钨沉积方法

文档序号:1516971 发布日期:2020-02-11 浏览:31次 >En<

阅读说明:本技术 钨沉积方法 (Tungsten deposition method ) 是由 尹元俊 于 2019-07-22 设计创作,主要内容包括:本发明的钨沉积方法至少执行一次单位循环周期以沉积钨成核层,所述单位循环周期具有:吸附步骤,将第一工艺气体供应于基板上,以在所述基板上吸附所述第一工艺气体的至少一部分;第一吹扫步骤,将所述吹扫气体供应于所述基板上,吹扫未吸附于所述基板上的第一工艺气体;反应步骤,将含有钨的气体作为第二工艺气体供应于所述基板上,以在所述基板上形成单位沉积膜;第二吹扫步骤,将所述吹扫气体供应于所述基板上,以吹扫所述基板上的反应副产物;处理步骤,为了降低所述单位沉积膜中的杂质的浓度,将含有氢(H)元素的处理气体供应于所述基板上;以及第三吹扫步骤,将吹扫气体供应于所述基板上,以吹扫所述基板上的处理气体。(The tungsten deposition method of the present invention performs at least one unit cycle period to deposit a tungsten nucleation layer, the unit cycle period having: an adsorption step of supplying a first process gas on a substrate to adsorb at least a portion of the first process gas on the substrate; a first purge step of supplying the purge gas on the substrate to purge the first process gas not adsorbed on the substrate; a reaction step of supplying a gas containing tungsten as a second process gas on the substrate to form a unit deposition film on the substrate; a second purge step of supplying the purge gas on the substrate to purge reaction by-products on the substrate; a processing step of supplying a process gas containing a hydrogen (H) element onto the substrate in order to reduce the concentration of impurities in the unit deposition film; and a third purge step of supplying a purge gas on the substrate to purge the process gas on the substrate.)

钨沉积方法

技术领域

本发明涉及沉积钨的方法,更详细地说,涉及在半导体元件乃至电子装置中向适用于电极或者布线结构的材料膜沉积钨的方法。

背景技术

由于钨具有低电阻和高热稳定性的特性,因此正在用作在半导体器件至电子装置中适用于电极或者布线结构的材料。进一步地说,众所周知,以气态使用用于沉积钨的化学反应的原料时,涂覆率特性在具有高纵横比的阶梯结构中是优秀的。但是,根据化学反应的原料可出现在沉积的钨内存在杂质的问题。

相关现有技术有韩国公开公报第19940021758A号(1994.10.19公开,发明名称:钨薄膜沉积方法)。

(要解决的问题)

本发明的目的在于提供能够减少钨成核层中的杂质的钨沉积方法。但是本发明的课题不过是示例性的,不得由此限定本发明的范围。

(解决问题的手段)

提供根据用于解决所述课题的本发明的一观点的钨沉积方法。所述钨沉积方法至少执行一次单位循环周期以沉积钨成核层,其中,所述单位循环周期具有:吸附步骤,将第一工艺气体供应于基板上,以在所述基板上吸附所述第一工艺气体的至少一部分;第一吹扫步骤,将所述吹扫气体供应于所述基板上,吹扫未吸附于所述基板上的第一工艺气体;反应步骤,将含有钨的气体作为第二工艺气体供应于所述基板上,以在所述基板上形成单位沉积膜;第二吹扫步骤,将所述吹扫气体供应于所述基板上,以吹扫所述基板上的反应副产物;处理步骤,为了降低所述单位沉积膜中的杂质的浓度,将含有氢(H)元素的处理气体供应于所述基板上;以及第三吹扫步骤,将吹扫气体供应于所述基板上,以吹扫所述基板上的处理气体。

所述钨沉积方法,至少执行一次所述单位循环周期,进而在沉积所述钨成核层之后还可包括在所述钨成核层上沉积钨主体层的步骤。

在所述钨沉积方法中,含有所述钨的气体包含WF6气体,所述杂质可包含氟(F)。

在所述钨沉积方法中,所述处理气体可包含氢(H2)气。

在所述钨沉积方法中,所述处理气体可包含水蒸气(H2O)或者氨(NH3)气。

在所述钨沉积方法中,所述第一工艺气体可包含B2H6或者SiH4

在所述钨沉积方法中,所述处理步骤可在所述第二吹扫步骤之后执行。

在所述钨沉积方法中,在所述单位循环周期中,所述处理步骤可在除了所述反应步骤以及所述第二吹扫步骤以外的至少一个任意的步骤中执行。

(发明的效果)

通过由上述结构构成的本发明的一部分实施例,可实现能够减少钨成核层中的杂质的钨沉积方法。当然,不得由这种效果限定本发明的范围。

附图说明

图1是示出本发明的一实施例的钨沉积方法的流程图。

图2是示意性示出本发明的一实施例的钨沉积方法实现钨成核层的单位循环周期的图面。

图3是示意性示出在本发明的变形的一实施例的钨沉积方法中实现钨成核层的单位循环周期的图面。

图4是示意性示出本发明的第一比较例的钨沉积方法中实现钨成核层的单位循环周期的图面。

图5是示意性示出本发明的第二比较例的钨沉积方法中实现钨成核层的单位循环周期的图面。

具体实施方法

在说明书全文中,在说明膜、区域或者基板等的一构成元素位于另一构成元素“上”时,可解释为所述一构成元素直接接触于所述另一构成元素“上”或者可存在介入于两者之间的其他构成元素。相反,在说明一构成元素“直接”位于另一构成要素“上”时,解释为在这之间不存在介入的其他构成元素。

图1是示出本发明的一实施例的钨沉积方法的流程图;图2是示意性示出本发明的一实施例的钨沉积方法实现钨成核层的单位循环周期的图面。

参照图1以及图2,根据本发明的一实施例的钨沉积方法包括如下的步骤:执行n(在此,所述n是1以上的正整数)次单位循环周期S10,进而在用原子层沉积(ALD)工艺沉积钨成核层之后,在所述钨成核层上沉积钨主体层(S20)。

例如,所述钨成核层是将单位循环周期S10反复执行数次来实现的,而钨主体层沉积步骤S20可在单位循环周期S10反复执行数次之后执行。

举另一示例,所述钨成核层是执行一次单位循环周期S10来实现的,而钨主体层沉积步骤S20可在单位循环周期S10执行一次之后执行。

钨主体层沉积步骤S20可包括将作为钨前驱物的氟化钨(WF6)气体还原为氢气(H2)来形成钨主体层的步骤,并且可通过原子层沉积工艺(ALD)或者化学气相沉积工艺(CVD)执行。

用于实现钨成核层的所述单位循环周期S10可具有:吸附步骤(S11),将第一工艺气体供应于基板上以吸附所述第一工艺气体的至少一部分;第一吹扫步骤(S12),将所述吹扫气体供应于所述基板上,吹扫未吸附于所述基板上的第一工艺气体;反应步骤(S13),将含有钨的气体作为第二工艺气体供应于所述基板上,以在所述基板上形成单位沉积膜;第二吹扫步骤(S14),将所述吹扫气体供应于所述基板上,以吹扫所述基板上的反应副产物;处理步骤(S15),为了降低所述单位沉积膜中的杂质的浓度,将含有氢(H)元素的处理气体供应于所述基板上;第三吹扫步骤(S16),将吹扫气体供应于所述基板上,以吹扫所述基板上的处理气体。

所述基板可以是在沉积任意形状的钨膜(钨成核层以及/或者钨主体层)之前已形成有固定的目标膜或者目标图形的基板。例如,所述目标膜或者目标图形可以是由钛(Ti)层以及/或氮化钛(TiN)层构成的防扩散膜或防扩散图形,但是需明确本发明的技术思想不限于这种目标膜或者目标图形的种类。

所述第一工艺气体可执行用于形成钨成核层的还原气体的功能,例如,可包含B2H6或者SiH4。另一方面,含有所述钨的气体包含WF6气体;所述杂质可包含氟(F)。在这一情况下,所述处理气体可包含氢(H2)气、水蒸气(H2O)、氨(NH3)气。

举一示例,说明通过利用SiH4气体的原子层沉积(ALD)工艺实现第一钨成核层的单位循环周期(S10)。第一钨成核层是执行n(在此,所述n是1以上的正整数)次单位循环周期(S10),进而通过原子层沉积(ALD)工艺形成。

将SiH4气体作为第一工艺气体供应于所述基板上,以在所述基板上吸附所述第一工艺气体中的至少一部分的吸附步骤S11可包含作为SiH4启动步骤(initiation step)的化学式1的反应。

化学式1

SiH4(g)→Si(s)+2H2(g)↑

参照化学式1,SiH4气体在高温下被分解生成非晶态Si,这种非晶态Si也可防止在后续反应时流入的WF6气体腐蚀或者老化元件的现象。在第一吹扫步骤S12中,提供吹扫气体可吹扫未吸附到基板上的第一工艺气体(SiH4)以及/或则由化学式1生成的反应生成物H2气体。

另一方面,将WF6气体作为第二工艺气体供应于所述基板上以在所述基板上形成单位沉积膜的反应步骤(S13)可包含化学式2的反应。

化学式2

3Si(s)+2WF6(g)→2W(s)+3SiF4(g)↑

由化学式2生成的钨W可理解为钨单位沉积膜。这种单位沉积膜构成第一钨成核层的至少一部分,并且将作为钨前驱物的氟化钨(WF6)气体还原成氢气(H2),进而可从形成钨主体层的步骤(S20)生成副产物的HF气体中保护元件。在将SiH4气体用作第一工艺气体形成的第一钨成核层在形成过程中,由于构成第一工艺气体的元素渗透下部膜微弱,因此可以期待粘合至键合特性优秀的有利效果。

在第二吹扫步骤(S14)中,可吹扫在所述基板上未产生反应的钨前驱物(即,氟化钨(WF6)气体)以及/或者由化学式2生成的反应生成物(即,SiF4气体)。

在第二吹扫步骤(S14)之后可执行如下的步骤:处理步骤(S15),将含有氢(H)元素的处理气体供应于所述基板上,以降低所述单位沉积膜中的杂质(例如,氟(F))的浓度;以及第三吹扫步骤(S16),将吹扫气体供应于所述基板上吹扫残留于所述基板上的处理气体。所述处理气体可包含:氢(H2)气、水蒸气(H2O)或者氨(NH3)气。

举另一示例,说明通过利用B2H6气体的原子层沉积(ALD)工艺实现第二钨成核层的单位循环周期(S10)。第二钨成核层是执行n次(所述n是1以上的正整数)单位循环周期(S10)进而通过原子层沉积(ALD)工艺形成。

在这一情况下,单位循环周期S10具有:吸附步骤S11,将作为第一工艺气体的B2H6气体供应于基板上,以在所述基板上吸附所述B2H6气体的至少一部分;第一吹扫步骤S12,将吹扫气体供应于所述基板上,以吹扫在未吸附于所述基板上的B2H6气体;反应步骤S13,将含有钨的气体(例如,氟化钨(WF6)气体)作为第二工艺气体供应于所述基板上,在所述基板上形成单位沉积膜;第二吹扫步骤S14,将吹扫气体供应于所述基板上,吹扫所述基板上的反应副产物;处理步骤(S15),为了降低所述单位沉积膜中的杂质(例如,氟(F))的浓度,将含有氢(H)元素的处理气体供应于所述基板上;第三吹扫步骤S16,将吹扫气体供应于所述基板上,吹扫所述基板上的处理气体。所述处理气体可包含氢(H2)气、水蒸气(H2O)或者氨(NH3)气。

与所述第一钨成核层相同,所述第二钨成核层也将作为钨前驱物的氟化钨(WF6)还原为氢(H2)气,进而能够从形成钨主体层形成步骤S20中生成的副产物的HF气体中保护元件。进一步地,确认到相较于将SiH4气体用作第一工艺气体形成的第一钨成核层,将B2H6气体用作第一工艺气体形成的第二钨成核层的钨结晶颗粒的大小更大并且电阻率更低。

钨主体层形成步骤S20作为利用WF6气体在所述钨成核层沉积钨主体层的步骤,在通过化学气相沉积工艺执行的情况下可包含化学式3的反应。

化学式3

3H2(g)+WF6(g)→W(s)+6HF(g)↑

化学式3的反应作为氢还原(H2reduction)反应,是钨膜形成工艺的主要(main)工艺。在步骤S20中的H2还原反应的钨沉积速度低于SiH4还原反应,因此在阶梯结构中覆盖率(step coverage)优秀。由于是与H2气体分压的平方根成比例地提高沉积速度的反应速率首先步骤(rate limited reaction),因此容易通过温度调节沉积速度。

如果,不先形成钨成核层,而是利用氟化钨(WF6)气体与氢(H2)气在Ti/TiN防扩散膜上直接沉积钨主体层的情况下,可出现发生所谓的火山(volcano)现象的问题。这是因为氟化钨的氟(F)原子与抗氧化膜反应形成氟化钛(TiF3)而发生的。为防止发生这种火山现象,在沉积钨主体层之前形成钨成核层,进而可防止钨主体层与防扩散膜反应。

举其他一示例,在通过利用SiH4气体的原子层沉积(ALD)工艺实现第一钨成核层的单位循环周期S10至少执行一次,之后通过利用B2H6气体的原子层沉积(ALD)工艺实现第二钨成核层的单位循环周期S10至少执行一次,以在形成钨主体层之前利用相互不同的第一工艺气体依次形成第一钨成核层与第二钨成核层,进而也可实现粘合特性优秀的同时电阻率低的钨膜。

可将不形成如上所述的复合钨成核层而是利用第一工艺气体形成单一的钨成核层的情况作为比较例。

如果,将作为钨前驱物的氟化钨(WF6)气体还原为氢气(H2)以形成钨成核层的步骤S20之前,不执行将SiH4气体用作第一工艺气体形成第一钨成核层的步骤,而是只执行将B2H6气体用作第一工艺气体形成第二钨成核层的步骤,进而形成钨成核层,则可形成电阻率低的薄膜,但是因为B元素渗透下部膜也可使粘合至键合特性相对变差。

另外,若将作为钨前驱物的氟化钨(WF6)还原成氢气(H2)以在形成钨主体层的步骤S20之前不执行将B2H6气体用作第一工艺气体形成第二钨成核层的步骤,而是只执行将SiH4气体用作第一工艺气体形成第一钨成核层的步骤,进而形成钨成核层,则粘合特性优秀,但是可出现电阻率高的问题。

相反地,可以确认到由利用相互不同种类的第一工艺气体形成第一钨成核层与第二钨成核层,并且由该第一钨成核层与第二钨成核层构成复合钨成核层,进而抑制B元素渗透作为下部膜的氮化钛膜,进而粘合特性优秀的同时电阻率低,因此无需增加薄膜厚度地有效实现成核层。

图3是示意性示出在本发明的变形的一实施例的钨沉积方法中实现钨成核层的单位循环周期的图面。

在实现由图2示出的钨成核层的单位循环周期S10中,与在所述第二吹扫步骤S14之后执行所述处理步骤S15相反,本发明的变形的一实施例的钨沉积方法中实现钨成核层的单位循环周期S10是所述处理步骤S15可在单位循环周期S10中在除了反应步骤S13以及第二吹扫步骤S14以外的至少一个任意的步骤执行。例如,参照图3,处理步骤S15也可分别在反应步骤S13以及第二吹扫步骤S14之前的步骤与之后的步骤中执行。

用于执行处理步骤S15的处理气体(例如,氢(H2)气、水蒸气(H2O)或者氨(NH3)气)供应于所述基板上,而且可在反应步骤S13以及第二吹扫步骤S14的之前步骤与之后步骤中分别供应所述处理气体。即,所述处理气体在单位循环周期S10期间持续供应于基板上,而且不可只在反应步骤S13以及第二吹扫气体S14中供应。

综上所述,根据本发明的技术思想的钨沉积方法中,实现钨成核层的单位循环周期除了在图1示出的结构以外,还可具有各种变形的结构。即,在图1示出的单位循环周期S10是依次执行吸附步骤S11、第一吹扫步骤S12、反应步骤S13、第二吹扫步骤S14、处理步骤S15以及第三吹扫步骤S16,但是执行处理步骤S15的步骤可以具有各种变形。

举一示例,单位循环周期S10也可以是依次执行处理步骤S15、第三吹扫步骤S16、吸附步骤S11、第一吹扫步骤S12、反应步骤S13以及第二吹扫步骤S14。

举另一示例,单位循环周期S10也可以依次执行吸附步骤S11、第一吹扫步骤S12、处理步骤S15、第三吹扫步骤S16、反应步骤S13以及第二吹扫步骤S14。

以下,说明在根据本发明的实施例以及比较例的钨沉积方法中实际确认在钨成核层中作为杂质的氟(F)的浓度的实验例。

图4以及图5分别是示意性示出本发明的第一比较例以及第二比较例的钨沉积方法中实现钨成核层的单位循环周期的图面。

通过本发明的实施例的无沉积方法实现的钨具有反复执行在图2示出的单位循环周期执行的钨成核层;通过第一比较例的钨沉积方法实现的钨具有反复执行在图4示出的单位循环周期的钨成核层;通过第二比较例的钨沉积方法实现的钨具有反复执行在图5示出的单位循环周期的钨成核层。

参照图2,用于实现钨成核层的单位训传周期S10使上述的吸附步骤S11、第一吹扫步骤S12、反应步骤S13、第二吹扫步骤S14、处理步骤S15以及第三吹扫步骤S16依次执行,而且诸如氢(H2)气的处理气体只在处理步骤S15中供应于基板上。参照图4,用于实现钨成核层的单位循环周期S10是使上述的吸附步骤S11、第一吹扫步骤S12、反应步骤S13以及第二吹扫步骤S14依次执行,而且在单位循环周期S10中不单独供应诸如氢(H2)气的处理气体。参照图5,用于实现钨成核层的单位循环周期S10使上述的吸附步骤S11、第一吹扫步骤S12、反应步骤S13、第二吹扫步骤S14、处理步骤S15以及第三吹扫步骤S16依次执行,而且是在单位循环周期S10中始终持续供应诸如氢(H2)气的处理气体。

表1示出通过二次离子质量分析法(SIMS)分析确认本发明的实验例的钨成核层中作为杂质的氟的平均浓度的结果。在表1记载的数值是指在SIMS分析中检测到的信号的强度(intensity),并且比例于氟的平均浓度。

表1

Figure BDA0002138200070000081

Figure BDA0002138200070000091

参照表1,可确认到如下的结果:不将另外的处理气体供应于基板上并且不执行处理步骤S15的比较例1中钨成核层中的氟的浓度最高,执行在反应步骤S13之后将处理气体供应于基板上处理步骤S15的实施例中钨成核层中的氟浓度最低。另一方面,在单位循环周期S10中持续供应处理气体在反应步骤S13以及第二吹扫步骤S14中由处理气体产生影响的比较例2中钨成核层中氟浓度低于比较例1,但是钨成核层中氟浓度高于实施例。

综合上述实验例的结果,可以确认到用于实现钨成核层的ALD工艺的单位循环周期S10中需要具备供应诸如氢(H2)气的处理气体去除杂质的处理步骤S15,而且优选为至少在反应步骤S13进行的期间不向基板上供应处理气体。

参考在图面示出的实施例说明了本发明,但是这不过示例性的,只要是在该技术领域具有通常知识的技术人员应该理解可实施各种变形以及同等的其他实施例。因此,本发明的真正的技术保护范围应该由权利要求范围的技术思想决定。

具体实施方式

图1是示出本发明的一实施例的钨沉积方法的流程图。

图2是示意性示出本发明的一实施例的钨沉积方法实现钨成核层的单位循环周期的图面。

图3是示意性示出在本发明的变形的一实施例的钨沉积方法中实现钨成核层的单位循环周期的图面。

图4是示意性示出本发明的第一比较例的钨沉积方法中实现钨成核层的单位循环周期的图面。

图5是示意性示出本发明的第二比较例的钨沉积方法中实现钨成核层的单位循环周期的图面。

具体实施方法

在说明书全文中,在说明膜、区域或者基板等的一构成元素位于另一构成元素“上”时,可解释为所述一构成元素直接接触于所述另一构成元素“上”或者可存在介入于两者之间的其他构成元素。相反,在说明一构成元素“直接”位于另一构成要素“上”时,解释为在这之间不存在介入的其他构成元素。

图1是示出本发明的一实施例的钨沉积方法的流程图;图2是示意性示出本发明的一实施例的钨沉积方法实现钨成核层的单位循环周期的图面。

参照图1以及图2,根据本发明的一实施例的钨沉积方法包括如下的步骤:执行n(在此,所述n是1以上的正整数)次单位循环周期S10,进而在用原子层沉积(ALD)工艺沉积钨成核层之后,在所述钨成核层上沉积钨主体层(S20)。

例如,所述钨成核层是将单位循环周期S10反复执行数次来实现的,而钨主体层沉积步骤S20可在单位循环周期S10反复执行数次之后执行。

举另一示例,所述钨成核层是执行一次单位循环周期S10来实现的,而钨主体层沉积步骤S20可在单位循环周期S10执行一次之后执行。

钨主体层沉积步骤S20可包括将作为钨前驱物的氟化钨(WF6)气体还原为氢气(H2)来形成钨主体层的步骤,并且可通过原子层沉积工艺(ALD)或者化学气相沉积工艺(CVD)执行。

用于实现钨成核层的所述单位循环周期S10可具有:吸附步骤(S11),将第一工艺气体供应于基板上以吸附所述第一工艺气体的至少一部分;第一吹扫步骤(S12),将所述吹扫气体供应于所述基板上,吹扫未吸附于所述基板上的第一工艺气体;反应步骤(S13),将含有钨的气体作为第二工艺气体供应于所述基板上,以在所述基板上形成单位沉积膜;第二吹扫步骤(S14),将所述吹扫气体供应于所述基板上,以吹扫所述基板上的反应副产物;处理步骤(S15),为了降低所述单位沉积膜中的杂质的浓度,将含有氢(H)元素的处理气体供应于所述基板上;第三吹扫步骤(S16),将吹扫气体供应于所述基板上,以吹扫所述基板上的处理气体。

所述基板可以是在沉积任意形状的钨膜(钨成核层以及/或者钨主体层)之前已形成有固定的目标膜或者目标图形的基板。例如,所述目标膜或者目标图形可以是由钛(Ti)层以及/或氮化钛(TiN)层构成的防扩散膜或防扩散图形,但是需明确本发明的技术思想不限于这种目标膜或者目标图形的种类。

所述第一工艺气体可执行用于形成钨成核层的还原气体的功能,例如,可包含B2H6或者SiH4。另一方面,含有所述钨的气体包含WF6气体;所述杂质可包含氟(F)。在这一情况下,所述处理气体可包含氢(H2)气、水蒸气(H2O)、氨(NH3)气。

举一示例,说明通过利用SiH4气体的原子层沉积(ALD)工艺实现第一钨成核层的单位循环周期(S10)。第一钨成核层是执行n(在此,所述n是1以上的正整数)次单位循环周期(S10),进而通过原子层沉积(ALD)工艺形成。

将SiH4气体作为第一工艺气体供应于所述基板上,以在所述基板上吸附所述第一工艺气体中的至少一部分的吸附步骤S11可包含作为SiH4启动步骤(initiation step)的化学式1的反应。

化学式1

SiH4(g)→Si(s)+2H2(g)↑

参照化学式1,SiH4气体在高温下被分解生成非晶态Si,这种非晶态Si也可防止在后续反应时流入的WF6气体腐蚀或者老化元件的现象。在第一吹扫步骤S12中,提供吹扫气体可吹扫未吸附到基板上的第一工艺气体(SiH4)以及/或则由化学式1生成的反应生成物H2气体。

另一方面,将WF6气体作为第二工艺气体供应于所述基板上以在所述基板上形成单位沉积膜的反应步骤(S13)可包含化学式2的反应。

化学式2

3Si(s)+2WF6(g)→2W(s)+3SiF4(g)↑

由化学式2生成的钨W可理解为钨单位沉积膜。这种单位沉积膜构成第一钨成核层的至少一部分,并且将作为钨前驱物的氟化钨(WF6)气体还原成氢气(H2),进而可从形成钨主体层的步骤(S20)生成副产物的HF气体中保护元件。在将SiH4气体用作第一工艺气体形成的第一钨成核层在形成过程中,由于构成第一工艺气体的元素渗透下部膜微弱,因此可以期待粘合至键合特性优秀的有利效果。

在第二吹扫步骤(S14)中,可吹扫在所述基板上未产生反应的钨前驱物(即,氟化钨(WF6)气体)以及/或者由化学式2生成的反应生成物(即,SiF4气体)。

在第二吹扫步骤(S14)之后可执行如下的步骤:处理步骤(S15),将含有氢(H)元素的处理气体供应于所述基板上,以降低所述单位沉积膜中的杂质(例如,氟(F))的浓度;以及第三吹扫步骤(S16),将吹扫气体供应于所述基板上吹扫残留于所述基板上的处理气体。所述处理气体可包含:氢(H2)气、水蒸气(H2O)或者氨(NH3)气。

举另一示例,说明通过利用B2H6气体的原子层沉积(ALD)工艺实现第二钨成核层的单位循环周期(S10)。第二钨成核层是执行n次(所述n是1以上的正整数)单位循环周期(S10)进而通过原子层沉积(ALD)工艺形成。

在这一情况下,单位循环周期S10具有:吸附步骤S11,将作为第一工艺气体的B2H6气体供应于基板上,以在所述基板上吸附所述B2H6气体的至少一部分;第一吹扫步骤S12,将吹扫气体供应于所述基板上,以吹扫在未吸附于所述基板上的B2H6气体;反应步骤S13,将含有钨的气体(例如,氟化钨(WF6)气体)作为第二工艺气体供应于所述基板上,在所述基板上形成单位沉积膜;第二吹扫步骤S14,将吹扫气体供应于所述基板上,吹扫所述基板上的反应副产物;处理步骤(S15),为了降低所述单位沉积膜中的杂质(例如,氟(F))的浓度,将含有氢(H)元素的处理气体供应于所述基板上;第三吹扫步骤S16,将吹扫气体供应于所述基板上,吹扫所述基板上的处理气体。所述处理气体可包含氢(H2)气、水蒸气(H2O)或者氨(NH3)气。

与所述第一钨成核层相同,所述第二钨成核层也将作为钨前驱物的氟化钨(WF6)还原为氢(H2)气,进而能够从形成钨主体层形成步骤S20中生成的副产物的HF气体中保护元件。进一步地,确认到相较于将SiH4气体用作第一工艺气体形成的第一钨成核层,将B2H6气体用作第一工艺气体形成的第二钨成核层的钨结晶颗粒的大小更大并且电阻率更低。

钨主体层形成步骤S20作为利用WF6气体在所述钨成核层沉积钨主体层的步骤,在通过化学气相沉积工艺执行的情况下可包含化学式3的反应。

化学式3

3H2(g)+WF6(g)→W(s)+6HF(g)↑

化学式3的反应作为氢还原(H2reduction)反应,是钨膜形成工艺的主要(main)工艺。在步骤S20中的H2还原反应的钨沉积速度低于SiH4还原反应,因此在阶梯结构中覆盖率(step coverage)优秀。由于是与H2气体分压的平方根成比例地提高沉积速度的反应速率首先步骤(rate limited reaction),因此容易通过温度调节沉积速度。

如果,不先形成钨成核层,而是利用氟化钨(WF6)气体与氢(H2)气在Ti/TiN防扩散膜上直接沉积钨主体层的情况下,可出现发生所谓的火山(volcano)现象的问题。这是因为氟化钨的氟(F)原子与抗氧化膜反应形成氟化钛(TiF3)而发生的。为防止发生这种火山现象,在沉积钨主体层之前形成钨成核层,进而可防止钨主体层与防扩散膜反应。

举其他一示例,在通过利用SiH4气体的原子层沉积(ALD)工艺实现第一钨成核层的单位循环周期S10至少执行一次,之后通过利用B2H6气体的原子层沉积(ALD)工艺实现第二钨成核层的单位循环周期S10至少执行一次,以在形成钨主体层之前利用相互不同的第一工艺气体依次形成第一钨成核层与第二钨成核层,进而也可实现粘合特性优秀的同时电阻率低的钨膜。

可将不形成如上所述的复合钨成核层而是利用第一工艺气体形成单一的钨成核层的情况作为比较例。

如果,将作为钨前驱物的氟化钨(WF6)气体还原为氢气(H2)以形成钨成核层的步骤S20之前,不执行将SiH4气体用作第一工艺气体形成第一钨成核层的步骤,而是只执行将B2H6气体用作第一工艺气体形成第二钨成核层的步骤,进而形成钨成核层,则可形成电阻率低的薄膜,但是因为B元素渗透下部膜也可使粘合至键合特性相对变差。

另外,若将作为钨前驱物的氟化钨(WF6)还原成氢气(H2)以在形成钨主体层的步骤S20之前不执行将B2H6气体用作第一工艺气体形成第二钨成核层的步骤,而是只执行将SiH4气体用作第一工艺气体形成第一钨成核层的步骤,进而形成钨成核层,则粘合特性优秀,但是可出现电阻率高的问题。

相反地,可以确认到由利用相互不同种类的第一工艺气体形成第一钨成核层与第二钨成核层,并且由该第一钨成核层与第二钨成核层构成复合钨成核层,进而抑制B元素渗透作为下部膜的氮化钛膜,进而粘合特性优秀的同时电阻率低,因此无需增加薄膜厚度地有效实现成核层。

图3是示意性示出在本发明的变形的一实施例的钨沉积方法中实现钨成核层的单位循环周期的图面。

在实现由图2示出的钨成核层的单位循环周期S10中,与在所述第二吹扫步骤S14之后执行所述处理步骤S15相反,本发明的变形的一实施例的钨沉积方法中实现钨成核层的单位循环周期S10是所述处理步骤S15可在单位循环周期S10中在除了反应步骤S13以及第二吹扫步骤S14以外的至少一个任意的步骤执行。例如,参照图3,处理步骤S15也可分别在反应步骤S13以及第二吹扫步骤S14之前的步骤与之后的步骤中执行。

用于执行处理步骤S15的处理气体(例如,氢(H2)气、水蒸气(H2O)或者氨(NH3)气)供应于所述基板上,而且可在反应步骤S13以及第二吹扫步骤S14的之前步骤与之后步骤中分别供应所述处理气体。即,所述处理气体在单位循环周期S10期间持续供应于基板上,而且不可只在反应步骤S13以及第二吹扫气体S14中供应。

综上所述,根据本发明的技术思想的钨沉积方法中,实现钨成核层的单位循环周期除了在图1示出的结构以外,还可具有各种变形的结构。即,在图1示出的单位循环周期S10是依次执行吸附步骤S11、第一吹扫步骤S12、反应步骤S13、第二吹扫步骤S14、处理步骤S15以及第三吹扫步骤S16,但是执行处理步骤S15的步骤可以具有各种变形。

举一示例,单位循环周期S10也可以是依次执行处理步骤S15、第三吹扫步骤S16、吸附步骤S11、第一吹扫步骤S12、反应步骤S13以及第二吹扫步骤S14。

举另一示例,单位循环周期S10也可以依次执行吸附步骤S11、第一吹扫步骤S12、处理步骤S15、第三吹扫步骤S16、反应步骤S13以及第二吹扫步骤S14。

以下,说明在根据本发明的实施例以及比较例的钨沉积方法中实际确认在钨成核层中作为杂质的氟(F)的浓度的实验例。

图4以及图5分别是示意性示出本发明的第一比较例以及第二比较例的钨沉积方法中实现钨成核层的单位循环周期的图面。

通过本发明的实施例的无沉积方法实现的钨具有反复执行在图2示出的单位循环周期执行的钨成核层;通过第一比较例的钨沉积方法实现的钨具有反复执行在图4示出的单位循环周期的钨成核层;通过第二比较例的钨沉积方法实现的钨具有反复执行在图5示出的单位循环周期的钨成核层。

参照图2,用于实现钨成核层的单位训传周期S10使上述的吸附步骤S11、第一吹扫步骤S12、反应步骤S13、第二吹扫步骤S14、处理步骤S15以及第三吹扫步骤S16依次执行,而且诸如氢(H2)气的处理气体只在处理步骤S15中供应于基板上。参照图4,用于实现钨成核层的单位循环周期S10是使上述的吸附步骤S11、第一吹扫步骤S12、反应步骤S13以及第二吹扫步骤S14依次执行,而且在单位循环周期S10中不单独供应诸如氢(H2)气的处理气体。参照图5,用于实现钨成核层的单位循环周期S10使上述的吸附步骤S11、第一吹扫步骤S12、反应步骤S13、第二吹扫步骤S14、处理步骤S15以及第三吹扫步骤S16依次执行,而且是在单位循环周期S10中始终持续供应诸如氢(H2)气的处理气体。

表1示出通过二次离子质量分析法(SIMS)分析确认本发明的实验例的钨成核层中作为杂质的氟的平均浓度的结果。在表1记载的数值是指在SIMS分析中检测到的信号的强度(intensity),并且比例于氟的平均浓度。

表1

Figure BDA0002138200070000081

Figure BDA0002138200070000091

参照表1,可确认到如下的结果:不将另外的处理气体供应于基板上并且不执行处理步骤S15的比较例1中钨成核层中的氟的浓度最高,执行在反应步骤S13之后将处理气体供应于基板上处理步骤S15的实施例中钨成核层中的氟浓度最低。另一方面,在单位循环周期S10中持续供应处理气体在反应步骤S13以及第二吹扫步骤S14中由处理气体产生影响的比较例2中钨成核层中氟浓度低于比较例1,但是钨成核层中氟浓度高于实施例。

综合上述实验例的结果,可以确认到用于实现钨成核层的ALD工艺的单位循环周期S10中需要具备供应诸如氢(H2)气的处理气体去除杂质的处理步骤S15,而且优选为至少在反应步骤S13进行的期间不向基板上供应处理气体。

参考在图面示出的实施例说明了本发明,但是这不过示例性的,只要是在该技术领域具有通常知识的技术人员应该理解可实施各种变形以及同等的其他实施例。因此,本发明的真正的技术保护范围应该由权利要求范围的技术思想决定。

11页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:具有非晶结构的硅粘合涂层及其形成方法

相关技术

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!

技术分类