一种金刚石膜生长方法、具有金刚石膜的硅片与应用

文档序号:1811412 发布日期:2021-11-09 浏览:27次 >En<

阅读说明:本技术 一种金刚石膜生长方法、具有金刚石膜的硅片与应用 (Diamond film growth method, silicon wafer with diamond film and application ) 是由 杨国永 江南 于 2020-05-06 设计创作,主要内容包括:本申请公开了一种金刚石膜生长方法、具有金刚石膜的硅片与应用,所述生长方法包括将硅片浸泡在金刚石粉分散液中,得到预处理后的硅片,其中,所述硅片的一面设有由沟槽形成的图形;对所述预处理后的硅片进行热丝化学气相沉积,得到具有金刚石膜的硅片,所述金刚石膜覆盖所述沟槽的底部和侧壁。该方法克服了在较窄较深沟槽内金刚石难形核、难生长问题,避免了沟槽底部及侧壁无法完好成膜导致的绝缘效应无法保证的问题;该方法尤其适合对带有宽16~50μm、深1~180μm沟槽的硅片进行成膜。(The application discloses a diamond film growth method, a silicon wafer with a diamond film and an application, wherein the growth method comprises the steps of soaking the silicon wafer in diamond powder dispersion liquid to obtain a pretreated silicon wafer, wherein one surface of the silicon wafer is provided with a pattern formed by grooves; and carrying out hot wire chemical vapor deposition on the pretreated silicon wafer to obtain the silicon wafer with the diamond film, wherein the diamond film covers the bottom and the side wall of the groove. The method solves the problems that the diamond in the narrower deep groove is difficult to nucleate and grow, and the problem that the insulation effect cannot be ensured due to the fact that the bottom and the side wall of the groove cannot be formed into a film perfectly is solved; the method is particularly suitable for forming a film on a silicon wafer with a groove with the width of 16-50 mu m and the depth of 1-180 mu m.)

一种金刚石膜生长方法、具有金刚石膜的硅片与应用

技术领域

本申请涉及一种金刚石膜生长方法、具有金刚石膜的硅片与应用,属于金刚石材料领域。

背景技术

金刚石作为特殊的晶体结构,具有高硬度、耐磨耐腐蚀、高熔点、宽带隙、高透光率、极佳的物理化学稳定性、非常好的绝缘性能等众多优异性能,在机械加工、海洋动密封、微机电系统、场发射、光学窗口、电化学、声学、生物医学等领域具有广泛的应用。

热丝CVD具有装置简单,工艺控制性好、容易实现大面积沉积、制备成本较低等优点,成为目前应用最为广泛的金刚石膜制备技术。

随着微电子技术的发展,在硅片上制作各种集成化图形,具有图形化金刚石膜的硅片可用作微电子、微传感器等器件。例如,根据图形在硅片上设置沟槽,并在沟槽内生长金刚石涂层,达到连续薄膜保持绝缘效应值。

当硅片沟槽宽度较窄(<50μm)、深度过深(>100μm)时,现有热丝CVD工艺过程中温度场膜层或粒子很难进入到沟槽内部,随着能量的降低或达到阀值,在沟槽侧壁和底部难以成膜,无法满足绝缘效应要求。

发明内容

根据本申请的第一个方面,提供了一种金刚石膜生长方法,该方法克服了在较窄较深沟槽内金刚石难形核、难生长问题,避免了由于沟槽底部及侧壁无法完好成膜导致的绝缘效应无法保证的问题;该方法尤其适合对带有宽16~50μm、深1~180μm沟槽的硅片进行成膜。

一种金刚石膜生长方法,至少包括以下步骤:

(1)将硅片浸泡在金刚石粉分散液中,得到预处理后的硅片,其中,所述硅片的一面设有由沟槽形成的图形;

(2)对所述预处理后的硅片进行热丝化学气相沉积,得到具有金刚石膜的硅片,所述金刚石膜覆盖所述沟槽的底部和侧壁;

其中,所述的热丝化学气相沉积,具体条件包括:

发热丝数量为8~10根、单丝功率为700~1100W;

气源为H2和CH4的混合气体,其中H2的流量为200~400sccm,CH4的流量为氢气的1~8%。

本申请实施例中,硅片表面通过图形化工艺形成沟槽,沟槽截面可以为U型、矩形等,本申请不做限定,优选U型。

可选地,步骤(1)中所述金刚石粉分散液中金刚石粉的粒径为50~100nm;

所述金刚石粉分散液中金刚石粉的含量为0.001~0.05g/mL,优选0.01~0.03g/mL。

发明人在实现本发明的过程中发现,当金刚石粒径及在分散液中的含量满足上述要求时能确保金刚石粉顺利进入沟槽,又能在槽内均匀扩散,为形核提供有利条件确保成膜的均匀性。

可选地,步骤(1)中所述金刚石粉分散液中溶剂为挥发性有机溶剂;

所述挥发性有机溶剂选自乙醇。

可选地,步骤(1)具体包括:

(1-a)将金刚石粉加入挥发性有机溶剂中,超声分散5~10min,得到金刚石粉分散液;

(1-b)将硅片加入步骤(1-a)提供的金刚石粉分散液中浸泡1~3h,得到预处理后的硅片。

可选地,步骤(1-b)具体包括:

将硅片加入步骤(1-a)提供的金刚石粉分散液中浸泡15~20min后取出,重新超声处理金刚石粉分散液5~10min,然后加入取出的硅片继续浸泡15~20min,重复3~5次。

由于沟槽开口较窄较深,当按照上述方式浸泡时可防止由于分散液密度改变导致的金刚石粉浸入不到沟槽底部的问题,进一步提高形核密度的同时也保证了表面形核的均匀性。

可选地,步骤(2)所述的热丝化学气相沉积的具体条件还包括:

单丝直径为0.1~0.7mm;

硅片与发热丝的距离为5~15mm;

工作压力为1~3Kpa;

工作温度为700~1000℃;

反应时间为10~30h;

优选地,所述的热丝化学气相沉积的具体条件包括:

发热丝数量为8~10根、单丝直径为0.1~0.7mm、单丝功率为700~1100W,优选750~950℃;

硅片与发热丝的距离为5~15mm;

气源为H2和CH4的混合气体,其中H2的流量为200~400sccm,CH4的流量为氢气的1~8%;

工作压力为1~3Kpa;

工作温度为700~1100℃,优选750~1000℃;

反应时间为10~30h。

可选地,所述沟槽的宽度为16~50μm,优选16~30μm;所述沟槽的深度为1~180μm。

可选地,步骤(2)所述的热丝化学气相沉积,具体条件包括:

发热丝数量为8~10根、单丝直径为0.1~0.7mm、单丝功率为870~890W;所述发热丝优选钽丝;

硅片与发热丝的距离为8~15mm;

气源为H2和CH4的混合气体,其中H2的流量为200~250sccm,CH4的流量为氢气的6~7.5%;

工作压力为2~2.5Kpa;

工作温度为850℃~890℃;可选地,通过在硅片下垫硅片的方式提高硅片温度;优选地,垫放2片厚度为15mm的石英片。

反应时间为25~30h。

气体流量反映室内各种成分的更新速率,在金刚石成膜工艺中,当源气体配比中碳含量较大时金刚石膜非金刚石碳成份过多,当源气体配比中碳含量较小时,硅片上金刚石成核过少,不容易生成金刚石膜,当硅片温度较高时,硅片上容易生成孤立的金刚石粒子,而不容易形成金刚石膜,该工艺条件下,可以实现匀速形核生长,有效保障样品的生长速率值,从而可以提高工艺结果的稳定性。

本申请的第二方面,提供了上述任一项所述的金刚石膜生长方法制备得到的具有金刚石膜的硅片。

本申请的第三方面,提供了上述任一项所述的金刚石膜生长方法制备得到的具有金刚石膜的硅片在微机械、微电子、微传感器、微光机电系统领域中的应用。

本申请能产生的有益效果包括:

本申请提供的金刚石涂层生长方法,通过上述预处理步骤金刚石粉的浸入,大大提高了薄膜形核阶段的形核密度,通过控制热丝处理工艺参数,在提高形核密度的同时也保证了表面形核的均匀性,克服了在较窄较深沟槽内难形核难生长问题,避免了由于沟槽底部及侧壁无法完好成膜导致的绝缘效应无法保证的问题;该方法尤其适合对带有宽16~50μm、深1~180μm沟槽的硅片进行成膜。

附图说明

图1为实施例1提供的具有金刚石膜的硅片的拉曼光谱图;

图2为实施例1提供的具有金刚石膜的硅片的电镜照片,其中图2a为沟槽位置截面图,图2b为沟槽截面局部放大图;

图3为对比例1提供的具有金刚石膜的硅片的电镜照片,其中图3a为沟槽底部位置截面图,图3b为沟槽位置俯视图;

图4为对比例2提供的具有金刚石膜的硅片的电镜照片,其中图4a为沟槽底部俯视图,图4b为沟槽位置截面图;

图5为对比例3提供的具有金刚石膜的硅片的电镜照片,其中图5a为沟槽开口位置截面图,图5b为沟槽底部位置截面图。

具体实施方式

下面结合实施例详述本申请,但本申请并不局限于这些实施例。

如无特别说明,本申请的实施例中的原料均通过商业途径购买。

本申请所用热丝化学气相沉积设备为北京泰科诺公司提供的HF-650型号;

本申请通过德国ZEISS公司提供的EVO18型号的大腔体扫描电镜(SEM4)设备获得电镜扫描图;

本申请通过Renishaw公司提供的Renishaw inVia Reflex型号的共聚焦显微拉曼光谱仪(RENISHAW)设备测得拉曼光谱图。

实施例1具有金刚石膜的硅片的制备

i)前处理:将粒径50~100纳米金刚石粉加入乙醇中,比例为2.0g/100ml在超声波超声10min后得到金刚石粉分散液;将硅片放入所述金刚石分散液中浸泡20min后取出,重新将分散液在超声波超声10min,放入取出的硅片继续浸泡20min,上述超声-浸泡过程重复4次后完成处理,得到预处理后的硅片,所述硅片经图形化处理,表面具有开口宽度为16μm、深度为180μm的U型沟槽。

ii)腔室清理:热丝化学气相沉积设备腔体内部使用无尘布、无水乙醇清理干净。

iii)衬底:样品台垫入石英片15㎜厚*2作为衬底以增加样品温度,绑直径为0.35mm的钽丝8根,保持硅片距钽丝8㎜(后续简称丝距),腔体真空抽至低于0.01Pa。

iiii)生长:通过热丝化学气相沉积设备在预处理后的硅片表面生长金刚石膜,得到具有金刚石膜的硅片,具体条件如下:

以H2和CH4的混合气体作为反应气(气源),其中H2的流量为200sccm,CH4的流量在反应的前半个小时为氢气流量的6%,后续时间为氢气流量的7.5%,工作压力为2.3Kpa、工作温度为870℃、热丝化学气相沉积设备单丝功率为880W,反应时间为30h。

对比例1

制备方法与实施例1基本相同,不同之处在于:

钽丝7根、丝距为10mm、反应半小时后CH4流量为H2流量的5.5%、单丝功率为900W、气压为2.5pa、工作温度为910℃。

对比例2

制备方法与实施例1基本相同,不同之处在于:

钽丝7根、反应半小时后CH4流量为H2流量的5.5%、单丝功率为860W、工作温度为860℃。

对比例3

制备方法与实施例1基本相同,不同之处在于:

钽丝7根、单丝功率为900W、工作温度为850℃。

对实施例提供的金刚石膜进行表征:

采用Renishaw公司提供的Renishaw inVia Reflex型号的共聚焦显微拉曼光谱仪(RENISHAW)设备测得拉曼光谱图。拉曼光谱仪进行测试,如图1所示,从图5中可以看出:金刚石厚膜的拉曼峰共有6个,依次在1134、1192、1332、1350、1470、1550cm-1处,为典型的纳米晶金刚石拉曼光谱,可见实施例1得到的是金刚石膜。

通过德国ZEISS公司提供的EVO18型号的大腔体扫描电镜(SEM4)设备获得具有金刚石膜的硅片的电镜扫描图。如图2所示,实施例1提供的金刚石膜均匀地生长在沟槽的侧壁及槽底;如图3所示,对比例1中只有硅片表面形成了部分金刚石颗粒,槽内底部及侧壁基本没有形核;如图4所示,对比例2中槽内底部及侧壁均仅具有部分金刚石颗粒,但没有成膜;如图5所示,对比例3中沟槽侧壁形成金刚石连续膜,但沟槽底部大部分区域没有成膜没有达到效果。

结论;

成膜过程中因沟槽特殊设计加工,热丝产生的热源和碳源活性粒子难以进入沟槽使内部成核遇到一定阻碍,金刚石粉摄入可以增加一定的形核密度,配合功率、气压、H2和CH4比例值使活性离子达到最佳吸附值,最终得到最佳生长值。

表1实施例、对比例工艺参数表及结果

以上所述,仅是本申请的几个实施例,并非对本申请做任何形式的限制,虽然本申请以较佳实施例揭示如上,然而并非用以限制本申请,任何熟悉本专业的技术人员,在不脱离本申请技术方案的范围内,利用上述揭示的技术内容做出些许的变动或修饰均等同于等效实施案例,均属于技术方案范围内。

12页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种用于单层过渡金属硫族化合物的通用掺杂方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!