以碱性载体材料介孔NiO-Al2O3为载体的合成气制低碳醇钼基催化剂及其制备方法

文档序号:594197 发布日期:2021-05-28 浏览:10次 >En<

阅读说明:本技术 以碱性载体材料介孔NiO-Al2O3为载体的合成气制低碳醇钼基催化剂及其制备方法 (Mesoporous NiO-Al with alkaline carrier material2O3Molybdenum-based catalyst for preparing low-carbon alcohol from synthesis gas as carrier and preparation method thereof ) 是由 胡瑞珏 屈皓 苏海全 于 2020-12-30 设计创作,主要内容包括:本发明公开了一种以碱性载体材料介孔NiO-Al-2O-3为载体的合成气制低碳醇钼基催化剂及其制备方法,属于催化剂技术领域。所述催化剂由以下步骤制得:合成前体NiAl-LDH;将所得NiAl-LDH进行升温煅烧,得煅烧材料NiO-Al-2O-3;制备MoS-2-NiO-Al-2O-3;将(NH-4)-2MoS-4溶于浓氨水中,再加入NiO-Al-2O-3不断搅拌,晾干后研磨,再进行烧制,冷却后得MoS-2-NiO-Al-2O-3;将MoS-2-NiO-Al-2O-3与K-2CO-3研磨混合压片,过筛,得K-Mo-S/NiO-Al-2O-3。该催化剂具有优异的合成气制低碳醇活性、高的醇选择性和运行稳定性,成本低且制备方便。(The invention discloses a mesoporous NiO-Al with an alkaline carrier material 2 O 3 A molybdenum-based catalyst for preparing low-carbon alcohol from synthesis gas as a carrier and a preparation method thereof, belonging to the technical field of catalysts. The catalyst is prepared by the following steps: synthesizing a precursor NiAl-LDH; heating and calcining the obtained NiAl-LDH to obtain a calcined material NiO-Al 2 O 3 (ii) a Preparation of MoS 2 ‑NiO‑Al 2 O 3 (ii) a Will be (NH) 4 ) 2 MoS 4 Dissolving in concentrated ammonia water, adding NiO-Al 2 O 3 Continuously stirring, air-drying, grinding, firing, and cooling to obtain MoS 2 ‑NiO‑Al 2 O 3 (ii) a Mixing MoS 2 ‑NiO‑Al 2 O 3 And K 2 CO 3 Grinding, mixing, tabletting and sieving to obtain K-Mo-S/NiO-Al 2 O 3 . The catalyst has excellent activity of preparing low-carbon alcohol from synthesis gas, high alcohol selectivity and operation stability, low cost and convenient preparation.)

以碱性载体材料介孔NiO-Al2O3为载体的合成气制低碳醇钼基 催化剂及其制备方法

技术领域

本发明属于由合成气(CO和H2)制混合低碳醇的催化剂技术领域,尤其涉及一种以碱性载体材料介孔NiO-Al2O3为载体的合成气制低碳醇钼基催化剂及其制备方法。

背景技术

低碳混合醇简称低碳醇,是指由C1~C5醇构成的液体混合物。低碳醇辛烷值高,与汽油的混溶性好,具有优异的燃烧、化学加工等性能,可取代污染严重的甲基叔丁基醚(MTBE)成为首选的清洁汽油添加剂。低碳醇还可以用作发动机新一代低污染的洁净燃料直接替代石油。同时,乙醇等C2+醇(乙醇、丙醇、丁醇、戊醇等的混合物)是大宗的化工原料,用途广泛。通过煤炭、天然气和生物质等制得合成气,再催化转化为乙醇等C2+醇,既可节约粮食,减少环境污染,缓解我国粮食工业消耗过大的压力。如合成气制乙醇工艺与乙醇脱水工艺相结合,可直接生成乙烯,一定程度上替代现有的石油化工路线,有望解决世界石油资源日益紧缺的问题。

目前已有大量由一氧化碳加氢合成低碳醇的报道。其中具有代表性的有四类催化剂。(1)改性甲醇合成催化剂(Cu-Zn/Al,Zn-Cr):此催化剂由甲醇合成催化剂加入适量的碱金属或碱土金属化合物改性而得,较典型的专利有C.E.Hofsta等人EP-0034338-A2及美国专利4513100(Snam公司资助,发明人为Fattore等人)。此催化剂虽然活性较高,产物中异丁醇含量高,但反应条件较苛刻(压力为14-20MPa,温度为350~450℃),C2+醇选择性低(一般小于35%),产物中含水量高(一般为30~50%);(2)Cu-Co催化剂:法国石油研究所(IFP)首先开发了Cu-Co共沉淀低碳醇催化剂(US Patent 4122110,4291126及GB patent 218061,2158730)。此类催化剂合成的产物主要为C1-C6直链正构醇,副产物主要为C1~C6脂肪烃,反应条件温和,但稳定性较差。(3)Rh基催化剂(如US Patent 4014913及4096164):负载型Rh催化剂中加入一到二种过渡金属或金属氧化物助剂后,对低碳醇有较高的活性和选择性,特别是对C2+醇的选择性较高,产物以乙醇为主。但Rh化合物价格昂贵,催化剂易被CO2毒化。(4)MoS2基催化剂:美国DOW公司开发的钼系硫化物催化剂(US Patent 4882360、EP0119609A)是由碱掺杂的MoS2组成,具有独特的抗硫性,不易结炭,可在较高含硫量(20~100mg/m3)和较低H2/CO比(0.7~1)的原料气条件下使用。因而避免了原料气深度脱硫过程所带来的苛刻条件和昂贵成本的问题。同时,产物含水量少,C2+醇选择性较高,达30~70%,其中主要是乙醇和正丙醇。近年来,国内中科院山西煤化所对钼系硫化物催化剂体系作了较为深入的研究(见CN1631527A、CN1663683A、CN1431049A等)。低碳醇合成工艺的工业化日益引起燃料化工界的关注,而如何提高催化剂的活性和选择性以提高生产过程的效率,成为制约低碳醇合成工艺实用化和工业化的技术瓶颈。

虽然经碱金属化合物助剂改性的MoS2基催化剂有良好的合成低碳醇性能,但与大规模的工业化生产要求相差甚远,主要问题是醇的产率低、产物中甲醇含量相对较高。大幅提高总活性和醇的选择性是这一类型催化剂的研究重点。二硫化钼催化剂体系中活性组分MoS2比表面积低,且受到粒径和形态的限制也是制约其活性和醇选择性的因素之一。氧化硅介孔材料因其具有较高的比表面积、较大的孔容、较厚的孔壁以及规则的孔道和改善的机械水热稳定性(Zhao D Y,etal.,Science,1998,279:548-552;Zhao D Y,etal.,J.Am.Chem.Soc.,1998,120:6024-6037)被视为理想的新型催化剂载体。以SBA-15为载体的二硫化钼催化剂已报道用于加氢脱硫反应(Huang Z D,etal.,Catal.Lett.,2008,124:24-43),实验通过浸渍法,将活性组分Co和Mo负载在SBA-15介孔材料上,经焙烧硫化制备得到的催化剂CoMo/SBA-15对二苯基噻吩的加氢脱硫反应相比CoMo/γ-Al2O3具有更高的反应活性和选择性。合成气制低碳醇反应催化剂性能是多种复杂因素协同作用的结果,载体化学组成、载体孔结构(孔径大小,孔径分布)、载体酸碱性以及活性组分颗粒尺寸、分散、形貌、活性组分载体间的相互作用等都会对催化剂的反应活性、产物选择性和运行稳定性产生影响。而载体呈酸性有利于合成气催化产物中烃类的选择性;而载体呈碱性有利于产物中醇类的选择性。

发明内容

本发明的目的是为了解决现有技术的不足,而提供一种以碱性载体材料介孔NiO-Al2O3为载体的合成气制低碳醇钼基催化剂及其制备方法,该催化剂能有效提高单程转化率、低碳醇的选择性及时空产率,该催化剂具有优异的合成气制低碳醇活性、高的醇选择性和运行稳定性,成本低且制备方便,具有实际应用价值。

本发明采用如下技术方案:

以碱性载体材料介孔NiO-Al2O3为载体的合成气制低碳醇钼基催化剂的制备方法,包括如下步骤:

步骤一,合成前体NiAl-LDH:按比例依次加入Ni(NO3)2·6H2O,Al(NO3)3·9H2O和模板剂,搅拌反应一定时间,调节pH,将沉淀物洗涤干燥,得NiAl-LDH;

步骤二,煅烧:将步骤一所得NiAl-LDH进行升温煅烧,得煅烧材料NiO-Al2O3

步骤三,制备MoS2-NiO-Al2O3:将(NH4)2MoS4溶于浓氨水中,再加入NiO-Al2O3不断搅拌,室温晾干后进行研磨,再将产物进行烧制,自然冷却后得到MoS2-NiO-Al2O3

步骤四,合成气制低碳醇钼基催化剂:将步骤三所得产物MoS2-NiO-Al2O3与K2CO3研磨混合均匀压片,过筛,得合成气制低碳醇催化剂K-Mo-S/NiO-Al2O3

进一步地,所述模板剂、Ni(NO3)2·6H2O和Al(NO3)3·9H2O的摩尔比为0.014~0.033:3:1。

进一步地,步骤一所述模板剂为P123(聚乙二醇聚丙二醇三嵌段高聚物)或F127(聚乙氧基聚丙氧基三嵌段聚合物)。

更进一步地,步骤二中所述煅烧材料NiO-Al2O3表示为NiAlO-F127/P123-X%-Y,其中X=3、5或7,Y=320℃、500℃或750℃。

进一步地,步骤一所述搅拌反应的时间为1~4h。

进一步地,步骤一所述调节pH至9.5~11,且用碱性溶液调节;步骤一所述沉淀物于60℃下真空下干燥12~48h。

更进一步地,步骤一中用1~2mol/L的氢氧化钠溶液调节pH。

进一步地,步骤三中加入的(NH4)2MoS4和NiO-Al2O3的摩尔比为0.1~0.5:1~3,所述产物进行烧制具体为:升温程序5℃/min,550℃下保持4h。

进一步地,步骤四中MoS2-NiO-Al2O3与K2CO3的摩尔比为3~10:0.1~0.7。

本发明还提供由上述以碱性载体材料介孔NiO-Al2O3为载体的合成气制低碳醇钼基催化剂的制备方法制得的合成气制低碳醇钼基催化剂。

本发明与现有技术相比,其有益效果为:

第一:本发明以NiAl双金属层状氢氧化物(NiAl-LDH)为碱性载体材料介孔NiO-Al2O3前体,以F127或P123为模板剂,煅烧后生成介孔载体;(NH4)2MoS4为活性组分原料,通过等容浸渍和热分解法两步制备出颗粒均匀、孔径分布窄的介孔结构催化剂MoS2-NiAlOx催化剂,并且可以通过制备条件(温度、浓度、压力、反应比例等)的改变,实现对载体粒径、孔径和孔容的调变。

第二:本发明的催化剂具有抗硫性、不结碳和运行稳定性好的特点。

第三:使用本发明所制备的催化剂时,CO转化率可达38%,总醇的选择性可达88.2%;总醇的时空产率≥107mg/g cat/h。

附图说明

图1为本发明前体NiAl-LDH的XRD测试图;

图2为本发明载体NiO-Al2O3(MMO)的XRD测试图;

图3为(NH4)2MoS4的XRD测试图;

图4为催化剂MoS2-NiO-Al2O3的XRD测试图。

具体实施方式

下面结合具体实施例和附图,进一步阐明本发明,应理解这些实施例仅用于说明本发明而不用于限制本发明的范围,在阅读了本发明之后,本领域技术人员对本发明的各种等效形式的修改均落于本申请所附权利要求所限定的范围。

实施例1

(1)碱性载体材料介孔NiO-Al2O3

软模板法合成有序介孔金属氧化物NiO-Al2O的前体NiAl-LDH(NiAl双金属层状氢氧化物):按比例加入Ni(NO3)2·6H2O,Al(NO3)3·9H2O和模板剂P123/F127(物料加入量见表1),在室温下剧烈搅拌(搅拌时间1小时,转速为250rpm)。最终反应混合物用氢氧化钠溶液(浓度为1mol/L)调节至pH值10.0,将得到的沉淀物过滤洗涤干燥(用蒸馏水洗涤数次,直到滤液的pH为7,然后将洗涤的沉淀物在在60℃真空下干燥12小时)得到NiAl-LDH;

再将NiAl-LDH在马弗炉中程序升温煅烧(在马弗炉中煅烧,设置每分钟增加5℃,煅烧时间为5小时。将所得的煅烧材料NiO-Al2O3表示为NiAlO-F127/P123-X%-Y,其中X代表模板剂百分含量;Y代表煅烧温度以摄氏度表示)。

表1介孔金属氧化物NiO-Al2O的前体NiALDH制备物料配比

从图1可以看出,F127加入量不同,但前体的出峰位置基本保持一致,11.37°,23.08°,34.81°,39.19°,46.79°,60.68°处衍射面分别为NiAl(OH)4的(003),(006),(009),(015),(018),(110)。

从图2可以看出,F127添加量为3%,煅烧温度为750℃时出峰较为明显,结晶较好。F127添加量为5%,煅烧温度为320℃时,结晶度稍差。通过与标准卡片对比,载体NiAlO均含单斜态的NiO和立方态的Al。

(2)催化剂K-Mo-S/NiO-Al2O3

首先采用共沉淀法来合成前体NiAl-LDH:向烧杯中加入0.015mol的六水合硝酸镍和0.005mol的九水合硝酸铝,再放入不同量的F127或P123,搅拌溶解于30mL去离子水中,之后用2mol/LNaOH(aq)调节体系pH≈10.0,滴加NaOH(aq)时要剧烈搅拌,并逐渐增大搅拌速度,防止局部pH值过高而影响测量。将悬浊液在65℃超声水浴中加热1小时。然后进行离心分离,将浅绿色固体沉淀再用去离子水洗3次以上,至清液的pH为7。将产物放在真空干燥箱中,在60℃真空条件下干燥12h。实验中的变量是F127或P123的添加量,用X%表示。将产物LDH称重并记录(见表1)。

将LDH研磨成粉末后放入马弗炉中煅烧,升温程序5℃/min,320℃煅烧后产物为黑色,750℃煅烧后产物为绿色,产物NiO-Al2O3具体表示为NiAlO-F127/P123-X%-Y(X:模板剂F127或P123百分含量=3,5和7%;Y:煅烧温度=320,500和750℃)。将产物称重并记录。

用分析天平准确称取1.221g的(NH4)2MoS4,溶于9ml浓氨水中。再用分析天平准确称取3.00g NiO-Al2O3加入到烧杯中浸渍并不断搅拌。室温中晾干1-2天,晾干后用研钵研磨产物。把样品放于通有N2保护气的管式炉中进行烧制,升温程序5℃/min,550℃下保持4h后让其自然冷却得到MoS2-NiO-Al2O3黑色粉末。取上述棕黑色粉末2.00g与0.333g K2CO3研磨混合均匀压片,过40-60目筛。得到合成气制低碳醇催化剂K-Mo-S/NiO-Al2O3。其中活性组分Mo的质量分数为10.2%,助剂K的质量分数为4.0%,载体NiO-Al2O3的质量分数为68.5%。

由图4催化剂MoS2-NiAlOx的XRD测试分析结果可知,Ni3S2特征峰位和对应晶面为:21.77°(101),30.82°(012),31.13°(110),37.78°(003),38.31°(021),44.37°(202),49.7°(113),50.16°(211),54.6°(104),55.2°(122),55.4°(300);Cubic NiO特征峰位和对应晶面为:37.3°(111),62.9°(220);NiAl2O4:Cubic 37.0°(311),45.0°(400),65.5°(440);Monoclinic MoO2特征峰位和对应晶面为:26.0°(11-1),26.04°(110),37.0°(111),Hexagonal NiS特征峰位和对应晶面为:29.9°(100),34.3°(101),45.2°(102),53.2°(110),Hexagonal MoS2特征峰位和对应晶面为:14.4°(002),39.6°(013),49.9°(015),32.8°(010),其中Ni3S2主要出现在载体煅烧温度为320℃时所得最终产物中,MoS2主要出现在载体煅烧温度为750℃时所得最终产物中。分析结果可知,MoS2含量少的原因可能是由于载体中的O与MoS2中的S发生置换,使钼以MoO2的形式大量存在。

催化剂对合成气制低碳醇的催化活性评价在加压固定床连续流动反应器-GC系统上进行。催化剂填装量为2.0g;原料气为合成气,控制H2/CO比=1:1,Ar做内标,空速3000h-1,在11MP、320℃反应条件下进行反应。反应经稳定平衡后,尾气中的混合醇由Stabilmax毛细管柱的Shimadzu公司的GC-2014C气相色谱仪装有氢焰检测器(FID)在线分析;尾气中的CO、Ar、CH4和CO2由装有TDX-01固定相色谱柱的Shimadzu公司的GC-2014C气相色谱仪,热导检测器(TCD)在线分析;尾气中的混合烃由装有Propack-Q固定相色谱柱的Shimadzu公司的GC-2014C气相色谱仪装有FID检测器在线分析。

对上述催化剂经行合成气制低碳醇的催化活性评价结果见表2。

其中性能最优异的催化剂为Mo-S-K2CO3/NiAlO-F127-5%-320℃。

催化剂的制备方法:向烧杯中加入0.015mol的六水合硝酸镍4.36克和0.005mol的九水合硝酸铝1.88克,再放入5%的F127 0.45克,搅拌溶解于30mL去离子水中,之后用2mol/L NaOH(aq)调节体系pH≈10.0,滴加NaOH(aq)时要剧烈搅拌,并逐渐增大搅拌速度,防止局部pH值过高而影响测量。将悬浊液在65℃超声水浴中加热1小时。然后进行离心分离,将浅绿色固体沉淀再用去离子水洗3次以上,至清液的pH为7。

将产物放在真空干燥箱中,在60℃真空条件下干燥12h,得到NiAl-LDH,将其研磨成粉末后放入马弗炉中煅烧,升温程序5℃/min,320℃煅烧后产物为黑色的NiAlO-F127-5%-320℃。

取上述棕黑色粉末2.00g与0.333g K2CO3研磨混合均匀压片、过40-60目筛,得到合成气制低碳醇催化剂Mo-S-K2CO3/NiAlO-F127-5%-320℃),在11MP、320℃反应条件下该催化剂的总醇的选择性高达72.7%,C2+醇选择性高达77.8%。

表2催化剂K-Mo-S/NiO-Al2O3的评价

催化剂经行合成气制低碳醇的催化活性评价结果见表2。由表2可见:K-Mo-S/NiO-Al2O系列催化剂可以有效催化CO加氢制备低碳混合醇。在11MP、320℃反应条件下,产物中的醇类选择性均高于64.6%,C2+醇在总醇中所占的比例均高于50%;当制备时模板剂使用F127得到的催化剂C2+醇选择性总体优于使用P123得到的催化剂,前者C2+醇在总醇中所占的比例均高于66%;其中性能最优异的催化剂为Mo-S-K2CO3/NiAlO-F127-5%-320℃,其总醇的选择性高达72.7%,C2+醇在总醇中所占的比例均高达77.8%,C2+醇在总液体产物选择性高达56.6%。

对催化剂Mo-S-K2CO3/NiAlOx-P123-3%-750℃在11MP、290~320℃进行反应温度对催化性能影响评价,实验发现:升高温度对催化剂的CO的转化率影响不显著,290℃CO的转化率大约为12%,而305和320℃CO的转化率大约为13%;随着温度升高,总醇的选择性显著下降(290℃为76.8%、305℃为71.1%、320℃为64.6%),而C2+醇的分布比例明显增加(290℃为59.0%、305℃为66.9%、320℃为74.4%),随着温度升高,C2+醇总液体产物的选择性也略有提高(290℃为45.3%、305℃为47.5%、320℃为48.1%),时空产率也随反应温度而升高。

上述实施例对本发明的实施方式作了详细说明,但是本发明并不限于上述实施方式,在本领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下做出各种变化。以上所述仅为本发明较佳可行的实施例而已,并非因此局限本发明的权利范围,凡运用本发明说明书内容所作的等效结构变化,均包含于本发明的权利范围之内。

10页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种In掺杂CdS复合MoS-2的异质结析氢材料及其制法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!