氮化硅粉末及其制造方法、以及氮化硅烧结体的制造方法

文档序号:1803508 发布日期:2021-11-05 浏览:25次 >En<

阅读说明:本技术 氮化硅粉末及其制造方法、以及氮化硅烧结体的制造方法 (Silicon nitride powder, method for producing same, and method for producing silicon nitride sintered body ) 是由 宫下敏行 中村祐三 于 2020-03-26 设计创作,主要内容包括:提供总氟量为100~1000质量ppm且Fe、Al及Ca的合计量为100~1000质量ppm的氮化硅粉末。提供氮化硅粉末的制造方法,其具有下述工序:将包含硅粉末和氟化物且相对于硅粉末而言的氟化物的含量为0.1~2质量%的原料在包含氮与选自由氢及氨组成的组中的至少一者的混合气氛下进行烧成而制得烧成物的工序;和使用氟化氢浓度为10~40质量%的氢氟酸对烧成物进行处理的工序。(Provided is a silicon nitride powder having a total fluorine content of 100 to 1000 mass ppm and a total amount of Fe, Al and Ca of 100 to 1000 mass ppm. Provided is a method for producing a silicon nitride powder, which comprises the steps of: a step in which a raw material that contains silicon powder and a fluoride and has a fluoride content of 0.1 to 2 mass% relative to the silicon powder is fired in a mixed atmosphere that contains nitrogen and at least one selected from the group consisting of hydrogen and ammonia to produce a fired product; and a step of treating the fired product with hydrofluoric acid having a hydrogen fluoride concentration of 10 to 40 mass%.)

氮化硅粉末及其制造方法、以及氮化硅烧结体的制造方法

技术领域

本公开文本涉及氮化硅粉末及其制造方法、以及氮化硅烧结体的制造方法。

背景技术

氮化硅为强度、硬度、韧性、耐热性、耐腐蚀性、耐热冲击性等优异的材料,因此被用于压铸机及熔炼炉等各种工业用的部件及汽车部件等。还研究了氮化硅基板作为汽车及工作机械等的电力模组等的绝缘基板的用途。例如,在专利文献1中,提出了铝-陶瓷接合基板使用氮化硅基板的方案。基于这样的用途,要求具有高绝缘性及散热性。

作为氮化硅基板的制造中使用的氮化硅粉末的合成方法,已知有:将硅粉末在氢气或氨气与氮气的混合气氛下氮化的直接氮化法、二氧化硅粉末的还原氮化法及酰亚胺分解法等。其中,根据酰亚胺分解法,能够制造杂质少的氮化硅粉末(例如,参见专利文献2)。

现有技术文献

专利文献

专利文献1:日本特开2011-077546号公报

专利文献2:日本特开2000-302421号公报

发明内容

发明要解决的课题

在用于基板的氮化硅烧结体中,作为对热导率产生影响的因素,认为有氮化硅烧结体中包含的杂质。氮化硅烧结体中的杂质受氮化硅烧结体的制造中使用的氮化硅粉末中的杂质的影响。但杂质中的哪种成分对氮化硅烧结体的热导率产生何种程度的影响尚不清楚。

在此,就减少氮化硅粉末的杂质而言,酰亚胺法是有效的,但存在制造成本升高的倾向。因此,寻求容许某种程度的杂质以降低制造成本并且能够形成具有高热导率的氮化硅烧结体的氮化硅粉末。

因而,在本公开文本中,提供能够以低制造成本制造具有高热导率的氮化硅烧结体的氮化硅粉末及其制造方法。另外,在本公开文本中,提供能够以低制造成本制造具有高热导率的氮化硅烧结体的氮化硅烧结体的制造方法。

用于解决课题的手段

就本公开文本的一个方面涉及的氮化硅粉末而言,总氟量为100~1000质量ppm,Fe、Al及Ca的合计量为100~1000质量ppm。在这样的氮化硅粉末中,Fe、Al及Ca的合计含量处于规定的范围内,因此能够使用通用级别的原料并使用常规的制造设备来制造。另外,总氟量也处于规定的范围内,因此,能够使用例如氮化助剂(Li、Na、K、Mg、Ca、Sr、Ba元素的氟化物)作为原料来降低制造氮化硅粉末时的烧成温度。基于以上要因,能够降低氮化硅烧结体的制造成本。另外,总氟量及Fe、Al及Ca的合计量为规定值以下,因此在作为烧结原料使用时,能够制得具有高热导率的氮化硅烧结体。

优选上述氮化硅粉末的表面氟量为300质量ppm以上。表面存在的氟在制造氮化硅烧结体时具有促进烧结的作用。因此,即使降低烧成温度也能够充分地进行烧结。因此,能够进一步降低制造成本或提高强度。

上述氮化硅粉末的表面氟量相对于总氟量之比可以为0.5以上。由此,与内部相比,表面存在的氟的比例变高,能够进一步进行烧结。因此,能够进一步降低制造成本或提高强度。

上述氮化硅粉末的表面氟量相对于总氟量之比可以为0.66以下。由此,能够充分降低在作为原料使用氮化助剂制造氮化硅粉末时的烧成温度。由此,能够进一步降低制造成本。

本公开文本的一个方面涉及的氮化硅粉末的制造方法具有下述工序:将包含硅粉末和氟化物且相对于硅粉末而言的氟化物的含量为0.1~2质量%的原料在包含氮与选自由氢及氨组成的组中的至少一者的混合气氛下进行烧成而制得烧成物的工序;和使用氟化氢浓度为10~40质量%的氢氟酸对烧成物进行处理的工序。

该制造方法能够以比酰亚胺法低的制造成本制造氮化硅粉末。另外,由于使用氟化物的含量处于规定范围的原料,因此能够降低使用例如氮化助剂作为原料来制造氮化硅粉末时的烧成温度从而降低制造成本。另外,由于使用氟化氢浓度为10~40质量%的氢氟酸对烧成物进行处理,因此表面有氟存在。由此,在作为烧结原料使用时能够促进烧结,能够制造具有高热导率的氮化硅烧结体。

就使用上述制造方法制造的氮化硅粉末而言,总氟量可以为100~1000质量ppm,Fe、Al及Ca的合计量可以为100~1000质量ppm。

本公开文本的一个方面涉及的氮化硅烧结体的制造方法具有对包含使用上述氮化硅粉末的制造方法制造的氮化硅粉末的烧结原料进行成型并烧成的工序。根据该制造方法,能够以低成本制造具有高热导率的氮化硅烧结体。

发明的效果

根据本公开文本,可提供能够以低成本制造具有高热导率的氮化硅烧结体的氮化硅粉末及其制造方法。另外,根据本公开文本,可提供能够以低成本制造具有高热导率的氮化硅烧结体的氮化硅烧结体的制造方法。

具体实施方式

以下,说明本公开文本的一个实施方式。但以下实施方式为用于说明本公开文本的例示,并非旨在将本公开文本限定为以下内容。

一个实施方式涉及的氮化硅粉末(Si3N4粉末)的总氟量为100~1000质量ppm,Fe、Al及Ca的合计量为100~1000质量ppm。从进一步降低使用例如氮化助剂作为原料来制造氮化硅粉末时的烧成温度从而进一步减少氮化硅粉末的制造成本的观点出发,氮化硅粉末的总氟量可以是200质量ppm以上,可以是300质量ppm以上,也可以是400质量ppm以上。

在将氮化硅粉末作为烧结原料使用时,从制得具有充分高的热导率的氮化硅烧结体的观点出发,氮化硅粉末的总氟量可以是900质量ppm以下,可以是850质量ppm以下,也可以是800质量ppm以下。通过使总氟量的上限降低,从而氮化硅烧结体中包含的氟减少,能够充分提高热导率。但是,即使氮化硅粉末中包含上述下限值左右的氟,也不会对热导率产生大的影响。

从进一步减少氮化硅粉末的制造成本的观点出发,氮化硅粉末的Fe、Al及Ca的合计量可以是200质量ppm以上,可以是300质量ppm以上,也可以是400质量ppm以上。这样的氮化硅粉末能够以低制造成本制造。作为这样的方法,例如可举出使用硅粉末的直接氮化法。就作为原料使用的硅粉末而言,能够使用常规的市售材料或采用常规的方法合成使用。

在将氮化硅粉末作为烧结原料使用时,从制得具有高热导率的氮化硅烧结体的观点出发,氮化硅粉末的Fe、Al及Ca的合计量可以是900质量ppm以下,可以是800质量ppm以下,也可以是700质量ppm以下。Fe、Al及Ca为氮化硅粉末的原料中通常包含的杂质,对氮化硅烧结体的特性产生的影响大。因此,通过使这些杂质的上限降低,从而能够充分提高氮化硅烧结体的热导率。但是,即使氮化硅粉末中包含上述下限值左右的Fe、Al及Ca,对热导率的影响也不大。

优选氮化硅粉末的表面氟量为300质量ppm以上。由此,能够在制备氮化硅烧结体时促进烧结,提高氮化硅烧结体的强度。另外,也能够降低烧结温度从而进一步降低制造成本。从同样的观点出发,表面氟量可以是350质量ppm以上,也可以是400质量ppm以上。从制造容易性的观点出发,该表面氟量的上限可以是800质量ppm以下,也可以是700质量ppm以下。表面氟量能够通过变更对氮化硅粉末进行氢氟酸处理时的条件(氟化氢的浓度等)来调节。表面氟为结合或附着于氮化硅粉末的表面的氟。

从充分提高所制造的氮化硅烧结体的强度的观点出发,表面氟量相对于总氟量之比可以是0.5以上,也可以是0.6以上。另一方面,从进一步降低制造成本的观点出发,表面氟量相对于总氟量之比可以是0.66以下。

从高水准地同时实现低制造成本和高热导率的观点出发,氮化硅粉末的内部氟量可以是150~800质量ppm,也可以是200~700质量ppm。内部氟为不在氮化硅粉末的表面露出而存在于粉末的内部的氟。内部氟量能够通过改变氮化硅粉末的原料中配合的含有氟的氮化助剂的比例来调节。需要说明的是,氮化助剂为具有促进硅的氮化反应的功能的物质。作为这样的物质,可举出Li、Na、K、Mg、Ca、Sr、Ba元素的氟化物。

氮化硅粉末的总氟量能够通过使用离子色谱仪对使氮化硅粉末燃烧而脱离的氟的量进行定量来求出。表面氟量可如下求出:将使氮化硅粉末分散到水中而成的分散水煮沸,将存在于氮化硅粉末的表面的氟提取到水中,并使用离子色谱仪对所提取的氟进行定量。内部氟量可从总氟量中减去表面氟量来求出。在本公开文本中,总氟量为氟的质量相对于氮化硅粉末的整体质量的比率。另一方面,内部氟量为内部的氟的质量相对于氮化硅粉末的整体质量的比率。另外,表面氟量为表面的氟的质量相对于氮化硅粉末的整体质量的比率。因此,以下的算式成立。

总氟量(质量ppm)=内部氟量(质量ppm)+表面氟量(质量ppm)

一个实施方式涉及的氮化硅粉末的制造方法具有下述工序:烧成工序,在将硅粉末与氟化物混合,制得相对于硅粉末而言的氟化物的含量为0.1~2质量%以下的原料,然后在包含氮与选自由氢及氨组成的组中的至少一者的混合气氛下对该原料进行烧成而制得烧成物;粉碎工序,对烧成物进行粉碎;和后处理工序,使用氟化氢浓度为10~40质量%的氢氟酸对粉碎后的烧成物进行处理。

与硅粉末混合的氟化物作为氮化助剂而发挥功能,例如可举出Li、Na、K、Mg、Ca、Sr、Ba元素等氟化物。原料中的相对于硅粉末而言的氟化物的含量可以为0.3~1.8质量%。若原料中的相对于硅粉末而言的氟化物的含量过高,则存在氮化硅粉末的总氟量及Ca量变高的倾向。通过改变硅粉末的纯度和氟化物的配合比例,从而能够调节氮化硅粉末的总氟量及Fe、Al、Ca的合计含量。从顺利地进行总氟量及Fe、Al、Ca的合计含量处于上述范围的氮化硅粉末的制造的观点出发,与氟化物混合的硅粉末的纯度例如可以为99.0~99.9质量%。

在烧成工序中,在包含氮与选自由氢及氨组成的组中的至少一者的混合气氛下对包含硅粉末和氟化物的原料进行烧成而制得氮化物。混合气氛中的氢和氨的含有比例的合计可以为10~40体积%。烧成温度可以是例如1100~1450℃,也可以是1200~1400℃。烧成时间可以是例如30~100小时。

在烧成工序中制得的氮化硅成为锭状的情况下,实施将烧成物进行粉碎的粉碎工序。粉碎也可以分为粗粉碎和微粉碎的多个阶段进行。粉碎例如也可以使用球磨机以湿式进行。烧成物可以粉碎至比表面积变为8.0~15.0m2/g。

在后处理工序中,将粉碎后的烧成物与氟化氢浓度为10~40质量%的氢氟酸配合来进行处理。例如,也可以使烧成物分散到氢氟酸中进行处理。氢氟酸中的氟化氢浓度可以为15~30质量%。后处理工序中的氢氟酸的温度为例如40~80℃。另外,将氮化硅粉末浸渍在氢氟酸中的时间为例如1~10小时。

通过这样的制造方法,能够将氮化硅粉末的总氟量、内部氟量、表面氟量及Fe、Al、Ca的合计含量调节为上述范围。该制造方法为与所谓直接氮化法相当的方法,能够以比酰亚胺法低的制造成本制造氮化硅粉末。这样的氮化硅粉末虽然以某种程度含有杂质,但能够优选用作具有高热导率的氮化硅烧结体的烧结原料。

一个实施方式涉及的氮化硅烧结体的制造方法具有对包含上述氮化硅粉末作为主成分的烧结原料进行成型并烧成的工序。除了氮化硅粉末以外,烧结原料也可以包含氧化物系烧结助剂。作为氧化物系烧结助剂,可举出Y2O3、MgO及Al2O3等。烧结原料中的氧化物系烧结助剂的含量可以为例如3~10质量%。在该工序中,氮化硅粉末的表面存在的氟与氧化物系烧结助剂反应,氮化硅的烧结得以促进。

在上述工序中,以例如3.0~30MPa的成型压力对上述烧结原料加压而制得成型体。成型体也可以进行单轴加压来制备或通过CIP来制备。另外,也可以一边通过热压进行成型一边进行烧成。成型体的烧成可以在氮气或氩气等非活性气体气氛中进行。烧成时的压力可以是0.7~1MPa。烧成温度可以是1860~2100℃,也可以是1880~2000℃。该烧成温度时的烧成时间可以是6~20小时,也可以是8~16小时。至烧成温度为止的升温速度可以是例如1.0~10.0℃/小时。

像这样制造的氮化硅烧结体因制造成本低且具有高热导率而散热性优异。另外,通过提高原料中使用的氮化硅粉末的表面氟量,从而能够制得强度也优异的氮化硅烧结体。氮化硅烧结体的热导率在例如25℃的环境下可以为100W/mK以上,也可以为110W/mK以上。氮化硅烧结体的3点弯曲强度例如于室温可以为500MPa以上,也可以为600MPa以上。

以上对几个实施方式进行了说明,但本公开文本不受上述实施方式任何限定。

实施例

参照实施例及比较例更详细地说明本公开文本的内容,但本公开文本不限定于下述实施例。

(实施例1)

<氮化硅粉末的制备>

将市售的硅粉末(比表面积:3.0m2/g)浸渍在混酸中实施前处理。在前处理中,将硅粉末加入温度调节为60℃的上述混酸中并浸渍2小时。作为前处理中使用的混酸,使用将市售的盐酸(浓度:35质量%)与氢氟酸(浓度:55质量%)以10:1的质量比配合的物质。其后,从混酸中取出硅粉末后用水清洗,并在氮气氛下进行干燥。

将干燥后的硅粉末与氟化钙配合以对原料进行制备。此时,将氟化钙以1.5质量%的比率与硅粉末配合。使用该原料制备成型体(体积密度:1.4g/cm3),并使用电炉于1400℃进行60小时的烧成以制备氮化硅锭。烧成时的气氛为氮与氢的混合气氛(N2:H2=80:20,体积基准)。在将所制得的锭粗粉碎后,使用球磨机进行湿式粉碎。

进行将湿式粉碎而得的氮化硅粉末在温度60℃的氢氟酸(浓度:10质量%)中浸渍2小时的后处理。其后,将氮化硅粉末从氢氟酸中取出后用水清洗,并在氮气氛下进行干燥。像这样,制得实施例1的氮化硅粉末。

<氮化硅粉末的评价>

通过以下步骤测定氮化硅粉末的总氟量、表面氟量及内部氟量。使用自动试样燃烧装置(三菱化学株式会社制,装置名称:AQF-2100H型)对氮化硅粉末进行加热,使所产生的气体溶解于水中。使用离子色谱仪(赛默飞世尔科技公司制,装置名称:ICS-2100)测定溶解于水中的氟。基于该测定值计算氮化硅粉末的氟浓度(总氟量)。

将2.5g的氮化硅粉末投入于180℃煮沸的25ml的水中,持续煮沸2小时,将氟提取到水中。使用离子色谱仪(赛默飞世尔科技公司制,装置名称:ICS-2100)测定提取到水中的氟。基于该测定值计算氮化硅粉末的表面的氟量(表面氟量)。从总氟量中减去表面氟量以求出内部氟量。这些结果如表1所示。

氮化硅粉末的Fe、Al、Ca含量使用荧光X射线分析装置(株式会社理学制,装置名称:ZSX-PrimusII)测定。各含量及合计含量如表1所示。

<氮化硅烧结体的制备>

将90质量份所制备的氮化硅粉末、5质量份平均粒径为1.5μm的Y2O3粉末、5质量份平均粒径为1.2μm的Yb2O3粉末配合,在甲醇中湿式混合4小时。其后,以10MPa的压力对干燥而得的混合粉末进行模具成型,其后,进一步以25MPa的压力进行CIP成型。将所制得的成型体与由氮化硅粉末及BN粉末的混合粉末形成的填充粉末一并放入碳制的坩埚中。将该坩埚在1MPa的氮加压气氛下、于温度1900℃进行12小时烧成而制得氮化硅烧结体。

<氮化硅烧结体的评价>

对氮化硅烧结体进行研削加工,制备热导率测定用的的圆盘体。通过激光闪光法(基于JIS R1611)测定热扩散率和比热容量,计算烧结体的密度、热扩散率及比热容量的乘积而作为室温时的热导率。另外,基于JIS R1601:2008制备强度测定用的试验片,测定室温时的3点弯曲强度。测定结果以实施例1的测定值为基准并以相对值示于表2。

(实施例2~4、比较例1~4)

将氟化钙相对于硅粉末的配合比例设为表1所示,并且将后处理中使用的氢氟酸的浓度(氟化氢的浓度)如表1所示进行变更,除此以外,以与实施例1同样的方式制备氮化硅粉末。以与实施例1同样的方式求出各实施例及各比较例的总氟量、表面氟量及内部氟量。另外,求出表面氟量相对于总氟量的比值(在表1中,表示为“表面/整体”)。结果如表1所示。

以与实施例1同样的方式,使用氮化硅粉末制备氮化硅烧结体并进行评价。测定结果作为以实施例1的测定值为基准的相对值而示于表2。

[表1]

[表2]

产业上的可利用性

根据本公开文本,可提供能够以低制造成本制造具有高热导率的氮化硅烧结体的氮化硅粉末及其制造方法。另外,根据本公开文本,可提供能够以低制造成本制造具有高热导率的氮化硅烧结体的氮化硅烧结体的制造方法。

8页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:氮化硅粉末及其制造方法、以及氮化硅烧结体的制造方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!