气体流入部53可设置于在罩体52内储存的蒸发气体的液位的上方,但是可设置在低于堰55的上端的位置。因此,通过蒸发气体流入部53流入的蒸发气体能够混入储存在罩体52内的液相的蒸发气体中。

液相蒸发气体排出部54排出罩体52内部的液相蒸发气体G。液相蒸发气体排出部54可设置于从气液分离器50连接到液化气体储存罐10的蒸发气体返回线31的一端。

液相蒸发气体排出部54可设置于低于在罩体52内储存的蒸发气体的最小液位的位置,但是可设置于润滑油阻断板56的上方。

通过蒸发气体流入部53流入到罩体52内的蒸发气体中规定液位以上的蒸发气体会越过堰55的上侧,液相蒸发气体排出部54可向蒸发气体返回线31排出越过堰55的上侧的液相蒸发气体G。为此,液相蒸发气体排出部54和蒸发气体流入部53以堰55为基准彼此设置于相反侧。

另外,润滑油阻断板56沿水平方向设置于堰55的下侧,堰55的下侧和罩体52的底面之间可以开放,液相蒸发气体排出部54能够向蒸发气体返回线31排出从蒸发气体流入部53越到堰55的下侧之后从在润滑油阻断板56的上方通过的液相蒸发气体G。

即,液相蒸发气体排出部54可排出未通过润滑油阻断板56而通过堰55的液相蒸发气体G,或者排出通过润滑油阻断板56的液相蒸发气体G。

在被减压阀40减压并流入到罩体52内部的低压/低温蒸发气体中,润滑油L为液体或固体状态,相比于蒸发气体密度非常大,因此即便润滑油L混入蒸发气体中并通过蒸发气体流入部53流入到罩体52内,润滑油L也不会越过堰55的上侧,而会下沉,即便越到堰55的下侧也会被润滑油阻断板56阻挡。

因此,在从液相蒸发气体排出部54排出的蒸发气体中,与流入到蒸发气体流入部53的蒸发气体不同,润滑油L可以被去除。

堰55设置在蒸发气体流入部53和液相蒸发气体排出部54之间。堰55可在罩体52内沿垂直方向设置,并且可具有使蒸发气体越过该堰55的上侧的形状,但是随着堰55具有充分的高度混入蒸发气体中的润滑油L不能够越过堰55的上侧。

润滑油阻断板56为了在蒸发气体的流入和液相蒸发气体G的排出之间过滤润滑油L而设置,具体地说,润滑油阻断板56在堰55的下侧沿水平方向设置,并抑制润滑油L流入液相蒸发气体排出部54。

润滑油阻断板56具有小于润滑油L粒子的孔,由此可以是抑制润滑油L的通过,而允许液相蒸发气体G的通过的多孔板形状,但是在润滑油阻断板56的上方设置的液相蒸发气体排出部54,可位于从润滑油阻断板56向上方隔开的位置。

这是为了防止在设置有气液分离器50的船舶1受外力等影响而倾斜时,一部分润滑油L通过浮游而穿过液相蒸发气体排出部54漏出。

润滑油排出线57向外部排出收集到罩体52的底部的润滑油L。堰55的下侧与罩体52的底部之间可以是开放的形状(也可以设置有由网格制成的挡板,未图示),混入蒸发气体中的润滑油L因重力而自然的被收集到罩体52底部。

但是,润滑油排出线57可通过排出阀(未图示)来保持关闭的状态,在需要维护的情况下,可向外部排出润滑油L,并检查去除润滑油L的效率。

润滑油排出线57也可以与蒸发气体返回线31连接,在高压段的蒸发气体压缩机20b检测到过滤效率的情形、或在分离器22或聚结器23等充分过滤润滑油L的情形等,润滑油排出线57也可以向蒸发气体返回线31开放。

润滑油处理部60通过注入高温气体将流入到蒸发气体热交换器30的润滑油L推向蒸发气体热交换器30的下游并进行处理。如此前所述,在高压段的蒸发气体压缩机20b使用的润滑油L可混入蒸发气体中并流入到蒸发气体热交换器30,本发明除了利用气液分离器50的内部结构来去除润滑油L之外,还可以使用注入高温气体,以在蒸发气体热交换器30去除混入的润滑油L。

作为一例,润滑油处理部60可向蒸发气体热交换器30注入40度以上的氮气等高温气体,注入到蒸发气体热交换器30的高温气体可对流入到蒸发气体热交换器30的润滑油L进行加热并排出。

在蒸发气体热交换器30持续进行蒸发气体的流动时,润滑油L残留在蒸发气体热交换器30的可能性不大,但是若不产生多余的蒸发气体,则混入蒸发气体的润滑油L的一部分会留在蒸发气体热交换器30,此时润滑油L进一步被从液化气体储存罐10排出的低温的蒸发气体冷却而***,因此会混入蒸发气体热交换器30中而妨碍蒸发气体流动。

因此,在本实施例中,通过使用润滑油处理部60,来向蒸发气体热交换器30注入高温气体加热润滑油L以降低润滑油L的黏度并强行推动润滑油L,由此能够防止蒸发气体在热交换器30中的流动下降。

润滑油处理部60从蒸发气体返回线31向蒸发气体热交换器30的上游注入高温气体,与润滑油L混合的高温气体可在蒸发气体返回线31上从减压阀40的下游排出。

为此,润滑油处理部60包括高温气体供给部、高温气体排出部62。高温气体供给部在蒸发气体返回线31上与蒸发气体热交换器30的上游连接并注入高温气体。

高温气体的注入可在蒸发气体返回线31中没有蒸发气体的流动的期间进行。这是因为,若在蒸发气体在蒸发气体返回线31流动时注入高温气体,会降低蒸发气体的液化效率,同时也会降低润滑油L去除效果,并且排出高温气体时可能会排出蒸发气体。

若高温气体通过蒸发气体返回线31流入到蒸发气体热交换器30,则残留在蒸发气体热交换器30的润滑油L会被加热,同时黏度下降,之后可以与高温气体一起从蒸发气体热交换器30排出。

高温气体注入部61可在注入高温气体(作为一例,40度以上的氮气)之前,通过先供给惰性气体(作为一例,氮气等)来从蒸发气体热交换器30内部推出蒸发气体。推出蒸发气体的理由在于,为了防止在后续与润滑油L一起排出的高温气体中混入具有可***的蒸发气体。

高温气体排出部62从蒸发气体返回线31上的减压阀40的上游和/或下游分支并排出与润滑油L混合的高温气体。此时,借助高温气体向外部排出的润滑油L可以再次使用,高温气体也可以再次使用,可通过高温气体注入部61注入到蒸发气体热交换器30。

作为一例,润滑油处理部60可以采用从高温气体排出部62排出的高温气体+润滑油L中过滤润滑油L,并再次对高温气体进行加热,之后使其再次流入蒸发气体热交换器30的方式。

另外,润滑油处理部60对从船舶1中普遍设置的惰性气体生成器(IG Generator)或氮气生成器等生成的氮气等进行加热并用作高温气体,因此无需额外地生成高温气体。

润滑油过滤器70a、70b、70c过滤润滑油L。润滑油过滤器70a可在蒸发气体返回线31上设置于减压阀40与气液分离器50之间。作为一例,润滑油过滤器70a可在蒸发气体返回线31上设置于高温气体排出部62与气液分离器50之间,并且防止未来得及从高温气体排出部62排出的润滑油L流入液化气体储存罐10,或者通过气相蒸发气体传递线51流入到蒸发气体热交换器30。

上述润滑油过滤器70a可以是液相过滤器,并设置为过滤液相的润滑油L。

另外,润滑油过滤器70b可在蒸发气体返回线31上设置于蒸发气体热交换器30的上游。在此情况下,润滑油过滤器70b可以是气相过滤器,可去除加热为高压而处于超临界状态的润滑油L。

在蒸发气体返回线31上设置于蒸发气体热交换器30的上游的润滑油过滤器70b可以是能够吸附润滑油L的吸附塔,也可以是利用蒸发气体和润滑油L的密度差来上下分离的旋风分离器等。即,在本发明中,润滑油过滤器70a、70b、70c不限定于普通过滤器,可包括能够从蒸发气体过滤润滑油L的所有形态过滤器。

润滑油过滤器70c可在蒸发气体返回线31上设置于蒸发气体热交换器30与辅助蒸发气体热交换器32之间,在此情况下,润滑油过滤器70c可以是液相过滤器。

另外,润滑油过滤器70c可以是在蒸发气体返回线31上设置于蒸发气体热交换器30与辅助蒸发气体热交换器32之间的液相分离器。液相分离器根据密度差来分离蒸发气体和润滑油L,可以与此前说明到的气液分离器50相似地,具有容纳蒸发气体的空间并通过在内部设置隔壁(未图示)来分离润滑油L。

当然,如上所述的各种润滑油过滤器70a、70b、70c可选择性地设置,或者也可以组合设置。作为一例,在蒸发气体返回线31上的蒸发气体热交换器30的上游设置气相过滤器,在蒸发气体热交换器30与辅助蒸发气体热交换器32之间设置液相过滤器,由此可以通过两个步骤来过滤润滑油L。

如上所述,在本实施例中气液分离器50具有过滤润滑油L的结构,并且润滑油L混入蒸发气体热交换器30时能够通过注入高温气体来去除润滑油L,因此即便润滑油L从高压段的蒸发气体压缩机20b混入到蒸发气体中,也能够防止液化气体储存罐10的储存品质下降。

图4是本发明第二实施例的蒸发气体再液化系统的气液分离器的剖视图。

参照图4,与第一实施例相比,本发明第二实施例的蒸发气体再液化系统2不同点在于气液分离器50的结构。以下,主要对本实施例与第一实施例的不同点进行说明,省略的说明引用此前记载的内容。这也同样地在其他实施例中适用。

在本实施例中,气液分离器50可通过在罩体52内设置流入侧隔壁531、排出侧倾斜壁541a、541b、挡板58来替代堰55和润滑油阻断板56。

流入侧隔壁531用于防止通过蒸发气体流入部53流入的蒸发气体飞散,并且使其在下方聚集,在使用此前说明到的半开放入口的情况下可以省略。

排出侧倾斜壁541a、541b设置为两个以上,并且呈v或y形状,中部可设置为开放以使蒸发气体通过。排出侧倾斜壁541a、541b可在蒸发气体通过液相蒸发气体排出部54流入蒸发气体返回线31时妨碍流动,由此使润滑油L不能流入液相蒸发气体排出部54而下落到罩体52的底部。

挡板58设置于蒸发气体流入部53的下方,并且能够从与流入侧隔壁531碰撞并向罩体52底部掉落的蒸发气体中过滤润滑油L。此时,挡板58可以是矫直机(straightener)。

图5是本发明第三实施例的蒸发气体再液化系统的气液分离器的剖视图。

参照图5,与第一实施例不同地,本发明第三实施例的气液分离器50可设置为使蒸发气体流入部53在罩体52内低于蒸发气体的液位,在蒸发气体流入部53的上方可设置有润滑油阻断板56。

因此,在本实施例中,流入罩体52内的蒸发气体从润滑油阻断板56的上方通过时润滑油L被过滤,之后去除了润滑油L的蒸发气体可越过堰55并通过液相蒸发气体排出部54向罩体52的外部排出。

在本实施例中,堰55的下侧在罩体52的底部固定为使蒸发气体经由润滑油阻断板56和堰55传递到液相蒸发气体排出部54,由此禁止蒸发气体从堰55的下侧流动。

图6是本发明第四实施例的蒸发气体再液化系统的气液分离器的剖视图。

参照图6,本发明第四实施例的气液分离器50可设置有流入侧倾斜壁532a、532b、润滑油阻断板56。

流入侧倾斜壁532a、532b可以使通过蒸发气体流入口从罩体52上侧流入的蒸发气体聚集到下方。流入侧倾斜壁532a、532b可形成为v或y形状使得发挥漏斗功能,沿着流入侧倾斜壁532a、532b向罩体52的底部传递的蒸发气体可经由沿垂直方向设置的润滑油阻断板56流入到液相蒸发气体排出部54。

与第一实施例不同地,润滑油阻断板56可沿垂直方向设置,可以是多孔板,所述多孔板具有不能使蒸发气体中包含的润滑油L通过的大小的孔。

因此,通过蒸发气体流入部53流入的蒸发气体,其流向因流入侧倾斜壁532a、532b而变为朝向下方,之后通过流入侧倾斜壁532a、532b向罩体52的底部流动。

之后,由于蒸发气体中包含的润滑油L不能通过润滑油阻断板56,因此仅分离了润滑油L的蒸发气体通过液相蒸发气体排出部54并向蒸发气体返回线31排出。

图7是本发明第五实施例的蒸发气体再液化系统的概念图。

参照图7,与此前说明到的实施例相比,本发明第五实施例的蒸发气体再液化系统2还包括蒸发气体迂回线33和气相蒸发气体迂回线512。作为参考,在图7中用黑色表示的阀表示关闭状态。

蒸发气体迂回线33使从液化气体储存罐10排出的蒸发气体迂回蒸发气体热交换器30并向蒸发气体压缩机20传递。在蒸发气体迂回线33可设置有控制蒸发气体迂回线33的流动的蒸发气体迂回阀331。

与第一实施例不同地,本实施例以使用随着在蒸发气体压缩机20压缩而被加热的高温蒸发气体来加热或去除混入蒸发气体热交换器30中的润滑油L,来替代额外注入高温气体。

但是,在高温蒸发气体流入蒸发气体热交换器30时从液化气体储存罐10排出的低温蒸发气体也流入蒸发气体热交换器30的情况下,可能会不能正常形成基于高温蒸发气体的润滑油L的加热/去除。

因此,本实施例可通过设置蒸发气体迂回线33,使从液化气体储存罐10排出的低温蒸发气体不会流入蒸发气体热交换器30,而向蒸发气体压缩机20供给。由此,流入到蒸发气体热交换器30的高温蒸发气体能够有效地加热润滑油L并去除。

气相蒸发气体迂回线512使从气液分离器50排出的气相蒸发气体迂回蒸发气体热交换器30并传递到蒸发气体压缩机20。在气相蒸发气体迂回线512设置有控制气相蒸发气体迂回线512的流动的气相蒸发气体迂回阀513。

使气相蒸发气体迂回蒸发气体热交换器30是为了实现与前述的使低温蒸发气体迂回蒸发气体热交换器30的目的相同的目的。由此,由于从蒸发气体压缩机20排出的高温蒸发气体不会在蒸发气体热交换器30被低温蒸发气体或气相蒸发气体冷却,因此能够充分对润滑油L将相加热。

即,在本实施例中,通过打开高压蒸发气体返回阀311,向蒸发气体热交换器30传递在蒸发气体压缩机20加热的高温蒸发气体,此时可通过关闭蒸发气体供给阀211a且打开蒸发气体迂回阀331,来防止从液化气体储存罐10排出的低温蒸发气体冷却高温蒸发气体。

另外,可通过关闭气相蒸发气体传递阀511且打开气相蒸发气体迂回阀513,使从气液分离器50排出的气相蒸发气体不流入蒸发气体热交换器30而沿气相蒸发气体迂回线512迂回蒸发气体热交换器30,由此能够防止气相蒸发气体冷却高温蒸发气体。

因此,本实施例可使用高温蒸发气体来有效地去除混入蒸发气体热交换器30的润滑油L。

图8是本发明第六实施例的蒸发气体再液化系统的概念图。

参照图8,与前述第五实施例相比,本发明第六实施例的蒸发气体再液化系统2还可以包括高温蒸发气体供给线514,且可以省略气相蒸发气体迂回线512。作为参考,在图8中用黑色表示的阀表示关闭状态。

当本实施例为了去除流入蒸发气体热交换器30中的润滑油L,而向蒸发气体热交换器30注入在蒸发气体压缩机20压缩的高温蒸发气体时,高温蒸发气体供给线514可向需求处3传递从蒸发气体热交换器30排出的高温蒸发气体。

高温蒸发气体供给线514可在蒸发气体返回线31上从减压阀40的上游分支并连接到蒸发气体供给线21上的需求处3的上游。即,与前述实施例不同地,本实施例可将高温蒸发气体在高压状态下从蒸发气体返回线31排出。

对润滑油L进行加热并从蒸发气体热交换器30推出时,与润滑油L混合的高温蒸发气体能够被传递到需求处3并消耗。因此,在本实施例中,从蒸发气体热交换器30去除的润滑油L不会进行再循环,因此防止了润滑油L流入液化气体储存罐10。

在本实施例中,高压蒸发气体返回阀311可在蒸发气体供给线21上设置于分支出蒸发气体返回线31的部位和与高温蒸发气体供给线514连接的部位之间,若关闭高压蒸发气体返回阀311,则在蒸发气体压缩机20压缩的高温蒸发气体会沿着蒸发气体返回线31流入蒸发气体热交换器30。

但是,从液化气体储存罐10排出的低温蒸发气体随着关闭蒸发气体供给阀211a且开放蒸发气体迂回阀331,而沿着蒸发气体迂回线33流动,从而不会冷却高温蒸发气体。

另外,在蒸发气体热交换器30去除了润滑油L的高温蒸发气体,随着关闭减压阀40而沿着高温蒸发气体供给线514流动,并通过蒸发气体供给线21传递到需求处3。

在此情况下,高温蒸发气体不会流入气液分离器50,因此不会产生气相蒸发气体,气相蒸发气体传递阀511可以为关闭。因此,流入到蒸发气体热交换器30的高温蒸发气体能够充分地加热润滑油L。

图9是本发明第七实施例的蒸发气体再液化系统的概念图。

参照图9,与前述第五实施例、第六实施例中使用在高压段的蒸发气体压缩机20b压缩的高压/高温蒸发气体不同地,本发明第七实施例的蒸发气体再液化系统2可以使用在低压段的蒸发气体压缩机20a压缩的低压/高温蒸发气体。

为此,本实施例可以用设置从作为侧流动的低压蒸发气体供给线212分支并向蒸发气体热交换器30传递高温蒸发气体(40度左右,约43度)的低压蒸发气体返回线214,来替代前述第五实施例的气相蒸发气体迂回线512或前述第六实施例的高温蒸发气体供给线514,在低压蒸发气体返回线214设置有控制低压蒸发气体返回线214的流动的低压蒸发气体返回阀215。

低压蒸发气体返回线214可将在低压段的蒸发气体压缩机20a压缩的高温蒸发气体注入到蒸发气体热交换器30,以去除流入到蒸发气体热交换器30的润滑油L。

低压蒸发气体返回线214从低压蒸发气体供给线212分支并在蒸发气体返回线31上与蒸发气体热交换器30的上游连接。因此,本实施例可通过关闭设置于蒸发气体返回线31的高压蒸发气体返回阀311,且开放低压蒸发气体返回阀215,来向蒸发气体热交换器30传递在低压段的蒸发气体压缩机20a压缩的高温蒸发气体,以去除蒸发气体热交换器30的润滑油L。

此时,流入到蒸发气体热交换器30高温蒸发气体不会被从液化气体储存罐10排出的低温蒸发气体冷却,这点与前述实施例中说明的内容相同。

另外,本实施例可设置为高温蒸发气体不与从气液分离器50排出的气相蒸发气体进行热交换,为此,本实施例还可以包括高温蒸发气体传递线515,并且在高温蒸发气体传递线515可设置有高温蒸发气体传递阀516。

高温蒸发气体传递线515可从气液分离器50连接到低压需求处3,作为一例,高温蒸发气体传递线515可从连接气液分离器50和蒸发气体热交换器30或蒸发气体压缩机20的气相蒸发气体传递线51分支,并连接到低压需求处3或低压蒸发气体供给线212。

在低压段的蒸发气体压缩机20a压缩的高温蒸发气体,随着开放低压蒸发气体返回阀215而向蒸发气体返回线31传递并流入到蒸发气体热交换器30。此时,设置于低压蒸发气体供给线212的低压蒸发气体供给阀213可以关闭。

流入到蒸发气体热交换器30的低压/高温蒸发气体可对混入蒸发气体热交换器30中的润滑油L进行加热并推动,之后高温蒸发气体经由减压阀40传递到气液分离器50。但是,由于在去除润滑油L时使用的高温蒸发气体为低压,因此即便被减压阀40减压,温度下降也不会大(作为一例,从10bar减压到7bar的情况下,温度可以从43度下降到42度)。

之后,流入到气液分离器50的气体状态的高温蒸发气体,可随着关闭设置于气相蒸发气体传递线51的气相蒸发气体传递阀511,且开放设置于高温蒸发气体传递线515的高温蒸发气体传递阀516,而沿着高温蒸发气体传递线515供给到作为低压需求处3的DFDE低压发动机3b和/或气体燃烧装置3c等。

为此,高温蒸发气体传递线515连接到设置于低压蒸发气体供给线212上的低压蒸发气体供给阀213的下游,使得在关闭低压蒸发气体供给阀213时能够向低压需求处3供给高温蒸发气体。

如上所述,在本实施例中,将在低压段的蒸发气体压缩机20a压缩的高温蒸发气体(未混入润滑油)活用于去除蒸发气体热交换器30中的润滑油L,并在低压需求处3消耗混有润滑油L的高温蒸发气体,由此能够有效地去除残留在蒸发气体热交换器30中的润滑油L。

图10是本发明第八实施例的蒸发气体再液化系统的概念图。

参照图10,与前述第七实施例相比,本发明第八实施例的蒸发气体再液化系统2以将在高压段的蒸发气体压缩机20b压缩的高压/高温蒸发气体用于去除润滑油L,来替代使用在低压段的蒸发气体压缩机20a压缩的低压/高温蒸发气体。

在此情况下,本实施例可以省略低压蒸发气体返回线214,当高压蒸发气体返回阀311开放时,高压/高温蒸发气体可沿蒸发气体返回线31流入到蒸发气体热交换器30。

之后,从蒸发气体热交换器30排出的高温蒸发气体在经由减压阀40时可被减压并冷却,作为一例,当从300bar减压到7bar时,43度的高温蒸发气体被冷却至-37度左右。

经由了减压阀40的高温蒸发气体流入到气液分离器50。此时,若关闭气相蒸发气体传递阀511且开放高温蒸发气体传递阀516,则高温蒸发气体中的气相蒸发气体沿高温蒸发气体传递线515向低压需求处3供给。

但是,与前述实施例不同地,本实施例由于用于去除润滑油L的高温蒸发气体为高压,因此当通过减压阀40进行减压时,温度会大幅度下降。

因此,传递到低压需求处3的高温蒸发气体可能会不满足低压需求处3所要求温度,从而本实施例还可以在高温蒸发气体传递线515设置气体加热器517。

气体加热器517可对在高压段的蒸发气体压缩机20b压缩且经由蒸发气体热交换器30和减压阀40的蒸发气体进行加热并向低压需求处3传递,作为一例,气体加热器517在经由减压阀40时可将冷却为-37度的高温蒸发气体加热到40度左右。当然,对气体加热器517所使用的热源不进行特别的限定。

如上所述,本实施例可利用高压/高温蒸发气体,对混入在蒸发气体热交换器30等的润滑油L进行加热,之后强力推动,由此能够有效地去除润滑油L,并且可通过在低压需求处3消耗混有润滑油L的高温蒸发气体来阻断润滑油L流入液化气体储存罐10。

图11和图12是本发明第九实施例的蒸发气体再液化系统的概念图。

参照图11和图12,本发明第九实施例的蒸发气体再液化系统2,可使用在低压段(作为一例,二段)的蒸发气体压缩机20压缩的高温高速蒸发气体,以去除流入到蒸发气体热交换器30的润滑油L。

为此,本实施例设置有低压蒸发气体返回线214。低压蒸发气体返回线214可从低压蒸发气体供给线212分支,并且可向蒸发气体热交换器30注入高温蒸发气体。

另外,在本实施例中,可向低压发动机3b供给从低压段的蒸发气体压缩机20a注入的蒸发气体,以去除流入到蒸发气体热交换器30的润滑油L,为此,设置有高温蒸发气体传递线515。

高温蒸发气体传递线515在蒸发气体返回线31上从减压阀40的上游分支并连接到低压发动机3b,由此可从减压阀40的上游向低压发动机3b传递从蒸发气体热交换器30排出的高温蒸发气体。

此时,高温蒸发气体传递线515可在低压蒸发气体供给线212线上连接在低压蒸发气体供给阀213的下游,在本实施例中,为了去除流入到蒸发气体热交换器30的润滑油L而通过低压蒸发气体返回线214向蒸发气体热交换器30注入在低压段的蒸发气体压缩机20a压缩的高温蒸发气体时,可以关闭设置于低压蒸发气体供给线212的低压蒸发气体供给阀213。

即,在实现去除蒸发气体热交换器30的润滑油L的情况下,从低压段的蒸发气体压缩机20a排出的高温高速蒸发气体可沿着从低压蒸发气体供给线212分支的低压蒸发气体返回线214流入蒸发气体热交换器30,之后可在蒸发气体热交换器30的下游沿着高温蒸发气体传递线515向低压蒸发气体供给线212合流并向低压发动机3b供给。

因此,本实施例将在去除润滑油L中使用的气体用于发电发动机,由此在系统运用以及费用等方面可获得提高效率的效果。下面,对清洗过程进行较详细的说明。

就清洗过程而言,在蒸发气体压缩机20运转而低压发动机3b以气体模式运转的状态下,减压阀40会关闭。但是,此时从蒸发气体压缩机20向发气体热交换器30的流动会逆流,这会对后述的润滑油过滤器70b产生不利的影响,导致在润滑油过滤器70b和蒸发气体热交换器30之间设置的手动阀(未图示)关闭。

之后,通过开放蒸发气体迂回阀331并且关闭蒸发气体供给阀211a,使从液化气体储存罐10排出的低压蒸发气体迂回蒸发气体热交换器30。

另外,设置于低压蒸发气体返回线214的低压蒸发气体返回阀215被开放,低压蒸发气体返回阀215可设置有多个,其中任意一个可以是On/Off类型的截止阀,而另一个可以是调节开度的控制阀。

此时,可调节开度的低压蒸发气体返回阀215,以低开度(作为一例,10%)开放,此时若高温蒸发气体传递线515的压力达到规定压力(作为一例,10barg),则开度可开放到100%,与此同时,可以开放温蒸发气体传递线515的高温蒸发气体传递阀516。

在清洗过程中,可以关闭设置于低压蒸发气体供给线212的低压蒸发气体供给阀213。但是,流入到蒸发气体热交换器30的高温蒸发气体的流量可根据低压蒸发气体供给阀213的开度调节而不同,流入到低压发动机3b的蒸发气体的温度也会不同。

因此,本实施例可自动控制低压蒸发气体供给阀213的开度,并使在低压发动机3b前端的蒸发气体温度适合低压发动机3b的要求温度(作为一例20摄氏度)。

清洗过程可通过保持规定时间以上如上所述的状态(作为一例,1小时左右)来实现。但是,在清洗过程中,为了防止因润滑油L的流入导致的非正常的燃烧,低压发动机3b的负荷可保持为低负荷(15%至50%)。这是考虑到在载货航行(Laden voyage)时,以下计算出的约97g左右的润滑油L可能会流入低压发动机3b的原因。

清洗过程可根据船主的选择来进行,与蒸发气体热交换器30被多少润滑油L污染无关地,优选在每次压载航行(Ballast voyage)时进行清洗过程。

另外,本实施例可在减压阀40与气液分离器50之间设置有润滑油过滤器70a,此时,润滑油过滤器70a可以是固体过滤器(Solid filter)。润滑油过滤器70a可通过过滤以蒸发(Vapor)状态传递的润滑油L,来防止流向液化气体储存罐10的蒸发气体的污染。

和/或本实施例也可以通过在蒸发气体返回线31上的高压蒸发气体返回阀311的下游等位置设置润滑油过滤器70b来过滤润滑油L,由此能够确保储存于液化气体储存罐10的液化气体的品质。

本实施例可在蒸发气体压缩机20的下游设置过滤润滑油L等异物质的分离器22、聚结器23,此时分离器22可以是旋风分离器(Cyclone)。在本实施例中,可将分离器22、聚结器23、润滑油过滤器70b等统称为过滤器系统(Filter system,BCA)。

因此,本实施例可通过两种过滤系统(filtration system)来过滤可能会在四段和五段的蒸发气体压缩机20中混入的润滑油L。第一是过滤器系统,第二是减压阀40和气液分离器50之间的润滑油过滤器70a。

此时,作为一例,分离器22可具有4ppmw至10ppmw的过滤性能,聚结器23可具有0.1ppmw(liquid)/2~4ppmw(vapor)的过滤性能,润滑油过滤器70b可具有0.1ppmw的过滤性能,润滑油过滤器70a可具有0.1μm的过滤性能。

以这种过滤性能为前提,假设在载货航行(20天+余量(margin,锚固等))中以15knots(海里/小时)的船速航行的情况下,流入蒸发气体再液化系统2的蒸发气体的流量可以是1761kg/h(15knots、20天)、2785kg/h(锚固(anchoring),2天),在载货航行中被润滑油过滤器70b过滤的润滑油L的量可以为约97g。

即,本实施例可通过两种过滤系统来抑制润滑油L向液化气体储存罐10返回。但是,仅通过这种过滤系统不能视为完全去除润滑油L,并且无法阻止因润滑油L导致的蒸发气体热交换器30的热交换性能下降。

因此,本实施例可通过基于高压蒸发气体的清洁系统(暖气清洁/吹气系统)来消除因润滑油L污染引起的蒸发气体热交换器30的热交换性能下降。

但是,清洁系统是以确保蒸发气体热交换器30的热交换效率作为目的的系统,不能保障将润滑油L完全从蒸发气体热交换器30去除,从而本实施例可通过将过滤系统和暖气清洁(Warm gas cleaning)和吹气系统(blowing system)一起设置,来完美地防止因在高压段的蒸发气体压缩机20b使用的润滑油L引起的问题。

具体地说,暖气清洁/吹气系统是,通过使用从未混有润滑油L的低压段的蒸发气体压缩机20a排出的蒸发气体来对蒸发气体热交换器30进行加热,并由此来融化残留在蒸发气体热交换器30中的润滑油L,之后将润滑油L与蒸发气体一起供给到低压发动机3b。

在此情况下,由于在本实施例中含有润滑油L的高温蒸发气体不会传递到减压阀40或气液分离器50,因此不存在气液分离器50和各种构成要素被润滑油L污染的问题。

另外,在清洗过程中,不存在液相的润滑油L在气液分离器50中凝集的隐患,也可以完全消除凝集的润滑油L流入到液化气体储存罐10的隐患。

图13是本发明的蒸发气体再液化系统的概念图。

下面,参考图13,对根据此前说明的本发明的各种实施例的蒸发气体再液化系统2的状态(冷却,启动,停止,跳闸)的气体流动进行说明。

首选,对冷却(Cool down)的状态进行说明,利用从液化气体储存罐10经由蒸发气体头(Vapor Header)排出的低温的蒸发气体,来使蒸发气体压缩机20运转,并且使蒸发气体向蒸发气体供给线21和低压蒸发气体供给线212流动。此时,蒸发气体供给阀211a可以为开放状态,蒸发气体迂回阀331可以为关闭状态。

之后,通过关闭减压阀40和液相蒸发气体返回阀312并且以规定的开度(10%左右,每分钟开放5%)开放高压蒸发气体返回阀311,使经由蒸发气体压缩机20的低温的蒸发气体以规定时间(约5分钟左右)期间流入到蒸发气体返回线31,由此实现冷却。

之后,在高压蒸发气体返回阀311以100%完全开放之后,减压阀40被开放为规定开度(10%左右,每分钟开放5%),气相蒸发气体传递阀511的设定值被设定为5barg左右。此时,通过气相蒸发气体传递线51,气液分离器50和蒸发气体热交换器30可被冷却。

之后,当气液分离器50的级别达到规定级别(作为一例,30%)时,可通过使液相蒸发气体返回阀312以规定开度(20%左右)开放来使蒸发气体沿蒸发气体返回线31返回到液化气体储存罐10并冷却蒸发气体返回线31。

根据这种冷却,本发明可通过在蒸发气体返回线31上的减压阀40的下游、气相蒸发气体传递线51等进行冷却,来防止气体的不必要的气化。

启动(Start-up)状态在检查到冷却结束之后进行,此时减压阀40可以以压力控制模式(PIC:Pressure control mode)或流量控制模式(FIC:Flow control mode)运转。

具体地说,减压阀40可在高压发动机3a运转时以压力控制模式运转,使得向高压发动机3a供给的气体的压力与高压发动机3a的要求压力对应。或者,减压阀40可以以流量控制模式运转来确认蒸发气体等的流量。

在停止(Stop)状态下,首先关闭减压阀40(每分钟减小30%开度)。在此情况下,减压阀40的开度可以慢慢减小,减压阀40与气液分离器50之间的流量会减小。

之后,高压蒸发气体返回阀311会关闭,因此从蒸发气体返回线31到气液分离器50的蒸发气体流量减少。

之后,以100%完全开放减压阀40,由此高压蒸发气体返回阀311与气液分离器50之间的蒸发气体被减压(Depressurization)。

之后,液相蒸发气体返回阀312以100%完全开放,被冷凝的蒸发气体可从气液分离器50向液化气体储存罐10排出。

之后,若检测到气液分离器50的级别为规定级别(5%左右)以下,气相蒸发气体传递阀511的设定值(set point)会降低到1.5barg,由此在气相蒸发气体传递线51的蒸发气体被减压而结束停止过程。

对跳闸(Trip)状态说明,首先高压蒸发气体返回阀311被关闭,通过蒸发气体返回线31朝向蒸发气体热交换器30、减压阀40以及气液分离器50的蒸发气体的流动被阻断。

之后,通过以100%将减压阀40、液相蒸发气体返回阀312、气相蒸发气体传递阀511均完全开放,使蒸发气体返回线31、气相蒸发气体传递线51内部均被减压(Depressurization),由此实现跳闸过程。

图14是具有本发明的蒸发气体再液化系统的气体处理系统的概念图,图15是用于说明本发明的气体处理系统的气体处理状态的曲线。

作为参考,本发明不限定于前述蒸发气体再液化系统2,可以是除了蒸发气体再液化系统2之外还包括其他构成要素气体处理系统,以将储存于液化气体储存罐10的蒸发气体或液化气体作为燃料消耗。

参照图14,具有本发明的蒸发气体再液化系统2的气体处理系统可包括蒸发气体供给部(HPC)、高压液化气体供给部(HPP)、低压液化气体供给部(LPP)、蒸发气体液化部(ERS),其中蒸发气体供给部(HPC)和蒸发气体液化部(ERS)可称作前述的蒸发气体再液化系统2。

在此情况下,由于蒸发气体供给部(HPC)和蒸发气体液化部(ERS)已经说明,因此下面对高压液化气体供给部(HPP)和低压液化气体供给部(LPP)进行说明。

高压液化气体供给部(HPP)使从液化气体储存罐10排出的液化气体经由高压泵82、高压汽化器83并向高压发动机3a供给。

在此情况下,配置于液化气体储存罐10内的从移送泵(未图示)延伸到液化气体储存罐10的外部的液化气体供给线80,可向高压液化气体供给线81分支,以连接到高压发动机3a。

液化气体从高压泵82或高压汽化器83的下游(过压的)向液化气体储存罐10或通风桅杆(未图示)等传递,由此可以防止在供给液化气体时过压。

相反,低压液化气体供给部(LPP)使从液化气体储存罐10排出的液化气体经由强制气化器85、重碳分离器86、加热器87并向低压发动机3b或气体燃烧装置3c等供给。

在此情况下,强制气化器85等可设置在从液化气体供给线80分支的低压液化气体供给线84上。即,液化气体供给线80从移送泵的下游向高压液化气体供给线81和低压液化气体供给线84分支并分别连接到高压发动机3a和低压发动机3b。

如上所述,除了蒸发气体再液化系统2之外还可以包括供给液化气体的构成要素的气体处理系统,可根据船舶1的航行状态以多种方式控制蒸发气体/液化气体的供给与否。对此,参照图14和图15进行说明。

作为一例,本发明的气体处理系统在充分装载液化气体的状态(laden voyage)下,会充分产生蒸发气体,因此从液化气体储存罐10排出的蒸发气体可经由蒸发气体头、被蒸发气体压缩机20压缩并向高压发动机3a或低压发动机3b等供给而被消耗。

图15是表示船速与气体消耗量之间关系的曲线,根据船速可分为四个区间(Section)。首先,在包括从停泊状态到以低于12knots的低速航行的状态的区间1中,可以看出在载货航行下的蒸发气体量高于由高压发动机3a和低压发动机3b消耗的气体消耗量。

另外,在随着船速增加而由高压发动机3a等消耗的气体消耗量逐渐增加的区间2,仍然载货航行下的蒸发气体量高于由高压发动机3a等消耗的气体消耗量。

因此,本发明的蒸发气体再液化系统2优选在载货航行时通过在区间1和区间2运转来使蒸发气体液化。

但是,在船速大的区间3的情况下,可以不启动蒸发气体再液化系统2,在船速非常大的区间4的情况下反而高压发动机3a等的气体消耗量高于蒸发气体的量,因此在不启动蒸发气体再液化系统2状态下可以进行液化气体的供给。

如上所述,在还包括向蒸发气体再液化系统2供给液化气体的构成要素的气体处理系统中,本发明可以考虑船速等因素而有效地控制蒸发气体的再液化、液化气体的供给等。

本发明不限定于上述说明到的实施例,当然可以包括将所述实施例的组合或所述实施例中的任意一种和公知技术的结合作为另一实施例。

以上,以本发明的实施例为中心说明了本发明,但是这仅是示例并不是限定本发明,对本领域普通技术人员而言,在不脱离本实施例的本质技术内容的范围内,能够进行实施例中没有示例的各种组合或变形和应用。因此,应被解释为与从本发明的实施例能够容易导出的变形和应用相关的技术内容均属于本发明。

36页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:具有流线型行驶机构的两栖交通工具

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!