双齿膦配体及其制备方法、应用

文档序号:182829 发布日期:2021-11-02 浏览:60次 >En<

阅读说明:本技术 双齿膦配体及其制备方法、应用 (Bidentate phosphine ligand, preparation method and application thereof ) 是由 梁浩然 李成 陈华 于 2021-09-02 设计创作,主要内容包括:本发明公开了双齿膦配体及其制备方法、应用,所述双齿膦配体采用的配体骨架不仅具有C-(2)对称性和适当的刚性,并且基于该类骨架衍生的膦配体可以在催化剂中心金属周围提供有效地空间位阻,从而能够显著地提高催化剂的选择性,此外,该类膦配体骨架合成路线简单、容易大量获得,能够有效地提高生产效率、降低工业生产成本。(The invention discloses a bidentate phosphine ligand, a preparation method and application thereof, wherein a ligand framework adopted by the bidentate phosphine ligand not only has C 2 The phosphine ligand derived based on the skeleton can provide effective steric hindrance around the central metal of the catalyst, so that the selectivity of the catalyst can be remarkably improved.)

双齿膦配体及其制备方法、应用

技术领域

本发明涉及氢甲酰化反应催化剂领域,具体涉及双齿膦配体、双齿膦配体的制备方法、以及该配体在用于氢甲酰化反应的催化剂体系中的应用。

背景技术

氢甲酰化反应是烯烃与合成气在过渡金属络合催化剂作用下反应生成比原烯烃多一分子的醛的反应过程,其产生的醛及其衍生物被广泛地用作增塑剂、织物添加剂、表面活性剂、溶剂和香料等。目前,氢甲酰化反应已成为工业应用中最重要的化学反应之一。

膦配体在氢甲酰化反应的催化剂体系中发挥着重要作用,提高膦配体的稳定性能够延长催化剂体系的循环使用次数,降低氢甲酰化反应的工艺成本,同时,膦配体骨架结构设计还能够提高主产物的收率、提高反应效率。因此,近年来开展了大量的双齿膦配体的研究。

专利CN100430139C公开了一种联萘酚骨架的取代双齿亚磷酰胺配体用于制备氢甲酰化反应的催化剂的用途,利用双齿膦配体的联萘酚骨架提高反应转化率;专利CN102746338B公开了一种螺缩酮骨架的双齿亚磷酰胺配体,该配体与过渡金属盐形成配合物后用于端烯烃的氢甲酰化反应或内烯烃的异构化-氢甲酰化反应,均具有较高的催化速率和良好的选择性;专利CN101331144B公开的具有联苯骨架的四齿膦配体可以有效地提高直链产物的比例。

发明人在研究中发现,现有技术中典型的膦配体的骨架结构复杂、合成路径长,用于氢甲酰化反应的催化剂体系后稳定性、转化率均难以进一步提高。

发明内容

本发明的目的在于提供具有新型结构的双齿膦配体及其制备方法、应用,以解决现有技术中典型的膦配体骨架结构复杂、合成路径长的问题,实现在应用于氢甲酰化反应的催化剂体系后,催化剂体系具有高稳定性、高转化率、高选择性的目的。

本发明通过下述技术方案实现:

双齿膦配体,所述双齿膦配体是具有如通式I或通式II所示的化合物,或者所述化合物的对映体、消旋体或非对映异构体:

式I和式II中,R3和R4各自独立地选自氢、卤素、C1~C8的烷基或者C1~C6的烷氧基;R1和R2各自独立地选自取代或未取代的以下基团中的任一种:

其中,Y为O、S、C1~C6的亚烷基或者亚氨基。

本技术方案中,双齿膦配体所采用配体骨架不仅具有C2对称性和适当的刚性,并且基于该类骨架衍生的膦配体可以在催化剂中心金属周围提供有效地空间位阻,从而能够显著地提高催化剂的选择性。此外,该类膦配体骨架合成路线简单、容易大量获得,能够有效地提高生产效率、降低工业生产成本。

在部分实施例中,所述基团R1和基团R2为未被取代基取代的基团。

在部分实施例中,所述基团R1和/或基团R2被卤素、磺酸基、C1~C6的烷基、C1~C6的卤代烷基、C1~C6的烷氧基、C1~C6的烷酰基、C1~C6的酯基、腈基、C1~C6的磺酸酯基取代。

在部分实施例中,所述取代为一取代、二取代、三取代、四取代、五取代、六取代、七取代或八取代。

作为本发明中双齿膦配体的优选实施方式,所述双齿膦配体具有以下任一种结构式:

本发明还提供上述任一种双齿膦配体的制备方法,所述方法包括以下步骤:将结构式为通式III的化合物与二芳基膦衍生物或环状二芳基膦衍生物反应得到通式I所述的化合物,或者通式I所述的化合物的对映体、消旋体或非对映异构体;将结构式为通式IV的化合物与二芳基膦衍生物或环状二芳基膦衍生物反应得到通式II所述的化合物,或者通式II所述的化合物的对映体、消旋体或非对映异构体

进一步地,惰性气氛保护下,二芳基膦衍生物或环状二芳基膦衍生物与通式III或通式IV所示的化合物进行反应,反应完成后过滤、蒸馏、重结晶制得所述双齿膦配体。在部分实施例中,在低温下向二芳基膦衍生物或环状二芳基膦衍生物的溶液中缓慢加入通式III或通式IV所示的化合物,加入完毕后于室温下反应,反应完成后过滤、减压蒸馏、重结晶制得所述双齿膦配体。在一个或多个实施例中,所述惰性气氛为氮气或氩气。反应完毕后,在惰性气氛保护下过滤除去不溶物,所得溶液经减压除去低沸点化合物,得到油状粗产物,经甲苯和乙醇重结晶得到所述双齿膦配体。

在部分实施例中,向二芳基膦衍生物或环状二芳基膦衍生物的溶液中缓慢加入通式III或通式IV所示的化合物的过程中,保持反应体系的温度低于室温,优选地,所述反应体系的温度为0~5℃。

本发明还提供由所述双齿膦配体构成的催化剂体系在催化烯烃氢甲酰化或烯烃异构化氢甲酰化反应中的应用。

进一步地,所述双齿膦配体与铑络合物按照一定的膦铑比构成催化剂体系,所述催化剂体系用于催化C2~C18烯烃的氢甲酰化,或者C4~C18烯烃的异构化氢甲酰化反应。

本发明与现有技术相比,具有如下的优点和有益效果:

本发明提供的双齿膦配体所采用配体骨架不仅具有C2对称性和适当的刚性,并且基于该类骨架衍生的膦配体可以在催化剂中心金属周围提供有效地空间位阻,从而能够显著地提高催化剂的选择性,并提高催化剂体系的稳定性;此外,该类膦配体骨架合成路线简单、容易大量获得,能够有效地提高生产效率、降低工业生产成本。

具体实施方式

为使本发明的目的、技术方案和优点更加清楚明白,下面结合实施例,对本发明作进一步的详细说明,本发明的示意性实施方式及其说明仅用于解释本发明,并不作为对本发明的限定。

本发明所有原料,对其来源没有特别限制,在市场上购买的或按照本领域技术人员熟知的常规方法即可制备。结构式III所示的化合物可以按照文献[J]Tetrahedron,2011,67,3685-3689中报道的方法进行合成获得,结构式IV所示的化合物可以按照文献[J]Organic Letters,2012,6,1500-1503中报道的方法进行合成获得。

本发明所有原料,对其纯度没有特别限制,本发明优选采用分析纯或化工领域常规的纯度要求。

本发明对所述取代基的表达方式没有特别限制,均采用本领域技术人员熟知的表达方式,本领域技术人员基于常识,可根据其表达方式正确理解其含义。

本发明所有原料,其牌号和简称均属于本领域常规牌号和简称,每个牌号和简称在其相关用途的领域内均是清楚明确的,本领域技术人员根据牌号、简称以及相应的用途,能够从市售中购买得到或者通过常规方法制备得到。

实施例1:

双齿膦配体1的制备:

在氩气氛下,在250mL三颈烧瓶中加入三氯化磷(0.06mol)和四氢呋喃(120mL),0~5℃下,滴加吡咯(0.12mol)、三乙胺(0.18mol)以及四氢呋喃(20ml)混合溶液,滴加完毕后,升至室温下反应8小时。在氩气氛下,过滤除去不溶物,所得溶液经减压蒸馏,收集高沸点馏分作为产品,用于下一步反应。

在氩气氛下,在50mL的三颈烧瓶中,加入上一步所得产物(16mmol)的四氢呋喃溶液(5mL),0~5℃下,缓慢滴加结构式III的化合物(R3=R4=H)(6mmol)、三乙胺(30mmol)以及四氢呋喃(10ml)的混合溶液。滴加结束后,升至室温下反应8小时,停止反应,氩气氛下,过滤除去不溶物,所得溶液经减压除去低沸点化合物,得到油状粗产物,经甲苯和乙醇重结晶得到白色固体,收率40%。

核磁共振波谱法结构表征:31P NMR(162MHz,氘代氯仿)δ109.39。

实施例2:

双齿膦配体2的制备:

在氩气氛下,在100mL三颈烧瓶中加入三氯化磷(0.01mol)和四氢呋喃(10mL),0~5℃下,滴加吲哚(0.02mol)、三乙胺(0.06mol)以及四氢呋喃(10ml)的混合溶液,滴加完毕后,升至室温下反应8小时。0~5℃下,向反应液中缓慢滴加结构式III的化合物(R3=R4=H)(3mmol)的四氢呋喃(20ml)的混合溶液。滴加结束后,升至室温下反应8小时,停止反应,氩气氛下,过滤除去不溶物,所得溶液经减压除去低沸点化合物,得到油状粗产物,经乙醇重结晶得到白色固体,收率70%。

核磁共振波谱法结构表征:31P NMR(162MHz,氘代氯仿)δ105.91。

实施例3:

双齿膦配体3的制备:

在氩气氛下,在100mL三颈烧瓶中加入联苯酚(0.01mol)和四氢呋喃(10mL),0~5℃下,滴加三氯化磷(0.01mol)、三乙胺(0.06mol)以及四氢呋喃(10ml)的混合溶液,滴加完毕后,升至室温下反应8小时。0~5℃下,向反应液中缓慢滴加结构式III的化合物(R3=R4=H)(3mmol)的四氢呋喃(20ml)的混合溶液。滴加结束后,升至室温下反应8小时,停止反应,氩气氛下,过滤除去不溶物,所得溶液经减压除去低沸点化合物,得到油状粗产物,经柱层析分离得到白色固体,收率43%。

核磁共振波谱法结构表征:31P NMR(162MHz,氘代氯仿)δ144.76。

实施例4:

双齿膦配体4的制备:

在氩气氛下,在250mL三颈烧瓶中加入三氯化磷(0.06mol)和四氢呋喃(120mL),0~5℃下,滴加吡咯(0.12mol)、三乙胺(0.18mol)以及四氢呋喃(20ml)混合溶液,滴加完毕后,升至室温下反应8小时。在氩气氛下,过滤除去不溶物,所得溶液经减压蒸馏,收集高沸点馏分作为产品,用于下一步反应。

在氩气氛下,在50mL的三颈烧瓶中,加入上一步所得产物(16mmol)的四氢呋喃溶液(5mL),0~5℃下,缓慢滴加结构式IV的化合物(R3=R4=H)(6mmol)、三乙胺(30mmol)以及四氢呋喃(10ml)的混合溶液。滴加结束后,升至室温下反应8小时,停止反应,氩气氛下,过滤除去不溶物,所得溶液经减压除去低沸点化合物,得到油状粗产物,经甲苯和乙醇重结晶得到白色固体,收率45%。

核磁共振波谱法结构表征:31P NMR(162MHz,氘代氯仿)δ109.52。

实施例5~8:

双齿膦配体1~4分别用于1-己烯氢甲酰化反应:

在50ml高压反应釜中,加入Rh(acac)(CO)2(acac=乙酰丙酮)(0.01mmol),双齿膦配体(0.03mmol),原料1-己烯(0.02mol),溶剂甲苯(3ml);随后充入合成气(CO:H2=1:1)置换三次,再次充入合成气至指定压力,迅速升温至反应温度并开始搅拌,计时;反应2h后停止搅拌,并迅速冷却至室温,取出反应液分析。

分别采用双齿膦配体1~4的实施例5~8的反应结果详见表1:

表1:

实施例 膦配体 反应压力 反应温度 转化率 成醛率 正构醛/异构醛比例
5 1 3MPa 80℃ >99% 95 220
6 2 3MPa 80℃ >99% 94 182
7 3 3MPa 80℃ >99% 70 4
8 4 3MPa 80℃ >99% 95 191

通过表1可以看出,包含双齿膦配体1~4的催化剂体系在进行烯烃氢甲酰化反应时具有高转化率和成醛率,并且通过在催化剂中心金属周围提供有效地空间位阻,能够显著地提高催化剂的选择性。

以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

9页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种卟啉磷酸酯化合物、制备方法及其作为阻燃剂的应用

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!