用于识别道路路面的凹凸的方法和系统

文档序号:1966596 发布日期:2021-12-14 浏览:14次 >En<

阅读说明:本技术 用于识别道路路面的凹凸的方法和系统 (Method and system for identifying unevenness of road surface ) 是由 A·宝尔德里尼 M·帕斯库奇 A·马格里奥齐 V·博托洛托 L·艾利瓦 V·尼科洛西 于 2020-05-04 设计创作,主要内容包括:本发明涉及用于识别任何道路路面的任何凹凸的存在的方法和系统。(The present invention relates to a method and a system for identifying the presence of any irregularities of any road surface.)

用于识别道路路面的凹凸的方法和系统

技术领域

本发明涉及用于识别道路路面的凹凸的方法和系统。

背景技术

道路路面必须以如下方式设计:确保滚动表面大致规则并且几乎无变形,以满足在道路路面上行驶的机动车辆的安全性和舒适性要求。众所周知,事实上,道路路面上的任何障碍物(诸如例如人行道、坑洼或减速带等)对机动车辆的车轮的冲击都可能对车轮充气轮胎特别是对充气轮胎的胎体(即,外胎)造成损坏。

更具体地,充气轮胎侧面的从外部可见的突起通常表示在胎体内一些帘线已经由于冲击而断裂,这是因为在诸如路缘、减速带和坑洼等物体上行驶可能导致个别帘线断裂。

如果未及时检测到被损坏的充气轮胎(例如,一些帘线断裂的充气轮胎),并且因此未及时修理或更换,继续使用被损坏的充气轮胎行驶,则(例如,在其他障碍物进一步冲击被损坏的充气轮胎的情况下)存在完全破坏/摧毁充气轮胎的胎体并且还损坏轮辋和/或悬架的风险。

至今为止,主要为了计划维护工作的目的,定期执行系统以监测个别道路的规整性水平。通常,所述监测系统基于对国际平整度指数(International Roughness Index(IRI))的计算,其中IRI代表针对道路路面的凹凸的国际指数。

然而,近年来,在汽车行业内,强烈需要用于检测道路表面状况的技术,该技术能够自动且持续地检测潜在障碍物(诸如人行道、坑洼或减速带等)的存在,并且能够及时地向这种机动车辆的驾驶员报告潜在障碍物的存在的。

DE102009012128公开了用于确定车辆的道路表面的粗糙度的方法。

DE102007054082公开了在车载诊断系统中使用的粗糙道路检测系统。

DE102015203062公开了用于检测车辆的道路状况的方法和装置。

WO2011054363公开了用于估计行驶车辆之下的地面状况的方法。

发明内容

因此,本发明的目的在于提供用于识别道路路面的凹凸的方法,该方法没有现有技术的缺点,并且特别地,容易且低成本地实现。

因此,本发明的另一个目的在于提供用于识别道路路面的凹凸的系统,该系统没有现有技术的缺点,并且特别地,容易且低成本地实现。

根据本发明,提供了根据所附权利要求所确定的用于识别道路路面的凹凸的方法和系统。

附图说明

现在将参考示出典型的、非限制性的实施例的附图来说明本发明,其中:

图1示意性地示出实现作为本发明的目的的用于识别道路路面的不规则的方法的系统的第一实施例,。

图2示意性地示出图1中的系统的第一变形例。

图3示意性地示出图1中的系统的第二变形例。

具体实施方式

申请人已经通过实验验证了标准化(normalized)车轮速度(即,所获取/所测量的车轮速度和对应的机动车辆速度之间的比率)与车轮在道路路面内的凹凸上行驶或冲击道路路面内的凹凸相关。在以下部分中,术语“凹凸”指道路路面上潜在存在的任何障碍物(诸如人行道、坑洼、路缘和减速带等)。

基于所进行的测试的结果,申请人已经设计并且开发了如以下部分所述的用以检测道路路面的不规则的创新技术,该技术包括预备步骤和实际凹凸检测步骤。

更具体地,该技术的优化的预备步骤涉及执行测试,该测试设想充气轮胎以机动车辆不同的速度在不同类型的凹凸上行驶或冲击不同类型的凹凸。还利用具有(在压力、大小和刚度方面的)特定特性的不同类型的充气轮胎、并且利用具有(例如,在减震器刚度方面的)特定特性的不同类型的车辆来实施预备测试步骤。

特别地,进行至少三个测试活动以研究与以下方面相关的响应:

(i)道路路面的状态和道路路面的凹凸的类型;

(ii)机动车辆的类型和充气轮胎的类型;以及

(iii)机动车辆的速度。

图1利用框图来示意性地示出用于识别道路路面的凹凸的系统1的功能架构。

特别地,用于识别道路路面的凹凸的系统1包括获取装置11,该获取装置11被安装在配备有两个或更多车轮的机动车辆上,各个车轮配备有充气轮胎并且耦合至所述机动车辆的车辆总线20(例如,基于标准控制器局域网(Controller Area Network(CAN))总线)。

根据优选的变形例,获取装置11被固定/绑定至机动车辆的底盘。特别地,获取装置11以经受与机动车辆的底盘经受的振动相同的振动的方式连接至机动车辆的底盘。

优选地,获取装置11被置于机动车辆的OBD连接器附近。

用于识别道路路面的凹凸的系统1还包括处理装置12,该处理装置12在有线或无线模式下连接至获取装置11。

获取装置11被配置为从车辆总线20获取指示机动车辆的速度和所述机动车辆的车轮的速度的信号(为了方便起见,速度信号以公里/小时或英里/小时来表示)。此外,获取装置11被配置为在输出处提供指示机动车辆的速度和其车轮的速度的测量结果。

获取装置11还被配置为从车辆总线20获取与机动车辆的行驶相关联的信号。特别地,获取装置11被配置为从车辆总线20获取诸如垂直加速度、横摆角速度(yaw rate)、俯仰和侧倾(其利用陀螺仪得到)、车辆的转向角、以及与车辆的位置相关的信息(其利用GPS信号得到)等的信号。

根据第一实施例,处理装置12被配置为从获取装置11接收指示机动车辆的速度和所述机动车辆的车轮的速度的测量结果。此外,处理装置12被配置为还从获取装置11接收指示车辆的转向角和与车辆的位置相关的信息(其利用GPS信号得到)的测量结果。

更具体地,用至少50Hz的采样频率进行与车轮速度相关的信号的获取。优选地,用100Hz的采样频率进行与车轮速度相关的信号的获取。

处理装置12用于分析指示所述机动车辆的车轮的转向角的测量结果,因此使用改变所述测量结果的分布的变换。特别地,处理装置12在可变长度的道路路面的基准段上,对指示所述机动车辆的车轮的转向角的测量结果进行FFT(快速傅里叶变换)。道路路面的基准段具有可变和/或可调的长度;道路路面的基准段的长度是2至25线性米(linearmeter),优选为5至10线性米。

所述分析利用FFT使得能够识别指示车轮的转向角的测量结果的频率内容;此外,所述分析使得能够突出根据在基准段内的机动车辆的驾驶员的驾驶风格而变化的最小阈值。

因此,处理装置12被配置为例如对指示机动车辆的车轮的速度的测量结果进行滤波。还在道路路面的基准段上进行对指示机动车辆的车轮的速度的测量结果的滤波。

滤波至少为高通型;优选地,滤波为带通型。在高通滤波器内使用在前面的部分中通过对指示车轮的转向角的测量结果进行分析而确定的最小阈值;通过这种方式,能够仅分析包含与道路路面的凹凸相关而与车辆的驾驶员的驾驶风格的信息不相关的信号部分。

然后,处理装置12被配置为基于指示机动车辆的速度和其车轮的速度的测量结果来计算标准化车轮速度,该标准化车轮速度指示车轮速度相对于机动车辆的速度的比率(优选为百分比比率)。

可选地,处理装置12被配置为基于指示机动车辆的速度和其车轮的速度来计算标准化车轮速度,该标准化车轮速度指示车轮速度相对于机动车辆的速度的比率(优选为百分比比率),并且随后在道路路面的基准段上对标准化车轮速度进行滤波。

因此,处理装置12被配置为计算所述标准化车轮速度在道路路面的基准段上的标准偏差。

上述预备步骤涉及基于所进行的测试的结果来确定一个或多个预定义模型,以在基准段上将标准化车轮速度的标准偏差与道路路面的凹凸的存在相关联。实质上,预备测试步骤接连包括如下的子步骤:在使充气轮胎以机动车辆的不同速度在不同的凹凸上行驶和/或冲击不同的凹凸的情况下进行测试;在所进行的测试期间,获取车轮速度和机动车辆的速度,并且关于利用车轮速度和机动车辆的相应速度之间的比率所进行的测试,来计算标准化车轮速度;以及构建用于将标准化速度的标准偏差与道路路面上的凹凸相关联的至少一个模型。优选地,预备步骤涉及根据充气轮胎的类型和机动车辆的类型来构建若干模型。

因此,将所述标准化车轮速度的标准偏差与在预备测试步骤期间所开发的预定义模型相比较,并且将该标准偏差用于识别道路路面的凹凸的存在。能够利用与车辆的位置相关的信息(其利用GPS信号得到)来定位已被识别出的凹凸。

根据另外的实施例,处理装置12被配置为从获取装置11接收指示垂直加速度(沿z轴)的测量结果。此外,处理装置12被配置为还从获取装置11接收指示转向角和与车辆的位置相关的信息(其利用GPS信号得到)的测量结果。获取装置11还被配置为从车辆总线20获取与机动车辆的行驶相关的信号,并且向处理装置12发送与机动车辆的行驶相关的信号。特别地,获取装置11被配置为从车辆总线20获取诸如横摆角速度、俯仰和侧倾等的信号(其利用陀螺仪得到)。

更具体地,以至少10Hz的采样频率进行与垂直加速度相关的信号的获取。

因此,处理装置12被配置为最初对指示垂直加速度的测量结果进行滤波。在可变长度的道路路面的基准段对指示垂直加速度的测量结果进行滤波。道路路面的基准段具有可变和/或可调的长度;道路路面的基准段的长度是2至25线性米,优选为5至10线性米。

滤波优选为高通型;高通滤波器的最小滤波阈值优选为小于或等于0.1Hz。

一旦进行了高通滤波,则处理装置12旨在通过改变所述测量结果的分布的变换来分析指示垂直加速度的测量结果。特别地,处理装置12对指示在基准段上的垂直加速度的测量结果进行FFT(快速傅里叶变换)。

所述分析利用FFT使得能够识别指示在基准段上的垂直加速度的测量结果的频率内容。

因此,处理装置12被配置为计算指示在基准段上的垂直加速度的测量结果的标准偏差。特别地,处理装置12被配置为计算指示在基准段上且在相关频率处的垂直加速度的测量结果的标准偏差。优选地,相关频率包括机动车辆的悬架系统振动的第一频率范围;优选地,第一频率范围是1.5Hz至3Hz。优选地,相关频率还包括机动车辆的底盘的振动的第二频率范围。

上述预备步骤涉及基于所进行的测试的结果来确定一个或多个预定义的模型以将指示在基准段上且在相关频率处的垂直加速度的测量结果的标准偏差与道路路面的凹凸的存在和大小相关联。

实质上,预备测试步骤连续包括如下的子步骤:通过使充气轮胎以机动车辆的不同的速度在不同的凹凸上行驶和/或冲击不同的凹凸来进行测试;在所进行的测试期间获取垂直加速度;以及构建用于将垂直加速度的标准偏差与道路路面的凹凸的存在和大小相关联的至少一个模型。

优选地,预备测试步骤涉及根据充气轮胎的类型和机动车辆的类型来构建若干模型。

因此,将指示在基准段上的垂直加速度的所述测量结果的标准偏差与在预备测试步骤期间所开发的预定义模型相比较,并且将该标准偏差用于识别道路路面的凹凸的存在。能够利用与车辆的位置相关的信息(其利用GPS信号得到)来定位已被识别出的凹凸。

可以交替使用在前面的部分中所描述的第一和第二实施例,以识别道路路面的凹凸的存在。可以同时且并列使用在前面的部分中所描述的第一和第二实施例以用更高的精度和更高的可靠度来识别道路路面的凹凸的存在。

图2示意性地示出用于识别道路路面的凹凸的系统1*的第一变形例,其中,利用远程地无线地(例如,利用诸如GSM、GPRS、EDGE、HSPA、UMTS、LTE、LTE-Advanced和/或第五代无线通信系统(甚至更高)等的一个或多个移动通信技术)连接至获取装置11的云类型的计算系统12*来实现/执行处理装置12。

相反地,参考图3,在用于识别道路路面的凹凸的系统1**的第二变形例中,利用安装在机动车辆2上的机动车辆的电子控制单元(ECU)12**来实现/执行处理装置12。电子控制单元12**能够方便地作为特别专用于识别道路路面的凹凸的控制单元,或者作为专用于还包括了识别道路路面的凹凸的各种任务的控制单元。

9页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:用于预测并减轻由晕车引起的干扰的方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!