信息联合的二次等式约束最小二乘辐射源定位方法

文档序号:632426 发布日期:2021-05-11 浏览:20次 >En<

阅读说明:本技术 信息联合的二次等式约束最小二乘辐射源定位方法 (Information-combined quadratic equality constraint least square radiation source positioning method ) 是由 王鼎 唐涛 尹洁昕 杨宾 吴志东 张莉 王成 赵排航 韩博臣 李长胜 于 2020-12-15 设计创作,主要内容包括:本发明属于辐射源定位领域,特别涉及一种信息联合的二次等式约束最小二乘辐射源定位方法,包含:利用若干测向站对地面短波辐射源进行二维测向,获取该辐射源方位角及仰角信息,同时构建两者的非线性观测方程;并获取电离层虚高观测模型;结合电离层虚高观测模型将方位角及仰角的非线性观测方程分别转换为伪线性观测方程并合并,形成二维角度伪线性观测方程;构建二次等式约束最小二乘优化模型,并将模型约束优化问题转化为关于拉格朗日乘子的非线性方程组问题;迭代求解并依据求解结果确定短波辐射源地心地固坐标系下的位置向量及其协方差矩阵,进而获取短波辐射源经纬度。本发明提升对短波辐射源的定位精度,获取更精确的辐射源目标定位信息。(The invention belongs to the field of radiation source positioning, and particularly relates to an information-combined quadratic equation constrained least square radiation source positioning method, which comprises the following steps: carrying out two-dimensional direction finding on a ground short wave radiation source by utilizing a plurality of direction finding stations, acquiring azimuth angle and elevation angle information of the radiation source, and simultaneously constructing nonlinear observation equations of the azimuth angle and the elevation angle; acquiring an ionospheric pseudo-height observation model; combining an ionosphere pseudo-height observation model to convert the nonlinear observation equations of the azimuth angle and the elevation angle into pseudo-linear observation equations respectively and combine the pseudo-linear observation equations to form a two-dimensional angle pseudo-linear observation equation; constructing a quadratic equality constraint least square optimization model, and converting a model constraint optimization problem into a nonlinear equation set problem about a Lagrange multiplier; and (5) iteratively solving, and determining a position vector and a covariance matrix thereof under the earth center earth-solid coordinate system of the short wave radiation source according to the solving result so as to obtain the longitude and latitude of the short wave radiation source. The invention improves the positioning precision of the short wave radiation source and obtains more accurate radiation source target positioning information.)

信息联合的二次等式约束最小二乘辐射源定位方法

技术领域

本发明属于辐射源定位领域,特别涉及一种信息联合的二次等式约束最小二乘辐射源定位方法。

背景技术

无线信号定位技术广泛应用于通信、雷达、目标监测、导航遥测、地震勘测、射电天文、紧急救助、安全管理等领域,其在工业生产和国防安全中都发挥着重要作用。对目标进行定位(即位置参数估计)可以使用雷达、激光、声纳等有源设备来完成,该类技术称为有源定位技术,它具有全天候、高精度等优点。然而,有源定位系统通常需要依靠发射大功率电磁信号来完成,因此极易暴露自己位置,容易被对方发现,从而遭到对方电子干扰影响,导致定位性能急剧恶化,甚至会危及系统自身的安全性和可靠性。目标定位还可以利用目标(主动)辐射或者(被动)散射的无线电信号来实现,该类技术称为无源定位技术,它是指在观测站不主动发射电磁信号的情况下,通过接收目标辐射或者散射的无线电信号来估计目标的位置参数。与有源定位系统相比,无源定位系统具有生存能力强、侦察作用距离远等优点,从而受到国内外学者的广泛关注和深入研究。依据观测站数量可以将无源定位系统划分成单站无源定位系统和多站无源定位系统两大类,其中多站定位系统可以提供更多的观测量,从而提高目标定位精度。众所周知,短波测向交汇定位是一类十分重要的多站无源定位技术,其主要是针对远距离超视距辐射源进行定位,该定位技术的基本原理是利用每个测向站所提供的方位角信息以及地球椭圆模型确定短波辐射源的位置信息,该类定位方法的优势是能够快速确定短波辐射源的位置坐标,但不足之处在于仅能利用各个测向站所提供的方位角信息,难以直接利用各个测向站所提供的仰角信息进行交汇定位,因此其定位精度还存在进一步提升的空间。

发明内容

为此,针对短波辐射源定位问题,本发明提供一种信息联合的二次等式约束最小二乘辐射源定位方法,不仅可以利用方位角信息,还可以利用仰角信息和电离层虚高信息,进行联合定位,提高短波测向交汇定位精度。

按照本发明所提供的设计方案,一种信息联合的二次等式约束最小二乘辐射源定位方法,用于联合方位角、仰角和电离层虚高信息对短波辐射源进行测向交汇定位,包含如下内容:

利用若干测向站对地面短波辐射源进行二维测向,获取该辐射源方位角及仰角信息,同时构建两者的非线性观测方程;并通过测向站有源探测获取电离层虚高观测模型;

结合电离层虚高观测模型将方位角及仰角的非线性观测方程分别转换为伪线性观测方程并合并,形成二维角度伪线性观测方程;

依据二维角度伪线性观测方程并结合地球椭圆模型构建用于短波辐射源定位的二次等式约束最小二乘优化模型,并利用拉格朗日乘子法将模型约束优化问题转化为关于拉格朗日乘子的非线性方程组问题;

对非线性方程组进行迭代求解,依据拉格朗日乘子估计值确定短波辐射源地心地固坐标系下的位置向量及其协方差矩阵,进而获取短波辐射源经纬度。

作为本发明信息联合的二次等式约束最小二乘辐射源定位方法,进一步的,假设在地面放置M个测向站,利用该M个测向站对地面短波辐射源进行二维测向,依据地面短波辐射源经纬度及测向站经纬度来获取短波辐射源方位角及仰角。

作为本发明信息联合的二次等式约束最小二乘辐射源定位方法,进一步地,依据测向站及短波辐射源在地心地固坐标系下位置向量来表示方位角非线性观测方程;根据测向站与辐射源之间地心角信息及短波辐射源信号到测向站传播路径所对应的电离层虚高来表示仰角非线性观测方程;根据测向站对应的电离层虚高真实值及电离层虚高观测值来表示电离层虚高观测模型。

作为本发明信息联合的二次等式约束最小二乘辐射源定位方法,进一步地,利用三角函数性质将方位角非线性观测方程转化为方位角伪线性观测方程。

作为本发明信息联合的二次等式约束最小二乘辐射源定位方法,进一步地,基于多项式求根原理和引入辅助变量将仰角非线性观测方程转化成仰角伪线性观测方程。

作为本发明信息联合的二次等式约束最小二乘辐射源定位方法,进一步地,利用M个测向站的仰角观测值和电离层虚高观测值建立M个一元二次方程;利用该M个一元二次方程的正根并结合辐射源位置向量来建立仰角伪线性观测方程,其中,辐射源位置向量为通过引入辅助变量扩维后的辐射源位置向量。

作为本发明信息联合的二次等式约束最小二乘辐射源定位方法,进一步地,二维角度伪线性观测方程表示为:其中, ξ1分别表示方位角伪线性观测方程中方位角伪线性观测向量、观测误差向量、观测矩阵,ξ2分别表示仰角伪线性观测方程中仰角伪线性观测向量、观测矩阵、观测误差向量,OM×1表示M个测向站向量,表示辐射源位置向量。

作为本发明信息联合的二次等式约束最小二乘辐射源定位方法,进一步地,二次等式约束最小二乘优化模型表示为:

其中,Q为二维角度伪线性观测误差向量ξ的协方差矩阵,Re为已知距离数值,Γ1、Γ2、η为预设单位向量矩阵。

作为本发明信息联合的二次等式约束最小二乘辐射源定位方法,进一步地,非线性方程组表示为:

其中,λ1和λ2表示两个未知的拉格朗日乘子,

作为本发明信息联合的二次等式约束最小二乘辐射源定位方法,进一步地,利用Newton迭代算法求解非线性方程组;根据拉格朗日乘子估计值确定短波辐射源地心地固坐标系下的位置向量表示为:其中,表示拉格朗日乘子估计值,I3、O3×1为预设单位向量。

本发明的有益效果:

本发明通过联合短波辐射源方位角、仰角和电离层虚高信息,将短波测向交汇定位问题转化成二次等式约束最小二乘优化问题,并利用拉格朗日乘子法进行求解,以获得短波辐射源的位置信息,相比已有短波测向交汇定位方法,能够进一步提升对短波辐射源的定位精度,获取更精确的辐射源目标定位信息,具有较好的应用前景。

附图说明:

图1为实施例中辐射源定位流程示意;

图2为实施例中短波辐射源定位均方根误差随着方位角估计误差标准差的变化曲线示意;

图3为实施例中短波辐射源定位均方根误差随着仰角估计误差标准差的变化曲线示意;

图4为实施例中短波辐射源定位均方根误差随着电离层虚高观测误差标准差的变化曲线示意。

具体实施方式

为使本发明的目的、技术方案和优点更加清楚、明白,下面结合附图和技术方案对本发明作进一步详细的说明。

本发明实施例,提供一种信息联合的二次等式约束最小二乘辐射源定位方法,用于联合方位角、仰角和电离层虚高信息对短波辐射源进行测向交汇定位,包含如下内容:

利用若干测向站对地面短波辐射源进行二维测向,获取该辐射源方位角及仰角信息,同时构建两者的非线性观测方程;并通过测向站有源探测获取电离层虚高观测模型;

结合电离层虚高观测模型将方位角及仰角的非线性观测方程分别转换为伪线性观测方程并合并,形成二维角度伪线性观测方程;

依据二维角度伪线性观测方程并结合地球椭圆模型构建用于短波辐射源定位的二次等式约束最小二乘优化模型,并利用拉格朗日乘子法将模型约束优化问题转化为关于拉格朗日乘子的非线性方程组问题;

对非线性方程组进行迭代求解,依据拉格朗日乘子估计值确定短波辐射源地心地固坐标系下的位置向量及其协方差矩阵,进而获取短波辐射源经纬度。

过联合短波辐射源方位角、仰角和电离层虚高信息,将短波测向交汇定位问题转化成二次等式约束最小二乘优化问题,并利用拉格朗日乘子法进行求解,以获得短波辐射源的位置信息,相比已有短波测向交汇定位方法,能够进一步提升对短波辐射源的定位精度,提升定位方案在实际应用中的安全性和可靠性。

进一步,参见图1所示,首先利用多个测向站获得短波辐射源方位角、仰角以及信号传播路径所对应的电离层虚高信息。接着利用三角函数性质将方位角非线性观测方程转化成方位角伪线性观测方程,基于多项式求根原理和引入辅助变量将仰角非线性观测方程转化成仰角伪线性观测方程,并合并这两类伪线性观测方程,形成二维角度伪线性观测方程。然后结合地球椭圆模型和辅助变量的特点建立用于短波辐射源定位的二次等式约束最小二乘优化模型,利用拉格朗日乘子法将该约束优化问题转化成关于拉格朗日乘子的非线性方程组问题,并设计Newton迭代算法求解该方程组,以获得拉格朗日乘子估计值。最后利用拉格朗日乘子估计值确定短波辐射源地心地固坐标系下的位置向量及其协方差矩阵,并通过Gauss-Newton迭代方法进一步确定短波辐射源的经度和纬度。

作为本发明实施例中信息联合的二次等式约束最小二乘辐射源定位方法,进一步的,假设在地面放置M个测向站,利用该M个测向站对地面短波辐射源进行二维测向,依据地面短波辐射源经纬度及测向站经纬度来获取短波辐射源方位角及仰角。进一步地,依据测向站及短波辐射源在地心地固坐标系下位置向量来表示方位角非线性观测方程;根据测向站与辐射源之间地心角信息及短波辐射源信号到测向站传播路径所对应的电离层虚高来表示仰角非线性观测方程;根据测向站对应的电离层虚高真实值及电离层虚高观测值来表示电离层虚高观测模型。

在地面放置M个测向站,并利用它们对某个地面短波辐射源进行二维测向。假设短波辐射源的经度和纬度分别为ηs和φs,第m个测向站的经度和纬度分别为ηm和φm,其测得短波辐射源的方位角和仰角分别为

关于方位角的非线性观测方程为

式中us表示短波辐射源在地心地固坐标系下的位置向量(其为待求参量);um表示第m个测向站在地心地固坐标系下的位置向量(其为已知参量);εm1表示方位角估计误差,其服从零均值的独立高斯分布,并且方差为相关表达式为

式中Re=6378.160km和e=0.081819643716348。

关于仰角的非线性观测方程为

式中Ro≈6370km;hm表示短波辐射源信号到达第m个测向站的传播路径所对应的电离层虚高;εm2表示仰角估计误差,其服从零均值的独立高斯分布,并且方差为θm表示第m个测向站与辐射源之间的地心角的一半,其表达式为

每个测向站利用有源探测(包括垂直探测、斜向探测以及返回散射等)手段获得电离层虚高观测值,其观测模型为

式中表示第m个测向站对应的电离层虚高观测值;hm(1≤m≤M)表示第m个测向站对应的电离层虚高真实值;δm(1≤m≤M)表示第m个测向站对应的电离层虚高观测误差,其服从零均值的独立高斯分布,并且方差为 表示由各个测向站对应的电离层虚高观测值所形成的列向量;h=[h1 h2 … hM]T表示由各个测向站对应的电离层虚高真实值所形成的列向量;δ=[δ1 δ2 … δM]T表示电离层虚高观测误差向量,其服从零均值的高斯分布,并且协方差矩阵为

作为本发明实施例中信息联合的二次等式约束最小二乘辐射源定位方法,进一步地,利用三角函数性质将方位角非线性观测方程转化为方位角伪线性观测方程。

方位角伪线性观测方程如下式所示:

式中表示方位角伪线性观测向量;表示方位角伪线性观测矩阵。相关表达式为

ξ1表示方位角伪线性观测误差向量,其近似服从零均值的高斯分布,并且协方差矩阵为

式中

作为本发明实施例中信息联合的二次等式约束最小二乘辐射源定位方法,进一步地,基于多项式求根原理和引入辅助变量将仰角非线性观测方程转化成仰角伪线性观测方程。进一步地,利用M个测向站的仰角观测值和电离层虚高观测值建立M个一元二次方程;利用该M个一元二次方程的正根并结合辐射源位置向量来建立仰角伪线性观测方程,其中,辐射源位置向量为通过引入辅助变量扩维后的辐射源位置向量。

利用M个测向站的仰角观测值和电离层虚高观测值建立M个一元二次方程,如下式所示

式中

依次求解上述M个一元二次方程,并取其正根相应的表达式为

然后利用这M个正根建立仰角伪线性观测方程,如下式所示

式中表示仰角伪线性观测向量;表示仰角伪线性观测矩阵;表示扩维的辐射源位置向量,其中第4个元素是新引入的辅助变量。相关表达式为

ξ2表示仰角伪线性观测误差向量,其近似服从零均值的高斯分布,并且协方差矩阵为

式中

作为本发明实施例中信息联合的二次等式约束最小二乘辐射源定位方法,进一步地,二维角度伪线性观测方程表示为:其中, ξ1分别表示方位角伪线性观测方程中方位角伪线性观测向量、观测误差向量、观测矩阵, ξ2分别表示仰角伪线性观测方程中仰角伪线性观测向量、观测矩阵、观测误差向量,OM×1表示M个测向站向量,表示辐射源位置向量。ξ表示二维角度伪线性观测误差向量,其近似服从零均值的高斯分布,并且协方差矩阵为

Q=E[ξξT]=blkdiag{Q1,Q2}=diag[q11 q21 … qM1 q12 q22 … qM2]

作为本发明实施例中信息联合的二次等式约束最小二乘辐射源定位方法,进一步地,二次等式约束最小二乘优化模型表示为:

其中,Q为二维角度伪线性观测误差向量ξ的协方差矩阵,Re为已知距离数值,Γ1、Γ2、η为预设单位向量矩阵。这些单位向量矩阵可表示为:

作为本发明实施例中信息联合的二次等式约束最小二乘辐射源定位方法,进一步地,非线性方程组表示为:

其中,λ1和λ2表示两个未知的拉格朗日乘子,f112)和f212)表示关于λ1和λ2的非线性函数,相应的表达式可表示为:

作为本发明实施例中信息联合的二次等式约束最小二乘辐射源定位方法,进一步地,利用Newton迭代算法求解非线性方程组;根据拉格朗日乘子估计值确定短波辐射源地心地固坐标系下的位置向量表示为:其中,表示拉格朗日乘子估计值,I3、O3×1为预设单位向量。

Newton迭代算法中,若将λ1和λ2的第k次迭代结果记为则第k+1次迭代结果可由下式获得

式中k表示迭代序数;分别表示λ1和λ2的第k+1次迭代结果; 的表达式分别如下

μ(k)表示步长因子,其可以通过求解如下一维非线性优化问题获得

式中

短波辐射源地心地固坐标系下的位置向量表示中,计算估计值的协方差矩阵,如下式所示

式中,

基于以上定位估计结果,可利用Gauss-Newton迭代方法确定短波辐射源的经度和纬度,首先确定迭代初值,如下式所示

式中表示短波辐射源经度估计值;表示短波辐射源纬度估计值。然后利用Gauss-Newton迭代方法确定短波辐射源的经度和纬度,若将ηs和φs的第k次迭代结果记为则第k+1次迭代结果可由下式获得

式中表示协方差矩阵平方根分解的逆矩阵;的表达式为

为验证本发明方案有效性,下面结合实验数据做进一步解释说明:

假设共有5个测向站利用方位角、仰角和电离层虚高信息对短波辐射源进行定位,测向站的经纬度和短波辐射源信号到达测向站的电离层虚高如表1所示,短波辐射源的经度为125.05度,纬度为27.47度。

表1测向站的经纬度和电离层虚高

首先将仰角估计误差标准差设为0.5度(即σm2=0.5度(1≤m≤M)),电离层虚高观测误差标准差设为5公里(即σm3=5公里(1≤m≤M)),图2给出了短波辐射源定位均方根误差随着方位角估计误差标准差σm1的变化曲线;然后将方位角估计误差标准差设为0.5度(即σm1=0.5度(1≤m≤M)),电离层虚高观测误差标准差设为5公里(即σm3=5公里(1≤m≤M)),图3给出了短波辐射源定位均方根误差随着仰角估计误差标准差σm2的变化曲线;最后将方位角估计误差标准差设为0.5度(即σm1=0.5度(1≤m≤M)),仰角估计误差标准差设为0.5度(即σm2=0.5度(1≤m≤M)),图4给出了短波辐射源定位均方根误差随着电离层虚高观测误差标准差σm3的变化曲线。

从图2至图4中可以看出,本案公开的定位方法确实可以提高短波测向交汇定位的精度,并且方位角估计误差越大,新方法的优势越明显;仰角估计误差和电离层虚高观测误差越小,新方法的优势越明显。

除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对步骤、数字表达式和数值并不限制本发明的范围。

基于上述的方法或系统,本发明实施例还提供一种网络设备,包括:一个或多个处理器;存储装置,用于存储一个或多个程序,当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现上述的系统或执行上述的方法。

基于上述的系统,本发明实施例还提供一种计算机可读介质,其上存储有计算机程序,其中,该程序被处理器执行时实现上述的系统。

本发明实施例所提供的装置,其实现原理及产生的技术效果和前述系统实施例相同,为简要描述,装置实施例部分未提及之处,可参考前述系统实施例中相应内容。

所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统和装置的具体工作过程,可以参考前述系统实施例中的对应过程,在此不再赘述。

在这里示出和描述的所有示例中,任何具体值应被解释为仅仅是示例性的,而不是作为限制,因此,示例性实施例的其他示例可以具有不同的值。

应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。

附图中的流程图和框图显示了根据本发明的多个实施例的系统、系统和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段或代码的一部分,所述模块、程序段或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。也应当注意,在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或动作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。

所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个处理器可执行的非易失的计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述系统的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。

最后应说明的是:以上所述实施例,仅为本发明的具体实施方式,用以说明本发明的技术方案,而非对其限制,本发明的保护范围并不局限于此,尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,其依然可以对前述实施例所记载的技术方案进行修改或可轻易想到变化,或者对其中部分技术特征进行等同替换;而这些修改、变化或者替换,并不使相应技术方案的本质脱离本发明实施例技术方案的精神和范围,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应所述以权利要求的保护范围为准。

17页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:消防人员定位方法、装置及终端设备

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!