一种金刚石涂层的制备方法、金刚石涂层及刀具

文档序号:45026 发布日期:2021-09-28 浏览:26次 >En<

阅读说明:本技术 一种金刚石涂层的制备方法、金刚石涂层及刀具 (Preparation method of diamond coating, diamond coating and cutter ) 是由 叶嗣林 王天乐 黄国波 于 2021-06-28 设计创作,主要内容包括:本发明公开了一种金刚石涂层的制备方法、金刚石涂层及刀具,其中,所述制备方法为:配置多种纳米尺度金刚石颗粒的悬浮液,按照纳米金刚石颗粒的粒度从大到小顺序,将该多种悬浮液依次用于在预处理后的硬质合金基体表面进行植晶,然后通过微波化学气相沉积法生长金刚石,得到金刚石涂层。本发明使用多种尺度纳米金刚石颗粒来植晶,并利用表面活性剂对金刚石颗粒进行润湿和分散,可大大提高植晶过程中基体表面的金刚石颗粒密度,使晶种充分覆盖基体表面,表面颗粒尺度丰富,所生长涂层表面光滑,兼具良好的硬度和耐磨性。(The invention discloses a preparation method of a diamond coating, the diamond coating and a cutter, wherein the preparation method comprises the following steps: preparing a plurality of suspensions of nano-scale diamond particles, sequentially using the suspensions on the surface of the pretreated hard alloy substrate for crystal implantation according to the order of the particle sizes of the nano-diamond particles from large to small, and then growing diamond by a microwave chemical vapor deposition method to obtain the diamond coating. According to the invention, the nano diamond particles with various scales are used for planting crystals, and the surfactant is used for wetting and dispersing the diamond particles, so that the density of the diamond particles on the surface of the substrate in the crystal planting process can be greatly improved, the seed crystals can fully cover the surface of the substrate, the particle size on the surface is rich, the surface of a grown coating is smooth, and the coating has good hardness and wear resistance.)

一种金刚石涂层的制备方法、金刚石涂层及刀具

技术领域

本发明属于金刚石薄膜生长领域,具体涉及一种金刚石涂层的制备方法、金刚石涂层及刀具。

背景技术

硬质合金是一种具有韧性好、硬度高、热稳定性良好的碳化物(WC、TiC)合金,在耐磨和低粗糙度加工方面应用广泛,是刀具的良好材料。随着硬质难加工材料在精细加工领域越来越多的应用,如汽车、航空航天、集成电路板等,传统的硬质合金刀具已经很难满足加工的精度要求。如何对刀具表面进行强化以扩大其应用范围,是行业内的共性技术热点。

CVD金刚石薄膜因具有天然金刚石的高硬度、低摩擦系数、良好的冲击韧性等优异的性能,并且工艺简单、可以在复杂形状的硬质合金基体上直接沉积以制造金刚石涂层刀具,而被广泛关注,是理想的工具涂层和耐磨材料。但是,与发达国家相比,我国在CVD金刚石涂层刀具的涂层制备等技术方面还存在较大差距,目前刀具市场上的金刚石涂层刀具也主要以美、德、日等工业发达国家的知名品牌刀具为主,严重阻碍了国内金刚石涂层刀具技术的发展。因此,对硬质合金基体表面沉积的金刚石薄膜开展涂层生长、力学性能研究具有重要意义,如何简单高效的制备高生长质量且兼具良好力学性能、摩擦性能的金刚石薄膜,亟待解决。

基于现有技术中存在的上述缺点和不足,特提出本发明。

发明内容

本发明的目的之一是提供一种高质量的金刚石涂层的制备方法,涂层表面光滑、粗糙度低、同时具备良好的力学性能和摩擦性能。

本发明的另一目的是提供一种硬质合金材料刀具,刀具表面有上述金刚石涂层。

为了达到上述发明目的,第一方面,本发明提供一种金刚石涂层的制备方法,该方法为:配置多种纳米尺度金刚石颗粒的悬浮液,按照纳米金刚石颗粒的粒度从大到小顺序,将该多种悬浮液依次用于在预处理后的硬质合金基体表面进行植晶,然后通过微波化学气相沉积法生长金刚石,得到金刚石涂层。

进一步地,采用3种所述纳米尺度金刚石颗粒的悬浮液,其中纳米金刚石颗粒的粒度从大到小依次为W0.25、W0.08和W0.03,相应地,植晶次数为3次。

进一步地,所述纳米尺度金刚石颗粒的悬浮液中包括纳米尺度金刚石颗粒、丙酮和表面活性剂;其中,所述尺度金刚石颗粒的质量浓度为3g/100ml-6g/100ml,所述表面活性剂的质量浓度为0.02%-0.1%。

进一步地,所述表面活性剂为十六烷基三甲基溴化铵,用于对各所述纳米尺度金刚石颗粒进行润湿和分散。

进一步地,所述植晶的过程为:将预处理后的硬质合金基体置于所述纳米尺度金刚石颗粒悬浮液中进行超声分散,超声时间为30min-60min;植晶后,用乙醇、丙酮依次清洗以去除残留的纳米尺度金刚石颗粒。

进一步地,所述预处理包括:清洗硬质合金基体,用酸碱两步法对硬质合金基体进行脱Co处理,用磁控溅射法在硬质合金基体表面沉积Ti过渡层。

进一步地,所述清洗硬质合金基体包括以下至少一种:乙醇超声清洗15分钟、去离子水清洗5分钟、丙酮清洗15分钟、去离子水清洗5分钟、去离子水清洗15分钟;清洗后,置于乙醇中备用。

进一步地,所述酸碱两步法脱Co处理包括:先用碱溶液处理30分钟,再用酸溶液处理2-6分钟;所述碱溶液为Murakami试剂,其中各组分的质量比为K3Fe(CN)6:KOH:H2O=1:1:10;所述酸溶液为混合酸,其中各组分的体积比为H2SO4∶H2O2=3:7。

进一步地,所述Ti过渡层的制备参数为:背景真空度1~3×10-6torr,功率70W,室温溅射,溅射气压8~9mtorr,溅射时间4小时;Ti层厚度400~500nm。

进一步地,所述微波化学气相沉积法的工艺参数为:沉积温度700~800℃,沉积气压3~5kPa,反应气体为氢气和甲烷,其中甲烷浓度浓度5~15%,形核时间0.5小时,沉积时间4小时,所得金刚石涂层厚度为3~4μm。

第二方面,本发明提供一种金刚石涂层,采用如第一方面任一技术方案所述的金刚石涂层的制备方法制得。

第三方面,本发明提供一种具有金刚石涂层的硬质合金复合材料刀具,包括硬质合金基体,所述硬质合金基体的表面沉积有如第二方面任一技术方案所述的金刚石涂层。

本发明与现有技术相比,有益效果是:

金刚石涂层的制备方法通过多尺度晶种按照从大到小依次在预处理基体表面进行,并结合表面活性剂对悬浮液中金刚石纳米颗粒和基体表面的润湿和分散作用,使基体表面形成多尺度、高密度的金刚石颗粒形核,从而生长后的金刚石涂层表面光滑,粗糙度低,并兼有高硬度和耐磨的优良特性,并可以根据金刚石纳米颗粒的尺寸设计表面形核密度和尺寸,方法推广性强。沉积该涂层的硬质合金刀具工作寿命长,性能良好。

附图说明

图1是本发明方法一个实施例所得的多尺度晶种表面植晶效果示意图;

图2是本发明方法一个实施例所得的金刚石涂层的表面照片,其中图2(a)为表面3D图像,图2(b-d)为表面SEM照片;

图3是本发明刀具一个实施例的硬质合金刀具在5N载荷下测试金刚石涂层的摩擦系数图;

图4是本发明的四个对比例在5N载荷下测试金刚石涂层的摩擦系数图,对比例1对应于图4(a),对比例2对应于图4(b),对比例3对应于图4(c),对比例4对应于图4(d)。

具体实施方式

以下结合具体实施例对本发明的技术方案作进一步详细描述,但是本领域相关研究人员将会理解,所列举实施例仅仅用于解释本发明,并不用于限制本发明。

本发明的金刚石涂层的制备方法,包括如下内容:使用多种尺度金刚石微粉悬浮液按照纳米金刚石粒度从大到小顺序依次在预处理后的基体表面进行植晶,且植晶用金刚石悬浮液中分散有表面活性剂。然后通过微波化学气相沉积法生长金刚石,得到金刚石涂层和覆盖有金刚石涂层的硬质合金刀具。

具体的,本发明的技术方案包括以下步骤:

(1)硬质合金基体预处理;

(2)预处理硬质合金表面按照金刚石颗粒尺寸从大大小依次进行多尺度晶种植晶,植晶用金刚石悬浮液中分散有表面活性剂;如图1所示为多尺度晶种植晶表示图,典型的制晶方案为,先以所选取颗粒尺寸最大的金刚石颗粒悬浮液进行植晶,在表面分散剂和超声的共同作用下形成如图1中a尺寸的晶核,该次植晶结束后以丙酮、乙醇清洗;再以b尺寸的金刚石颗粒悬浮液进行植晶,完成后清洗;依次完成a、b、c等多种尺度的表面形核,形核紧密,分布密度高。

对制晶过程的金刚石颗粒尺寸和种类数不作具体限定,以形成纳米晶颗粒为目的,典型但非限制性的颗粒尺寸如a为0.25μm,b为0.08μm,c为0.03微米。

(3)微波化学气相沉积法外延生长金刚石涂层,得到金刚石涂层和金刚石涂层/硬质合金刀具。

实施例为:

本实施例的金刚石涂层和覆盖有金刚石涂层的硬质合金刀具制备过程,以株洲硬质合金厂生产的YG6刀具为基体,具体包括以下步骤:

(1)硬质合金基体预处理。

a.清洗硬质合金基体。用乙醇超声清洗15分钟,去离子水清洗5分钟,丙酮清洗15分钟,去离子水清洗5分钟,去离子水清洗15分钟,置于乙醇中备用,使用时取出吹干。

b.用酸碱两步法对基体进行去Co处理。用Murakami试剂处理30分钟,其中[K3Fe(CN)6]:m(KOH):m(H2O)=1:1:10,再用混合酸处理4分钟,体积比v(H2SO4)∶v(H2O2)=3:7。腐蚀处理后用乙醇清洗后吹干。

c.磁控溅射法在基体表面沉积Ti过渡层。背景真空度1×10-6torr,功率70W,室温下溅射,溅射气压8.5mtorr,溅射时间4小时;Ti层厚度约500nm。

(2)预处理硬质合金表面按照金刚石颗粒尺寸从大大小依次进行多尺度晶种植晶,植晶用金刚石悬浮液中分散有表面活性剂。具体步骤为:

a.以丙酮为分散液,首先用W0.25金刚石微粉,按3g/100ml配置成金刚石悬浮液,超声分散5分钟分散开金刚石微粉,随后添加0.05%十六烷基三甲基溴化铵作为表面活性剂继续超声5分钟,随后将腐蚀后的基体材料放入悬浮液中,继续超声30分钟,完成后取出基片,分别经丙酮、乙醇清洗十分钟,去除表面多余微粉,保持基体表面洁净,防止生成结合力不高的金刚石颗粒。

b.以丙酮为分散液,用W0.08金刚石微粉,按3g/100ml配置成金刚石悬浮液,超声分散5分钟,随后添加0.05%十六烷基三甲基溴化铵作为表面活性剂,继续超声5分钟,随后将第一次植晶后的基体材料放入悬浮液中,继续超声30分钟,完成后取出基片,分别经丙酮、乙醇清洗十分钟,去除表面多余微粉,保持基体表面洁净。

c.以丙酮为分散液,用W0.03金刚石微粉,按3g/100ml配置成金刚石悬浮液,超声分散5分钟,随后添加0.05%十六烷基三甲基溴化铵作为表面活性剂,继续超声5分钟,随后将前次植晶后的基体材料放入悬浮液中,继续超声30分钟,完成后取出基片,分别经丙酮、乙醇清洗十分钟,去除表面多余微粉,保持基体表面洁净,完成植晶过程。

(3)微波化学气相沉积法外延生长金刚石涂层,得到金刚石涂层和金刚石涂层/硬质合金刀具,具体工艺参数包括:沉积温度750℃,样品表面H2清洗10分钟,偏压200V,形核时间30分钟,沉积气压4.5kPa,甲烷浓度10%,沉积功率沉积时间4小时。

对比例1:

本对比例的金刚石涂层的制备方法与实施例不同之处在于:

仅使用W0.25金刚石微粉进行植晶。

对比例2:

本对比例的金刚石涂层的制备方法与实施例不同之处在于:

仅使用W0.08金刚石微粉进行植晶。

对比例3:

本对比例的金刚石涂层的制备方法与实施例不同之处在于:

仅使用W0.03金刚石微粉进行植晶。

对比例4:

本对比例的金刚石涂层的制备方法与实施例不同之处在于:

植晶过程不添加表面活性剂十六烷基三甲基溴化铵。

对比例5:

以预处理的基体YG6作为对比例5。

将实施例及对比例所制得的所有样品进行表面粗糙度、力学性质和摩擦性质测试,采用Axio CSM700蔡司白光共聚焦显微镜表征所有样品的表面粗糙度,测量面积按照2.5*105μm2。采用NanoTest Vantage系统表征本样品的表面硬度(H),压痕深度不超过涂层厚度的10%,随机选取5个点,取平均值。采用摩擦磨损试验机的往复模式测量涂层的摩擦力及摩擦系数,加载力为5N,频率为200Hz,往复长度为10mm,实验测试时间为5min。所有结果如表1所示。

表1实施例及对比例的所有样品的性质、性能参数对照

表1列出了所有样品测试部分的表面粗糙度Ra、表面硬度H、摩擦系数,摩擦系数起始段均较大,是由于起始阶段样品表面部分粗糙度较大,进入测试磨损掉部分后进入稳定阶段。本发明的金刚石涂层具有较所有对比例更优的表面硬度和摩擦性能,表面硬度达到77Gpa,为所有样品中的最佳值,摩擦系数小于0.04,具有很好的耐磨性。由对比样1至对比样4可知,随着植晶用金刚石微粉的颗粒尺度的增大,晶核变大,表面粗糙度增大,表面硬度增大,摩擦系数增大,而无表面活性剂参与的对比样4,虽表面粗糙度、表面硬度较佳,但摩擦系数表现出不稳定的特征,可能是由于没有表面活性剂参与时,分散度较差,表面生长不均匀,存在部分生长不好的区域。尽管如此,所有样品的表面硬度、摩擦性能较预处理的基体材料均有大幅提升。

图2(a)为实施样表面的三维图像,表面非常均匀,只有个别区域有较高的样品表面,图3的摩擦系数图,起始阶段很短,也从侧面印证了这一点。图2(b-d)为实施样表面的SEM图像,实施样在大范围、500倍观察下表面非常均匀,表面光滑,放大至5000倍观察表面微米颗粒,尺寸约为1~2微米,放大至五万倍,表面纳米颗粒约为30nm~100nm,均表现出良好的表面光洁度。

图3和图4是实施样和对比样1-4的摩擦系数,从图中观察可得,实施样的摩擦过程,在经历短暂的磨合之后,即表现出最佳的摩擦性能,而对比样1-3,随着植晶颗粒的尺寸增大,摩擦性能略有下降,而对于对比样4,其摩擦曲线表现出一定的不稳定性,曲线表现为存在起伏的低的摩擦系数,这可能是相对于实施样,没有表面活性剂的参与,表面存在部分生长不均匀的区域,尽管如此,也表现出较对比样1-3相对更好的综合性能。

以上所述仅是对本发明的优选实施例及原理进行了详细说明,对本领域的普通技术人员而言,依据本发明提供的思想,在具体实施方式上会有改变之处,而这些改变也应视为本发明的保护范围。

12页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种通过化学气相沉积制备晶圆级二维In-2Se-3薄膜的方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!