一种钼掺杂的氧化镓复合材料及其制备方法和应用

文档序号:456451 发布日期:2021-12-31 浏览:1次 >En<

阅读说明:本技术 一种钼掺杂的氧化镓复合材料及其制备方法和应用 (Molybdenum-doped gallium oxide composite material and preparation method and application thereof ) 是由 沈锦妮 刘旭 夏种类 徐慧慧 钟玉华 于 2021-11-03 设计创作,主要内容包括:本发明属于光催化材料技术领域,具体涉及一种钼掺杂的氧化镓复合材料及其制备方法和应用。通过将(NH-(4))-(6)Mo-(7)O-(24)·4H-(2)O与Ga(NO-(3))-(3)·xH-(2)O混合,然后通过在氨水的碱性环境下进行搅拌,最后通过水热得到形貌为二维纳米片的Mo/Ga-(2)O-(3)复合材料。本发明通过简单水热合成了钼掺杂的氧化镓复合材料的光催化材料,制备原材料便宜易得,不含贵金属和污染环境的重金属,用于光解水制氢气具有优异的产氢速率,而氢气是高热能、无污染、可再生的能源。(The invention belongs to the technical field of photocatalytic materials, and particularly relates to a molybdenum-doped gallium oxide composite material and a preparation method and application thereof. By reacting (NH) 4 ) 6 Mo 7 O 24 ·4H 2 O and Ga (NO) 3 ) 3 ·xH 2 O, stirring in an alkaline environment of ammonia water, and finally obtaining Mo/Ga with the shape of a two-dimensional nanosheet through hydrothermal method 2 O 3 A composite material. The photocatalytic material of the molybdenum-doped gallium oxide composite material is synthesized by simple hydrothermal method, the raw materials for preparation are cheap and easy to obtain, and the photocatalytic material does not contain noble metals and heavy metals polluting the environment, and has excellent hydrogen production rate when being used for preparing hydrogen by photolysis of water, and the hydrogen is high-heat energy, pollution-free and renewable energy.)

一种钼掺杂的氧化镓复合材料及其制备方法和应用

技术领域

本发明属于光催化材料技术领域,具体涉及一种钼掺杂的氧化镓复合材料、及其制备方法以及在光催化产氢上的作用。

背景技术

当今世界能源消耗及环境气候变化问题亟待解决,清洁能源的开发势在必行。氢能被认为是未来最具发展潜力的和最理想化的能源之一,不仅是因为其具有较高的能量密度和热值,最主要的是它清洁的燃烧产物。然而,当今工业制氢仍然强烈依赖不可再生的化石燃料,并且在此过程中产生氢气的同时也会释放大量的二氧化碳和其他有害气体。而利用太阳能从水中制取氢气被认为是解决全球能源和环境问题的可行之法,特别是利用半导体材料作为光催化剂,在光的作用下将水分解成氢气和氧气,该方法具有清洁、低成本和可持续的优点,显示出巨大的潜力。其关键在于找到一种合适高效的催化剂。

在半导体光催化分解水的反应过程中,光照射到催化剂上,若光子的能量大于光催化剂的禁带宽度,半导体材料价带电子受到光激发跃迁到导带,与此同时,空穴被留在价带上,随后光生电子和空穴各自迁移到催化剂的表面。除此之外,如果该半导体导带电势比H+/H2(0 V vs. NHE)还原电位更负,价带电势比H2O/O2的氧化电位(1.23 V)更正,则强还原性的电子将水中的H+还原为H2,强氧化性的空穴将水中的O2- 氧化为O2。目前有很多的半导体材料可作为光催化剂,但其中大部分在纯水体系下无法实现高效产氢。Ga2O3是一种很有前景的宽带隙半导体光催化材料,其可被紫外光激发且导带电位很负(-1.10 eV),价带电位很正(3.3 eV),具有很强的还原性和氧化性,理论上可以通过光催化反应把H2O分解为H2和O2。但实际中Ga2O3纯水体系下光催化效率还有待进一步提高,并且并不能实现全解水,究其原因在于电子和空穴的分离效率较低。

发明内容

针对现有技术的不足,本发明的目的在于提供一种钼掺杂的氧化镓复合材料、及其制备方法以及在光催化产氢上的作用。该制备方法实验条件较为简便,主要通过水热即可,而且制备过程中不涉及污染环境的物质,原料便宜易得。产物形貌为二维纳米片,氧化镓经钼掺杂后显著提高了光催化产氢速率。

为达此目的,本发明采用以下技术方案:

一种用于光催化产氢钼掺杂的氧化镓复合材料的制备方法,包括以下步骤:

1)将一定量的(NH4)6Mo7O24·4H2O与Ga(NO3)3·xH2O溶于氨水中,充分搅拌,制成混合溶液;

2)将混合溶液进行水热反应,冷却,再经过离心、洗涤、干燥处理,获得Mo/Ga2O3复合材料;

所述步骤1) NH4)6Mo7O24·4H2O与Ga(NO3)3·xH2O质量之比1 ։ 20。

步骤1)所述氨水体积为80 mL,氨水的浓度是25wt%—28wt%,搅拌时间为30 min。

步骤2)所述水热温度为160℃,反应时间为10 h,干燥处理为60℃下真空干燥。

钼掺杂的氧化镓复合材料为二维纳米片形貌,其中钼的掺杂含量为5wt%。

应用:所述钼掺杂的氧化镓复合材料作为光催化剂在光解水制氢气中的应用。

本发明提出(NH4)6Mo7O24·4H2O与Ga(NO3)3·xH2O质量之比为1 ։ 20,然后通过水热法,且在160 ℃下水热10 h的条件下得到的钼掺杂的氧化镓复合材料的产氢活性最佳。

钼掺杂的氧化镓复合材料的光催化材料的光催化活性是通过在紫外灯照射下对纯水光解进行测试的。

钼掺杂的氧化镓复合材料的光催化材料的物理性能表征方法:用X射线衍射(XRD)光谱分析产物物质组成及结构情况,用场发射扫描电镜(FESEM)观察产物的形貌。

本发明的优点在于:该方案实验条件较为简便,主要通过水热即可,而且制备过程中不涉及污染环境的物质,原料易得。

与现有技术相比,本发明的有益效果为:

本发明通过简单水热合成了钼掺杂的氧化镓复合材料的光催化材料,制备原材料易得,不含贵金属和污染环境的重金属,用于光解水制氢气具有优异的产氢活性,而氢气是高热能、无污染、可再生的能源。

Mo离子的存在有利于加快电子迁移,使光生电子以更快的速率转移到催化剂表面,与水发生还原反应,生成更多的氢气。除此之外,相较于单一组分的Ga2O3,Mo掺杂的Ga2O3表面存在一定量的氧空位,氧空位可以捕获光生电子,起到电子空穴对的分离作用,降低了光生载流子的复合速率。因此,Mo掺杂的Ga2O3有更快的电子迁移率和更高的电子分离效率,从而使得产氢速率有较大提高。

附图说明

图1为实施例1合成方法所制得Mo/Ga2O3产物的XRD谱图。

图2为实施例1合成方法所制得Mo/Ga2O3纳米颗粒的SEM照片。

图3为Mo掺杂量对制氢效果的影响。

图4为水热反应温度对制氢效果的影响。

图5为水热反应时间对制氢效果的影响。

图6为 Ga2O3和5%Mo/Ga2O3的瞬态光电流响应谱图。

图7为 Ga2O3和5%Mo/Ga2O3的电子顺磁共振谱图。

图8为实施例1紫外光催化水分解的反应器示意图。

图9为实施例1光解水反应装置图。

具体实施方式

下面结合实施例进一步说明本发明,该实例只用于说明本发明,并不限制本发明。

实施例1

在磁力搅拌下,将1.0228 g Ga(NO3)3·xH2O与0.0511 g (NH4)6Mo7O24·4H2O一起溶解在80 mL氨水(25wt%)中,搅拌30 min。随后,将混合物转移到不锈钢高压釜中,密封160℃保持10 h,自然冷却至室温。沉淀物洗涤并在真空烘箱中60℃下干燥。最后,得到5%Mo/Ga2O3的目标产物。

从Mo/Ga2O3纳米粒子的XRD图(如图1)可以看出用这种方法合成的Mo/Ga2O3纳米片,其XRD图与Ga2O3的标准卡片完全吻合,不含有其它杂质,但由于Mo的元素含量较少,因此观察不到Mo元素的特征峰。从Mo/Ga2O3纳米粒子的SEM图(如图2)可以看出其形貌均一,为厚度20 nm的纳米片。

实施例2

仅更改(NH4)6Mo7O24·4H2O的加入量,其余制备方法同实施例1,分别得到Mo掺杂量为1%、3%、7%和9%的Mo/Ga2O3产物。

实施例3

仅更改水热反应温度,水热反应温度分别设置为120℃、140℃、180℃、200℃,其余制备方法同实施例1,得到系列产物。

实施例4

仅更改水热反应时间,水热反应时间分别设置为5h和15h,其余制备方法同实施例1,得到系列产物。

将实施例1-4的产物用于光催化分解水实验,研究Mo掺杂量、水热反应温度和水热反应时间对产氢活性的影响,结果如图3-5所示。从所得催化剂制氢效果图(图3)可以看出,Mo元素掺杂以后的Ga2O3的制氢活性有所提升。(NH4)6Mo7O24·4H2O与Ga(NO3)3·xH2O的最佳质量之比为1 ։ 20,最佳水热温度为160℃,最佳水热时间为10 h,在此条件下合成的样品活性最优,产氢效率为4.09 mmol·g-1h-1,是Ga2O3单一组分产氢速率(1.6 mmol·g-1h-1)的2倍多,是同等条件下3wt%Pt/Ga2O3的1.8倍。

通过光电流响应测试结果可以发现(图6),Mo离子的存在有利于加快电子迁移,使光生电子以更快的速率转移到催化剂表面,与水发生还原反应,生成更多的氢气。除此之外,相较于单一组分的Ga2O3,通过电子顺磁共振检测到Mo掺杂的Ga2O3表面存在一定量的氧空位(图7),氧空位可以捕获光生电子,起到电子空穴对的分离作用,降低了光生载流子的复合速率。因此,Mo掺杂的Ga2O3有更快的电子迁移率和更高的电子分离效率,从而使得产氢速率有较大提高。

应用例1

光催化分解水实验,具体步骤如下:

所制备的一系列钼掺杂的氧化镓复合样品的光催化水分解活性测试是在如图8所示的反应装置中进行,其操作步骤如下:将20 mg的材料催化剂放在反应器中,随后再加入155 mL的去离子水。

将反应器用真空封脂将其密封,将其连接到光解水反应系统中,使用温度为5 ℃的循环冷凝水,用图9反应装置对体系进行抽真空处理,直至体系在真空状态下维持30min。最后用125 W的高压汞灯光源照射180 min后,每隔60 min进一次样,定量环内气体混合11 min,用FL9790气相色谱来检测反应体系的产氢量。整个反应过程都是保持在同一个搅拌速度(500 r/s)下进行的。

上述实施例为本发明较佳的实现方案,除此之外,本发明还可以其它方式实现,在不脱离本技术方案构思的前提下任何显而易见的替换均在本发明的保护范围之内。

14页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种拓宽SCR催化剂反应温度窗口的催化剂及改性方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!