用于递送假体心脏瓣膜装置的递送系统及相关联的方法

文档序号:1538770 发布日期:2020-02-14 浏览:32次 >En<

阅读说明:本技术 用于递送假体心脏瓣膜装置的递送系统及相关联的方法 (Delivery systems for delivering prosthetic heart valve devices and associated methods ) 是由 K·莫奇 J·德沃克 F·林纳 S·索姆 E·王 于 2018-05-07 设计创作,主要内容包括:用于递送假体心脏瓣膜装置的系统可以包括例如细长导管主体、由导管主体承载的封壳以及可扩张的无创伤构件。递送封壳包括平台以及具有外壁和近侧边沿的壳体,并且平台构造成可释放地联接于假体心脏瓣膜装置。壳体构造成沿着平台从容纳构造滑动至部署构造。可扩张的无创伤构件具有无创伤表面和周界部分。无创伤构件具有紧凑构造和扩张构造,在扩张构造中,当递送系统沿近侧方向通过患者抽出时,周界部分在壳体的近侧边缘上侧向向外延伸,以保护心脏和脉管系统免受壳体的近侧边沿潜在的损害。(A system for delivering a prosthetic heart valve device can include, for example, an elongate catheter body, an enclosure carried by the catheter body, and an expandable atraumatic member. The delivery capsule includes a platform and a housing having an outer wall and a proximal rim, and the platform is configured to be releasably coupled to the prosthetic heart valve device. The housing is configured to slide along the platform from a housed configuration to a deployed configuration. The expandable atraumatic member has an atraumatic surface and a perimeter portion. The atraumatic member has a compact configuration and an expanded configuration in which the perimeter portion extends laterally outward on a proximal edge of the shell to protect the heart and vasculature from potential damage by the proximal edge of the shell when the delivery system is withdrawn in a proximal direction through the patient.)

用于递送假体心脏瓣膜装置的递送系统及相关联的方法

相关申请的交叉引用

本申请要求于2017年5月11日提交的美国专利申请第15/592,507号的优先权。

本申请以参见的方式纳入以下申请的主题的全文:(1)2014年3月14日提交的国际专利申请第PCT/US2014/029549号;(2)2012年10月19日提交的国际专利申请第PCT/US2012/061219号;(3)2012年10月19日提交的国际专利申请第PCT/US2012/061215号;(4)2012年6月21日提交的国际专利申请第PCT/US2012/043636号;(5)2017年4月18日提交的美国申请第15/490,047号;(6)2017年4月18日提交的美国申请第15/490,008号;以及(7)2017年4月18日提交的美国申请第15/490,024号。

技术领域

本技术总体上涉及用于递送假体心脏瓣膜装置的系统。具体地,本技术的若干实施例涉及用于将假体心脏瓣膜装置经皮递送至二尖瓣中的液压系统以及相关联的方法。

背景技术

心脏瓣膜会受到多种病症的影响。例如,二尖瓣会受到二尖瓣反流、二尖瓣脱垂和二尖瓣狭窄的影响。二尖瓣反流是由心脏疾病引起的血液从左心室到左心房的异常泄漏,在这种情况下,二尖瓣的瓣叶无法在峰值收缩压力下合紧成并置。二尖瓣瓣叶可能无法充分合紧,因为心脏疾病通常会导致心肌扩张,在收缩期间这又使天然二尖瓣瓣环扩大至使瓣叶合不紧的程度。当由于缺血或其它情况导致***肌功能受损时,也会发生异常回流。更具体地,随着左心室在收缩期间收缩,受影响的***肌不能充分收缩,从而影响瓣叶的正确闭合。

二尖瓣脱垂是二尖瓣瓣叶异常地***到左心房中的一种病症。这会引起二尖瓣的不规则行为并导致二尖瓣反流。由于将***肌连接至二尖瓣瓣叶下侧的腱(腱索)可能撕裂或拉伸,因此瓣叶可能脱垂而无法合紧。二尖瓣狭窄是二尖瓣口变窄,这种变窄阻碍了左心室舒张时的充盈。

通常使用利尿剂和/或血管扩张剂治疗二尖瓣反流,以减少流回到左心房中的血液量。修复或置换瓣膜的外科手术方法(开放式的和经血管的)也已用于治疗二尖瓣反流。例如,典型的修复技术包括将扩张的瓣环的一些部分箍紧或切除。箍紧例如包括植入通常固定到瓣环或周围组织的环形或环周的环。其它修复程序将瓣膜瓣叶缝合或夹在一起,使瓣叶彼此部分并置。

或者,更具侵入性的手术通过将机械瓣膜或生物组织植入到心脏中以替代天然二尖瓣来置换整个瓣膜本身。这些侵入性手术通常需要大的开胸手术,因此非常痛苦、发病率高并且需要较长的恢复期。此外,在许多修复和置换手术程序中,装置的耐久性或瓣环成形术环或置换瓣膜尺寸的不正确可能给患者带来其它问题。修复程序还需要高度熟练的心脏外科医师,因为缝线放置不佳或不正确可能会影响程序的成功。

近年来,已经采用了侵入性较小的主动脉瓣置换方法。预先组装的经皮假体瓣膜的示例包括,例如,美敦力/核心瓣膜公司(Medtronic/Corevalve Inc.)(美国加利福尼亚州尔湾市(Irvine))的系统和爱德华兹生命科学公司(EdwardsLifesciences)(美国加利福尼亚州尔湾市)的

Figure BDA0002267529910000022

瓣膜。两种瓣膜系统均包括可扩张框架和附连于可扩张框架的三叶生物假体瓣膜。主动脉瓣基本上是对称的、圆形的并且具有肌肉环。在主动脉应用场合中,为了匹配天然解剖结构,而且还因为三叶假体瓣膜需要用于假体瓣叶的正确合紧的圆形对称性,可扩张框架在主动脉瓣环处具有对称的圆形形状。因此,主动脉瓣解剖结构使其自身适合于容纳置换瓣膜的可扩张框架,因为主动脉瓣解剖结构基本上是均匀的、对称的并且肌肉发达。然而,其它心脏瓣膜解剖结构不均匀、不对称或肌肉不发达,因此经血管主动脉瓣置换术可能不适用于其它类型的心脏瓣膜。

具体实施方式

本技术总体上涉及用于递送假体心脏瓣膜装置的液压系统和相关联的方法。参照图1-25,本文描述了本技术的几种实施例的具体细节。尽管是关于用于将假体心脏瓣膜装置递送至天然二尖瓣的装置、系统和方法描述了许多实施例,但是除了本文所述的这些之外的其它应用和其它实施例也在本技术的范围内。例如,本技术的至少一些实施例可用于将假体递送至其它瓣膜、比如三尖瓣或主动脉瓣。应当注意的是,除本文公开的实施例之外的其它实施例也在本技术的范围内。进一步地,本技术的实施例可以具有与本文所示或所述不同的构造、部件和/或程序。此外,本领域的普通技术人员将会理解的是,本技术的实施例可以具有除本文所示或所述的那些之外的构造、部件和/或程序,并且这些和许多实施例可以在不脱离本技术的情况下,没有本文所示或所述的若干构造、部件和/或程序。

关于在本说明书中的术语“远侧”和“近侧”,除非另有说明,术语可以参考假体瓣膜装置和/或相关联的递送装置的各部分相对于操作者和/或脉管系统或心脏中的位置的相对位置。例如,参考适于对本文所描述的假体心脏瓣膜进行递送和定位的递送导管,“近侧”可以指更靠近装置的操作者或是进入脉管中的切口的位置,而“远侧”可以指更远离装置的操作者或是沿着脉管更远离切口的位置(例如,导管的端部)。对于假体心脏瓣膜装置,术语“近侧”和“远侧”可以指装置的各部分相对于血液流动的方向的位置。例如,近侧可以指血液流入装置的上游位置或方位(例如,流入区域),而远侧可以指血液流出装置的下游位置或方位(例如,流出区域)。

总览

本技术的若干实施例涉及递送系统和二尖瓣置换装置,其解决了经皮置换天然二尖瓣的独特挑战。递送系统和可植入装置很好地适合于在部分地部署以重新定位或移除该装置之后被重新捕获在经皮递送装置中。递送系统还很好地适合于部署自扩张假体心脏瓣膜置换装置并从患者身上抽出递送系统。与置换主动脉瓣相比,经皮二尖瓣置换面临独特的解剖结构障碍,这使得经皮二尖瓣置换比主动脉瓣置换更具挑战性。首先,与相对对称且均匀的主动脉瓣不同,二尖瓣瓣环呈非圆形的D形或肾形,这种形状具有通常缺乏对称性的非平面、鞍形的几何形状。二尖瓣的复杂且高度可变的解剖结构使得很难设计出良好符合特定患者的天然二尖瓣环的二尖瓣假体。结果,假体可能无法与天然瓣叶和/或瓣环很好地适配,从而可能留下允许血液回流的间隙。例如,将圆柱状瓣膜假体放置在天然二尖瓣中可能在天然瓣膜的连合区域中留下间隙,可能发生穿过该间隙的瓣周漏。

当前所开发的用于经皮主动脉瓣置换术的假体瓣膜不适用于二尖瓣。首先,这些装置中的许多装置需要在接触瓣环和/或瓣叶的支架状结构与假体瓣膜之间进行直接的结构连接。在若干种装置中,支承假体瓣膜的支架柱还接触瓣环或其它周围组织。当心脏收缩时,这些类型的装置将由组织和血液施加的力直接传递至瓣膜支架和假体瓣叶,这又使瓣膜支架从其所期望的圆柱形状变形。这是令人担忧的问题,因为大多数心脏置换装置使用三叶瓣膜,所述三叶瓣膜需要围绕假体瓣膜的基本上对称的圆柱形支承,以在多年的使用寿命中适当地打开和关闭三个瓣叶。结果,当这些装置经受来自瓣环和其它周围组织的运动和力时,假体可能被压缩和/或变形,从而引起假体瓣叶失灵。此外,患病的二尖瓣环比任何可用的假体主动脉瓣大得多。随着瓣膜尺寸的增加,瓣膜瓣叶上的力会急剧增加,因此,简单地将主动脉假体的尺寸增加到扩张的二尖瓣环的尺寸将需要明显更厚、更高的瓣叶,并且可能是不可行的。

除了二尖瓣环的在每次心跳过程中改变尺寸的不规则、复杂的形状之外,二尖瓣环还缺少来自周围组织的大量径向支承。与主动脉瓣完全被纤维弹性组织包围、从而为锚定假体瓣膜提供足够的支承相比,二尖瓣仅由外壁上的肌肉组织约束。二尖瓣解剖结构的内壁由薄的血管壁约束,该薄的血管壁将二尖瓣环与主动脉流出道的下部分开。结果,二尖瓣环上的显著径向力、比如由扩张的支架假体施加的径向力会导致主动脉道的下部塌缩。此外,更大的假体会施加更大的力并扩张至更大的尺寸,这在二尖瓣置换应用场合中加剧了这个问题。

左心室的腱索还可能在部署二尖瓣假体时出现障碍。与主动脉瓣不同,二尖瓣在左心室瓣叶下方有错综复杂的绳索,该绳索在植入期间限制了部署导管和置换装置的运动和位置。结果,在天然二尖瓣环的心室侧上部署、定位和锚定瓣膜置换装置是很复杂的。

本技术提供了用于治疗身体的诸如二尖瓣之类的心脏瓣膜的系统、方法和设备,其解决了与二尖瓣的解剖结构相关联的挑战。本技术提供了用于重新定位和/或移除部分部署的装置和/或用于从患者无创伤地移除递送系统的技术。这些设备和方法能够使用通过静脉或动脉血管内递送到心脏中或通过***穿过心脏壁的插管递送的导管进行经皮入路。例如,这些设备和方法特别适合于经中隔和经心尖缛丽,但也可以是假体置换瓣膜到达心脏中的目标位置的经心房和直接主动脉递送。此外,本文所述的装置和方法的若干实施例可以与许多已知的手术和程序、比如利用顺行或逆行方法进入心脏瓣膜(例如二尖瓣或三尖瓣)的已知入路路径及其组合相结合。

本文所述的系统和方法有助于使用经心尖或经中隔的递送方法来进行受控的对假体心脏瓣膜装置的递送,允许在部分部署该装置之后重新套住该假体心脏瓣膜装置以重新定位和/或移除该装置,和/或提供从患者体内对递送系统的无创移除。根据本技术的若干实施例的系统包括细长的导管主体、由导管主体承载的递送封壳以及可扩张的无创伤构件。递送封壳包括平台以及具有侧壁和近侧边沿的壳体,并且封壳构造成可释放地容纳假体心脏瓣膜装置。壳体构造成沿着平台从容纳构造滑动至部署构造。可扩张的无创伤构件由封壳所承载(例如,在封壳中),并且无创伤构件具有开口、无创伤表面以及周界部分,支承构件的一部分延伸穿过开口。在一些实施例中,无创伤构件具有:(a)紧凑构造,在该紧凑构造中,无创伤构件构造成在受封壳约束的同时位于可植入装置的至少一部分内,以及(b)扩张构造,在该扩张构造中,周界部分侧向向外延伸超过壳体的近侧边沿(例如,径向延伸至近侧边沿的直径的外部)。在扩张构造中,可植入装置与无创伤构件间隔开,并且无创伤构件构造成,当递送系统沿近侧方向通过患者抽出时,保护心脏和脉管系统免受壳体的近侧边沿潜在的损害。此外,无创伤构件可在部署期间抵靠可植入装置向外扩张,以有助于使可植入装置与封壳脱离。

进入二尖瓣

为了更好地理解根据本技术的瓣膜置换装置的结构和操作,首先了解用于植入装置的入路是有帮助的。二尖瓣或其它类型的房室瓣可以通过患者的血管以经皮方式进入。经皮是指通过皮肤进入血管的远离心脏的位置,通常使用外科手术切除程序或微创程序、比如通过塞丁格(Seldinger)技术使用针进入。经皮进入远处的脉管系统的能力是众所周知的,并在专利和医学文献中有所描述。根据血管通路的点,二尖瓣的通路可以是顺行的,并且可依赖于穿过房间隔到达左心房的进入入路(例如,经中隔方法)。替代地,进入二尖瓣的入路可以是逆行的,在逆行入路中,通过主动脉瓣进入左心室。还可经由经心尖的入路使用插管来实现进入二尖瓣的入路。根据该方法、介入性工具和(一个或多个)支承导管可以多种方式在血管内前进至心脏并且以各种方式与目标心脏瓣膜相邻地定位。

图1示出了用于植入瓣膜置换装置的经中隔入路的阶段。在经中隔入路中,通路经由下腔静脉IVC或上腔静脉SVC,经由右心房RA穿过房间隔IAS穿过,并进入二尖瓣MV上方的左心房LA。如图1所示,具有针2的导管1从下腔静脉IVC运动进入到右心房RA中。一旦导管1到达心房间隔IAS的前侧,针2就前进,使得针2例如在卵圆窝FO或卵圆孔处穿过隔膜进入左心房LA。此时,用导丝置换针2,并抽出导管1。

图2示出了经中隔入路的后续阶段,其中导丝6和引导导管4穿过心房间隔IAS。引导导管4提供进入二尖瓣的通路,以利用该技术植入瓣膜置换装置。

在可替代的顺行入路中(未示出),可通过肋间切口获得手术通路,优选地不移除肋骨,并在左心房壁中制造小的穿孔或切口。引导导管通过该穿孔或切口直接进入左心房,并通过荷包线缝合来进行密封。

如上所述,对二尖瓣的顺行入路或经房间隔入路在许多方面都是有利的。例如,顺行入路通常将使引导导管和/或假体瓣膜装置能够更精确和有效地定中心和稳定。顺行入路还可减少用导管或其它介入性工具损坏腱索或其它瓣下结构的风险。此外,与在逆行入路中一样,顺行入路可降低与穿过主动脉瓣相关联的风险。这对于具有如下的假体主动脉瓣的患者尤其重要,因为假体主动脉瓣不能完全穿过或没有实质性的损伤风险。

图3和图4示出了进入二尖瓣的逆行入路的各示例。可以从主动脉弓AA、穿过主动脉瓣AV并进入二尖瓣MV下方的左心室LV来实现进入二尖瓣MV。主动脉弓AA可通过常规的股动脉通路路线或经由肱动脉、腋动脉、桡动脉或颈动脉通过更直接的方法进入。这种通路可通过使用导丝6来实现。一旦就位,就可使引导导管4导丝6上跟踪行进。替代地,可通过在胸腔中的切口采取外科手术入路,从而优选地在不移除肋骨的情况下进行肋间手术,并且通过穿孔将引导导管放置在主动脉自身中。引导导管4具备后续通路以允许放置假体瓣膜装置,如本文中更详细描述的。逆行入路有利地不需要经中隔穿孔。心脏科医生也更常使用逆行入路,因此逆行入路更为熟悉。

图5示出了经由经心尖穿刺的经心尖入路。在这种入路中,经由胸腔切口进入心脏,该胸腔切口可以是传统的开胸手术或胸骨切开术,或较小的肋间或下肾旁切口或穿孔。然后将通路插管通过穿孔放置在心脏的心尖处或附近的左心室壁中。然后可通过该通路插管将本发明的导管和假体装置引入左心室。经心尖入路为二尖瓣或主动脉瓣提供了更短、更直、更直接的路径。进一步地,因为它不涉及血管内通路,所以经心尖入路不需要进行介入性心脏病学方面的培训来执行其它经皮入路所需的导管***术。

用于假体心脏瓣膜装置的递送系统的选定实施例

图6是根据本技术的至少一些实施例构造的用于递送假体心脏瓣膜装置的液压系统100(“系统100”)的轴测图。系统100包括导管102,该导管102具有细长导管主体108(“导管主体108”)和递送封壳106。导管主体108可以包括联接于手持控制单元104(“控制单元104”)的近侧部分108a和承载递送封壳106的远侧部分108b。递送封壳106可以构造成容纳假体心脏瓣膜装置110(以虚线示意性地示出)。控制单元104可以提供用于将递送封壳106递送至目标部位(例如,递送至天然二尖瓣)并且将假体心脏瓣膜装置110部署在目标部位的转向能力(例如,递送封壳106的360度旋转,递送封壳106的180度旋转、3轴转向、2轴转向等)。导管102可以构造成在导丝120上行进,该导丝可以用于将递送封壳106引导到天然心脏瓣膜中。系统100还可以包括流体组件112,该流体组件112构造成向导管102供给流体以及从导管102接纳流体,以液压地使递送封壳106运动,从而部署假体心脏瓣膜装置110。

流体组件112包括流体源114和流体管线116,流体管线116将流体源114流体地联接至导管102。流体源114可在一个或多个贮存部中容纳可流动物质(例如,水、盐水等)。流体管线116可以包括一个或多个软管、管或其它部件(例如,连接件、阀等),可流动物质可以通过该软管、管或其它部件而从流体源114传递至导管102,和/或可流动物质可通过该软管、管或其它部件从导管102排放至流体源114。在其它实施例中,流体管线116可以将可流动物质从流体源114的第一贮存部递送至导管102,并将可流动物质从导管102排放至单独的贮存部。流体组件112还可以包括一个或多个增压装置(例如,泵)、流体连接件、配件、阀和/或其它流体部件,这些部件有助于使流体运动进入和/或离开流体源114。如以下进一步详细解释的,可流动物质往返于流体组件112的运动可以用于在假体心脏瓣膜装置至少部分地部署之后从递送封壳106部署假体心脏瓣膜装置110和/或重新套住假体心脏瓣膜装置110。

在某些实施例中,流体组件112可包括控制器118,该控制器118控制流体进出导管102的运动。控制器118可以而非限制地包括一台或多台计算机、中央处理单元、处理装置、微处理器、数字信号处理器(DSP)和/或专用集成电路(ASIC)。为了存储信息,例如,控制器118可以包括诸如易失性存储器、非易失性存储器、只读存储器(ROM)和/或随机存取存储器(RAM)之类的一个或多个存储元件。所存储的信息可以包括泵送程序、患者信息和/或其它可执行程序。控制器118还可以包括手动输入装置(例如,键盘、触摸屏等)和/或自动输入装置(例如,计算机、数据存储装置、服务器、网络等)。在其它实施例中,控制器118可包括不同的特征和/或具有不同的布置,用于控制流入和流出流体源114的流体的流动。

控制单元104可以包括控制组件122和转向机构124。例如,控制组件122可以包括诸如旋钮之类的旋转元件,这些旋转元件可以被旋转以使递送封壳106绕其纵向轴线107旋转。控制组件122还可以包括允许临床医生控制递送封壳106和/或流体组件112的液压部署机构的特征。例如,控制组件122可以包括按钮、杆和/或其它致动器,这些致动器启动假体心脏瓣膜装置110的脱出和/或重新套住。通过使导管主体108的远侧部分108b绕横向轴线弯曲,转向机构124可以用于使导管102穿过解剖结构而转向。在其它实施例中,控制单元104可包括有助于将假体心脏瓣膜装置110递送至目标部位的附加和/或不同的特征。

递送封壳106包括壳体126以及可选的端盖128,壳体126构造成承载假体心脏瓣膜装置110。端盖128可以在其远端处具有开口130,导丝120可通过该开口130穿过,以允许至目标部位的导丝递送。如图6所示,端盖128还可以具有无创伤性形状(例如,部分球形、截头锥形、钝形构造、圆形构造等),以有助于将递送封壳106无创伤性地递送至目标部位。在某些实施例中,端盖128还可以容纳假体心脏瓣膜装置110的一部分。壳体126和/或端盖128可以由金属、聚合物、塑料、复合材料、其组合或能够保持假体心脏瓣膜装置110的其它材料制成。递送封壳106经由控制单元104和/或流体组件112而在用于保持假体心脏瓣膜装置110的容纳构造和用于至少部分地在目标部位部署假体心脏瓣膜装置110的部署构造之间被液压驱动。递送封壳106还允许在假体心脏瓣膜装置110已经部分部署之后进行重新套住。

图7A是至少一些实施例的处于容纳构造的封壳106的剖视图,并且图7B是处于部署构造的封壳106的剖视图。封壳106可以液压地致动,并且能够在部分部署之后重新套住装置110,以将装置110重新定位或从患者身上移除。在若干实施例中,封壳106包括在壳体126内的支承件710。支承件710可以具有中心构件711、从中心构件711的中间部分径向向外延伸的平台712、以及从中心构件711的端部部分径向向外延伸的端板714。中心构件711可以是导管102的延伸部,或者是附连于导管主体108的远端108b的单独的部件。平台712和端板714可以是具有盘状形状或其它合适形状的肩部或凸缘。支承件710还可以包括第一孔口721、联接于第一孔口721的第一流体管线723、第二孔口722以及联接于第二孔口722的第二流体管线724。

在该实施例中,封壳106的壳体126包括具有近侧边沿732和远侧终端734的侧壁730。侧壁730的尺寸略大于平台712和端板714的外周,使得密封件750(例如,O形环)可以抵靠侧壁730的内表面而流体密封。壳体126还可以包括从侧壁730径向向内延伸的凸缘740,并且该凸缘740可以具有开口742,支承件710的中心构件711穿过该开口。凸缘740构造成承载密封件752(例如,O形环),该密封件752抵靠支承件710的中心构件711而密封。该实施例的封壳106构造成具有:在平台712与凸缘740之间的第一流体腔室761,以及在凸缘740与端板714之间的第二流体腔室762。第一流体腔室761通向第一孔口721,并且第二流体腔室762通向第二孔口722。图7A所示的侧壁730的上部限定有处于容纳构造的腔室770,在将假体心脏瓣膜装置110(示意性地示出为环形盒)递送至目标部位期间,假体心脏瓣膜装置110保持在该腔室770中。

在操作中,封壳106的壳体126通过分别经由第一孔口721和第二孔口722向第一流体腔室761和第二流体腔室762或从第一流体腔室761和第二流体腔室762递送或排放可流动物质(例如,水、盐水等)而在容纳构造与部署构造之间运动。例如,通过经由第一孔口721将可流动物质递送至第一流体腔室761、同时经由第二孔口722从第二流体腔室762排放可流动物质,壳体126从容纳构造(图7A)运动至部署构造(图7B)。相反地,通过经由第二孔口722将可流动物质递送至第二流体腔室762、同时经由第一孔口721从第一流体腔室761排放可流动物质,壳体126从部署构造(图7B)运动至容纳构造(图7A)。

系统100还可以包括由封壳106承载的可扩张的无创伤构件780(“无创伤构件780”)。如图7B最佳地所示的,无创伤构件780可以包括无创伤表面782和周界部分784。无创伤构件780构造成以容纳构造(图7A)保持在封壳106内,并且以部署构造(图7B)径向向外扩张,使得无创伤构件780的至少周界部分在封壳106的近侧边沿732的至少一部分上延伸(例如,径向地超出近侧边沿732的直径)。参照图7A,可以将无创伤构件780的至少一些实施例压紧并定位在装置110的远侧部分与支承件710的中心构件711之间,使得如果需要的话,无创伤构件780可以向外驱动装置110的远侧部分以使装置110与平台712脱离。在许多实施例中,无创伤构件780不需要定位在装置110与支承件710的中心构件711之间,而是无创伤构件780可以位于装置110的最远侧部分的远侧。

在图7B所示的部署构造中,壳体126的近侧边沿732定位成向远侧超出装置110和无创伤构件780的最远侧部分。装置110因此径向向外延伸超出壳体126,并且无创伤构件780扩张,使得无创伤构件780的至少周界部分784相对于壳体126的近侧边沿732侧向(例如,径向)向外。例如,无创伤构件780沿近侧方向覆盖近侧边沿732。因此,当将导管102向近侧抽出以在部署装置110之后移除递送装置时,无创伤构件780保护心脏和脉管系统。

在图8A-11中示出了无创伤构件780的若干实施例。图8A是可扩张的无创伤构件800(“无创伤构件800”)的轴测图,该无创伤构件800包括截头锥形构件,该截头锥形构件具有近侧表面810、远侧表面820、在近侧表面810与远侧表面820之间的无创伤表面822以及周界区域830。无创伤表面822的至少一部分可以沿远侧方向向外倾斜。无创伤表面822例如随着向远侧增加的距离而向外倾斜(例如,扩口)。结果,当将导管102(图1)从患者中抽出时,无创伤表面800引导封壳106通过开口和脉管系统的内腔。无创伤构件800的周界部分830构造成覆盖壳体126的近侧边沿732(图7B),从而防止在抽出导管102时近侧边沿732损坏组织。无创伤构件800还包括开口840,该开口840构造成接纳支承件710的中心构件711。

无创伤构件800可以是聚合物材料、编织材料或由单独的支杆形成的结构。在聚合材料的情况下,无创伤构件800可以是多孔材料,比如开孔泡沫或闭孔泡沫。还可以使用在不受约束时扩张的其它聚合材料,比如硅树脂。替代地,无创伤构件800可以是由形状记忆金属线材或者在完全扩张的无偏置状态下具有截头锥形的其它类型的金属线材的支杆或编织物形成的笼状的其它结构。编织物的线材可以包括镍钛诺、不锈钢、拉制填充管(例如镍钛诺和铂)和钴铬合金中的一种或多种。

图8B是无创伤构件800的一些实施例的侧剖视图,无创伤构件800还包括接口850以及在不受约束的状态下从接口850向远侧且径向向外延伸的盘860。图8B所示的无创伤构件800可以由硅树脂或某些其它合适的聚合材料制成,并且接口850和盘860可以彼此一体地形成。例如,接口850和盘860可以由硅树脂或另一种合适的材料模制或三维打印而成。开口840可以延伸穿过接口850。盘860可以在接口850处向内挠曲以被装载到递送封壳中,然后在不受约束时相对于接口径向向外自扩张(即,从递送封壳中释放)。图8B所示的无创伤构件800还可以包括在盘860的内表面上的支承件862(例如,臂)。支承件862可以诸如通过模制或三维打印而与盘860一体地形成,或者支承件862可以是附连于盘860或模制在盘860内的单独的部件(例如,金属杆)。

图9A和9B是当壳体126处于不同位置时,无创伤构件800和封壳106的壳体126的一些实施例的侧视图。更具体地,图9A示出了在可植入装置和无创伤构件800完全扩张之后、在壳体126处于图7B的完全延伸位置时的无创伤构件800。在该阶段,无创伤构件800的周界部分830向外延伸超出壳体126的近侧边沿732的半径。图9B示出了在壳体126已经缩回至其在图7A中示出的原始位置、从而使无创伤构件800沿着支承件的中心构件711(图9A)向近侧滑动之后的系统。在该阶段,无创伤构件800的周界部分830保持在壳体126的近侧边缘732之上,以在抽出递送系统时保护患者的心脏组织和脉管系统。

图10A是示出根据本技术的若干实施例的无创伤构件900a的侧视图。无创伤构件900a具有带有近侧表面911的接口910、用于接纳支承件710的中心构件711的开口912以及远端913。接口910可以是短的管状构件。无创伤构件900a还包括从接口910的远端913向远侧延伸的多个臂930。图10A示出了处于扩张状态的无创伤构件900a,在该扩张状态下,臂930沿远侧方向径向向外扩口。在该实施例中,这些臂930具有半双曲面形状。臂930具有外表面932,这些外表面932一起限定出无创伤构件900a的无创伤表面。

图10B是示出根据本技术的若干实施例的无创伤构件900b的侧视图,并且图10C是该无创伤构件900b的俯视图。无创伤构件900b由切割而成的海波管形成,其具有由壳体922保持在一起以形成近侧接口924(图10B)的多个第一区段920以及从近侧接口924向远侧延伸以限定出多个臂930(图10B)的多个第二区段926。第一区段926可以被布置成形成开口940(图10C),该开口940构造成容纳支承件710(图7A)的中心构件711(图7A)。与图10A所示的无创伤构件900a一样,当无创伤构件900b处于扩张状态时,无创伤构件900b的臂930沿远侧方向径向向外扩口。无创伤构件900a和900b两者都可以由诸如镍钛诺之类的形状记忆材料或其它材料(例如,不锈钢或聚合材料)形成。此外,无创伤构件900a和900b两者的臂930都具有一起限定出无创伤表面的外表面932。

图11是示出了以扩张状态安装于中心构件711的无创伤构件900a或900b的侧视图,在扩张状态下,臂930径向向外延伸,使得臂930的远侧周界部分在壳体126的近侧边沿732的径向外侧。因此,臂930的远侧部分限定出无创伤构件900a或900b的周界部分,该周界部分侧向地(例如,径向地)从近侧边沿732向外延伸,以沿面向近侧的方向覆盖壳体126的近侧边沿732。在操作中,无创伤构件900a和900b中的任一个的臂930沿面向近侧的方向充分覆盖壳体126的近侧边沿732,以在抽出导管102时保护患者的心脏和/或脉管系统的组织。此外,臂930的径向扩张可以通过抵靠可植入装置的远侧部分而径向向外地进行推动来协助使可植入装置与封壳脱离。

无创伤构件900a和900b的附加的实施例能够可选地包括在臂930上的覆盖件950(图11)。例如,可以将由

Figure BDA0002267529910000151

编织金属线材网或其它合适的材料制成的织物覆盖件放置在臂930的外表面上和/或衬在臂930的内表面上,以进一步增强臂930的内表面的保护性。在替代实施例中,无创伤构件900a和900b可以具有由织物、金属线材的编织网或金属薄片制成的带凹槽的裙部,而不是分开的臂930,当没有受到封壳106的壳体126的限制时,该裙部径向向外自扩张。

除了保护心脏和脉管系统组织之外,本技术的无创伤构件还使壳体126具有开口的近端。例如,参照图7A,封壳106不需要近侧盖部,该近侧盖部在容纳构造中密封至近侧边沿732或以其它方式覆盖近侧边沿732。这减小了封壳106的长度,这对于使封壳106能够穿过脉管系统的转弯和拐角来说是所期望的。

假体心脏瓣膜装置的选定实施例

以上参照图6-11描述的具有无创伤构件的递送系统可以构造成递送各种假体心脏瓣膜装置、比如用于替换二尖瓣和/或其它瓣膜(例如双尖瓣或三尖瓣)的假体瓣膜装置。这些假体心脏瓣膜装置、系统部件和相关联的方法的各示例在本节中参照图12A-25描述。参照图12A-25描述的各实施例的具体元件、子结构、优点、用途和/或其它特征可以适当地互换、替换或以其它方式构造。此外,参照图12A-25描述的各实施例的合适元件可以用作独立和/或自包含的装置。

图12A是根据本技术的一实施例的假体心脏瓣膜装置(“装置”)1100的侧视剖视面图,并且图12B是该装置的俯视图。装置1100包括瓣膜支承件1110、附连于瓣膜支承件1110的锚定构件1120以及瓣膜支承件1110内的假体瓣膜组件1150。参照图12A,瓣膜支承件1110具有流入区域1112和流出区域1114。假体瓣膜组件1150布置在瓣膜支承件1110内,以允许血液从流入区域1112流过流出区域1114(箭头BF),但是防止血液沿从流出区域1114通过流入区域1112的方向流动。

在图12A所示的实施例中,锚定构件1120包括附连于瓣膜支承件1110的流出区域1114的基部1122以及从基部1122侧向向外突出的多个臂1124。锚定构件1120还包括从臂1124延伸的固定结构1130。固定结构1130可以包括第一部分1132和第二部分1134。固定结构1130的第一部分1132例如可以是固定结构1130的上游区域,其在如图12A所示的部署构造中与瓣膜支承件1110的流入区域1112侧向地向外间隔开间隙G。固定结构1130的第二部分1134可以是固定结构1130的最下游部分。固定结构1130可以是圆柱环(例如,直圆柱或圆锥形),并且固定结构1130的外表面可以限定有环形配合表面,该环形配合表面构造成向外压靠心脏瓣膜(例如,二尖瓣)的天然瓣环。固定结构1130还可以包括多个固定元件1136,这些固定元件1136径向向外突出并且朝向上游方向倾斜。固定元件1136例如可以是倒钩、钩子或仅沿上游方向(例如,远离装置1100的下游部分延伸的方向)倾斜的其它元件。

仍然参照图12A,锚定构件1120在臂1124与固定结构1130之间具有平滑弯曲部1140。例如,固定结构1130的第二部分1134在平滑弯曲部1140处从臂1124延伸。臂1124和固定结构1130可以由连续的支杆或支承元件一体地形成,使得平滑弯曲部1140是连续的支杆的弯曲部分。在其它实施例中,平滑弯曲部1140可以是相对于臂1124或固定结构1130的单独部件。例如,可以使用形成平滑连接部的焊缝、粘合剂或其它技术将平滑弯曲部1140附连于臂1124和/或固定结构1130。平滑弯曲部1140构造成使得在装置1100已经至少部分地部署之后,装置1100可以被重新捕获在封壳或其它容器中。

装置1100还可以包括在瓣膜支承件1110上的第一密封构件1162和在锚定构件1120上的第二密封构件1164。第一密封构件1162和第二密封构件1164可以由柔性材料制成,比如

Figure BDA0002267529910000161

或其它类型的聚合材料。第一密封构件1162可以覆盖瓣膜支承件1110的内表面和/或外表面。在图12A所示的实施例中,第一密封构件1162附连于瓣膜支承件1110的内表面,并且假体瓣膜组件1150附连于第一密封构件1162和瓣膜支承件1110的连合部分。第二密封构件1164附连于锚定构件1120的内表面。结果,固定结构1130的外部环形配合表面没有被第二密封构件1164覆盖,使得固定结构1130的外部环形配合表面直接接触天然瓣环的组织。

装置1100还可以包括延伸构件1170。延伸构件1170可以是第二密封构件1164的延伸,或者可以是附连于第二密封构件1164和/或固定结构1130的第一部分1132的单独的部件。延伸构件1170可以是柔性构件,其在部署状态下(图12A)相对于固定结构1130的第一部分1132挠曲。在操作中,延伸构件1170提供触觉反馈或视觉指示(例如,在超声心动图或荧光成像系统上)以在植入期间引导装置1100,使得装置1100位于期望的高度处并且相对于天然瓣环居中。如下所述,延伸构件1170可以包括能够在植入期间经由荧光透视或其它成像技术而可视的支承构件,比如金属丝或其它结构。例如,支承构件可以是不透射线的丝线。

图13A和图13B是示出在部分部署之后于重新捕获装置1100中在臂1124与固定结构1130之间的平滑弯曲部1140的操作的示例的剖视图。图13A示意性地示出了被装载到递送系统的封壳1700中的处于递送状态的装置1100,并且图13B示意性地示出了处于部分部署状态的装置1100。参照图13A,封壳1700具有壳体1702、基座或支承件1704以及顶部1706。在图13A所示的递送状态下,装置1100处于低轮廓构造,其适于通过导管或插管递送至天然心脏瓣膜处的目标植入部位。

参照图13B,封壳1700的壳体1702已经向远侧运动,使得延伸构件1170、固定结构1130和臂1124的一部分已经以部分部署的状态从壳体1702释放。这对于将固定结构1130相对于天然瓣环A定位在适当的高度处是有用的,使得固定结构1130径向向外扩张成接触天然瓣环A的内表面。然而,装置1100在被部分部署之后可能需要重新定位和/或从患者移除。为此,使壳体1702朝固定结构1130缩回(箭头R)。随着壳体1702沿着臂1124滑动,臂1124与固定结构1130之间的平滑弯曲部1140允许壳体1702的边缘1708在平滑弯曲部1140上滑动,并由此将固定结构1130和延伸构件1170重新捕获在壳体1702内。然后,可以将装置1100从患者体内移除或者相对于天然瓣环A重新部署在更好的位置处。以下参照图14-25描述根据本技术的假体心脏瓣膜装置的另外的方面及其与对应的递送装置的相互作用。

图14是装置1100的示例的俯视轴测图。在该实施例中,瓣膜支承件1110限定有第一框架(例如,内部框架),并且锚定构件1120的固定结构1130限定有第二框架(例如,外部框架),第一框架和第二框架每个包括多个结构元件。更具体地,固定结构1130包括布置在菱形单元格1138中的结构元件1137,当如图14所示地自由且完全扩张时,这些结构元件1137一起形成至少基本上圆柱形的环。结构元件1137可以是由金属、聚合物、或者可以自扩张或者通过球囊或其它类型的机械扩张件来扩张的其它合适的材料形成的支杆或其它结构特征。

在几种实施例中,固定结构1130可以是具有面向外的配合表面的大致圆柱形的固定环。例如,在图14所示的实施例中,结构元件1137的外表面限定有环形配合表面,该环形配合表面构造成在部署状态下向外压靠天然瓣环。在没有任何限制的完全扩张状态下,固定结构1130的壁至少基本上平行于瓣膜支承件1110的壁。然而,当固定结构1130径向向外压靠心脏瓣膜的天然瓣膜的内表面时,固定结构1130可以在部署状态下向内挠曲(箭头I)。

图14所示的装置1100的实施例包括内衬于瓣膜支承件1110的内表面的第一密封构件1162以及沿着固定结构1130的内表面的第二密封构件1164。延伸构件1170具有柔性幅材1172(例如,织物)和附连于柔性幅材1172的支承构件1174(例如,金属或聚合物股线)。柔性幅材1172可以从第二密封构件1164延伸,而在固定结构1130与支承构件1174之间没有金属对金属的连接。例如,延伸构件1170可以是第二密封构件1164的材料的延续。因此,延伸构件1170的几种实施例是可以相对于固定结构1130容易挠曲的可延展结构或柔软结构。支承构件1174可以具有多种构造,并且可以由多种材料制成,比如由镍钛诺制成的双蛇形结构。

图15是图14所示的装置1100的侧视图,并且图16是该装置的仰视轴测图。参照图15,臂1124从基部1122以一定角度α径向向外延伸,该角度α选择成在部署状态下将固定结构1130从瓣膜支承件1110(图14)径向向外地定位一段期望的距离。角度α还选择成允许递送系统壳体1702的边缘1708(图13B)在重新捕获期间从基部1122朝向固定结构1130滑动。在许多实施例中,角度α为15°-75°、或更具体地为15°-60°、或更具体地为30°-45°。固定结构1130的臂1124和结构元件1137可以由相同的支杆形成(即,彼此一体地形成),使得平滑弯曲部1140是从臂1124到结构元件1137的连续的、平滑的过渡部。预期这将使得壳体1702的边缘1708能够以允许将固定结构1130重新捕获在封壳1700的壳体1702中的方式更容易地在平滑弯曲部1140上滑动(图13B)。此外,与其中臂1124和结构元件1137是分开的部件并且彼此焊接或以其它方式紧固的构造相比,通过将臂1124和结构元件1137彼此一体地形成抑制了在臂1124与结构元件1137之间的接合部处对装置1100的损坏。

参照图15和16,臂1124中还沿着它们的整个长度彼此分开,该整个长度是从它们连接于基部部分1122的地方通过平滑弯曲部1140(图15)到固定结构1130的结构元件1137。因此,当在重新捕获期间壳体1708的边缘1702(图13B)沿着臂1124滑动时,各个臂1124能够容易地挠曲。预期这将减少壳体1708的边缘1702卡在臂1124上的可能性,并防止装置1100重新捕获在壳体1702中。

在一种实施例中,臂1124具有从基部1122到平滑弯曲部1140的第一长度,并且固定结构1130在单元格1137(图14)的每一侧处的结构元件1138具有第二长度,该第二长度小于臂1124的第一长度。固定结构1130因此不如臂1124柔性。结果,固定结构1130能够以足够的力向外压靠天然瓣环,以将装置1100固定至天然瓣环,而臂1124具有足够的柔性,以当装置被重新捕获在递送装置中时向内折叠。

在图14-16所示的实施例中,臂1124和结构元件1137构造成,使得每个臂1124和从每个臂1124延伸的两个结构元件1137形成锚定构件1120的Y形部分1142(图16)。此外,每个Y形部分1142的右侧结构元件1137直接联接于紧邻的Y形部分1142的左侧结构元件1137。预期在重新捕获期间,Y形部分1142和平滑弯曲部1140进一步提高使壳体1702沿着臂1124和固定结构1130滑动的能力。

图17是根据本技术的另一种实施例的假体心脏瓣膜装置(“装置”)1200的侧视图,并且图18是该装置1200的仰视轴测图。装置1200被示出为不具有延伸构件1170(图14-16),但是装置1200可以另外地包括上述延伸构件1170。装置1200还包括从锚定构件1120的基部1122突出的延伸连接部1210。或者,作为从锚定构件1120的基部1122延伸的附加或替代,延伸连接部1210可以从瓣膜支承件1110(图12A-16)延伸。延伸连接部1210可以包括附连于基部1122的一部分的第一支杆1212a和附连于基部1122的另一部分的第二支杆1212b。第一支杆1212a和第二支杆1212b构造成形成V形结构,在该结构中它们沿下游方向朝向彼此延伸,并且在V形结构的底部处彼此相连接。当装置1200在递送期间或部分部署期间在封壳1700(图13A)内处于低轮廓构造时,第一支杆1212a和第二支杆1212b的V形结构使延伸连接部1210伸长。当装置1200从封壳1700完全释放时(图13A),延伸连接部1210缩短,以避免干扰沿左心室流出道的血液流动。

延伸连接部1210还包括构造成可释放地配合递送装置的附连元件1214。该附连元件1214可以是T形杆或其它元件,其防止装置1200从递送装置的封壳1700(图13A)释放,直到期望这么做为止。例如,T形杆型附连元件1214可以防止装置1200在部署开或部分部署期间轴向运动,直到壳体1702(图13A)运动超出递送装置的与附连元件1214配合的部分为止。当瓣膜支承件1110的流出区域和锚定构件1120的基部1122完全扩张以允许装置1200完全部署时,这导致附连元件1214从封壳1700(图13A)脱离。

图19是处于部分部署状态的装置1200的侧视图,图20是装置1200的仰视轴测图,其中装置1200仍然能够被重新捕获在递送装置1700的壳体1702中。参照图19,装置1200部分地部署,其中固定结构1130基本上扩张,但是附连元件1214(图17)仍然保持在封壳1700内。这对于确定装置1200的位置的准确性以及允许血液在植入期间流过功能性置换瓣膜是有用的,同时在需要将装置1200重新定位或从患者体内移除的情况下保持重新捕获装置1200的能力。在该部分部署状态下,延伸连接部1210的伸长的第一支杆1212a和第二支杆1212b使锚定构件1120的基部1122和瓣膜支承件1110(图12A)的流出区域与封壳1700的边缘1708间隔开间隙G。

参照图20,在装置1200仅部分地部署的同时,间隙G使血液能够流过假体瓣膜组件1150。结果,装置1200可以部分地部署以确定:(a)装置1200是否相对于天然心脏瓣膜解剖结构正确地定位,以及(b)在装置1200仍被递送系统1700保持时,是否有适当的血液流过假体瓣膜组件1150。由此,如果装置1200不在期望的位置中和/或如果假体瓣膜不能正常运作,则可以重新捕获装置1200。预期该附加功能将显著增强正确放置装置1200并在体内评估装置1200是否按预期运行的能力,同时保持重新定位装置1200以在患者体内重新部署装置或从患者体内移除装置1200的能力。

图21是根据本技术的一实施例的瓣膜支承件1300的轴测图。瓣膜支承件1300可以是以上参照图12A-20描述的瓣膜支承件1110的实施例。瓣膜支承件1300具有流出区域1302、流入区域1304、在流出区域1302处的第一六边形单元格1312的第一排1310以及在流入区域1304处的第二六边形单元格1322的第二排1320。出于说明的目的,图21中所示的瓣膜支承件与图12A-20中所示的瓣膜支承件1110相比是倒置的,使得血液沿箭头BF的方向流过瓣膜支承件1300。在二尖瓣应用场合中,瓣膜支承件1300将会定位在锚定构件1120内(图12A),使得流入区域1304将会对应于图12A中流入区域1112的定向,并且流出区域1302将会对应于图12A中的流出区域1114的定向。

每个第一六边形单元格1312包括一对第一纵向支承部1314、下游顶点1315和上游顶点1316。每个第二六边形单元格1322可以包括一对第二纵向支承部1324、下游顶点1325和上游顶点1326。第一六边形单元格1312和第二六边形单元格1322的第一排1310和第二排1312彼此直接相邻。在所示的实施例中,第一纵向支承部1314直接从第二六边形单元格1322的下游顶点1325延伸,并且第二纵向支承部1324直接从第一六边形单元格1312的上游顶点1316延伸。结果,第一六边形单元格1312绕瓣膜支承件1300的周缘从第二六边形单元格1322偏移单元格宽度的一半。

在图21所示的实施例中,瓣膜支承件1300包括在流出区域1302处的多个第一支杆1331、在流入区域1304处的多个第二支杆1332以及在第一支杆1331与第二支杆1332之间的多个第三支杆1333。每个第一支杆1331从第一纵向支承部1314的下游端延伸,并且成对的第一支杆1331连接在一起以形成第一下游V形支杆,该第一下游V形支杆限定出第一六边形单元格1312的下游顶点1315。在相关意义上讲,每个第二支杆1332从第二纵向支承部1324的上游端延伸,并且成对的第二支杆1332连接在一起以形成第二上游V形支杆,该第二上游V形支杆限定出第二六边形单元格1322的上游顶点1326。第三支杆1333中的每一个具有连接于第一纵向支承部1314的上游端的下游端,并且第三支杆1333中的每一个具有连接于第二纵向支承部1324之一的下游端的上游端。因此,第三支杆1333的下游端限定出形成第二六边形单元格1322的下游顶点1325的第二下游V形支杆布置,并且第三支杆1333的上游端限定出形成第一六边形单元格1312的上游顶点1316的第一上游V形支杆布置。因此,第三支杆1333既限定出第一六边形单元格1312的第一上游V形支杆,又限定出第二六边形单元格1322的第二下游V形支杆。

第一纵向支承部1314可以包括多个孔1336,缝线可以穿过这些孔1336以附连假体瓣膜组件和/或密封构件。在图21所示的实施例中,仅第一纵向支承部1314具有孔1336。但是,在其它实施例中,作为对第一纵向支承部1314中的孔1336的附加或替代情形,第二纵向支承部1324也可以包括孔。

图22是瓣膜支承件1300的侧视图,图23是瓣膜支承件1300的仰视轴测图,其中第一密封构件1162附连于瓣膜支承件1300,并且假体瓣膜1150位于瓣膜支承件1300内。第一密封构件1162可以通过联接于第一纵向支承部1314和第二纵向支承部1324的多个缝线1360来附连于瓣膜支承件1300。联接于第一纵向支承部1314的缝线1360中的至少一些穿过孔1336,以将第一密封构件1162进一步固定至瓣膜支承件1300。

参照图23,假体瓣膜1150可以附连于瓣膜支承件1300的第一密封构件1162和/或第一纵向支承部1314。例如,假体瓣膜1150的连合部分可以与第一纵向支承部1314对准,并且缝线1360可以穿过假体瓣膜1150的连合部分和第一密封构件1162,其中假体瓣膜1150的连合部分与第一纵向支承部1314对准。假体瓣膜1150的流入部分可以被缝合至第一密封构件1162。

预期图21-23中所示的瓣膜支承件1300非常适合与以上参照图17-20所描述的装置1200一起使用。更具体地,当装置1200处于闭合状态时,第一支杆1331与装置1200的延伸连接部1210(图17-20)协作,以将假体瓣膜1150的流出部分与封壳1700(图19-20)分开。第一支杆1331在瓣膜支承件完全扩张(例如,至少部分地容纳在封壳1700中)时伸长,并且在瓣膜支承件1300没有完全扩张时缩短。这允许假体瓣膜1150的流出部分在部分部署状态下与封壳1700进一步间隔开,使得当装置1200(图17-20)处于部分部署状态时,假体瓣膜1150可以至少部分地起作用。因此,预期瓣膜支承件1300增强了评估假体瓣膜1150是否在部分部署状态下是完全可操作的能力。

图24和25分别是根据本技术的其它实施例的瓣膜支承件1400和1500的示意性侧视图。参照图24,瓣膜支承件1400包括第一六边形单元格1412的第一排1410和第二六边形单元格1422的第二排1420。瓣膜1400还可以包括从第一六边形单元格1412延伸的第一排菱形单元格1430以及从第二六边形单元格1422延伸的第二排菱形单元格1440。附加的菱形单元格在低轮廓状态下伸长,因此它们可以使假体瓣膜1150(示意性地示出)与递送装置的封壳进一步间隔开。参照图25,瓣膜支承件1500包括在流出区域1502处的第一六边形单元格1512的第一排1510以及在流入区域1504处的第二六边形单元格1522的第二排1520。瓣膜支承件1500成形为,使得中间区域1506(在流入区域1502与流出区域1504之间)的横截面面积小于流出区域1502和/或流入区域1504的横截面面积。由此,第一六边形单元格1510的第一排1512沿下游方向向外扩口,并且第二六边形单元格1520的第二排1522沿上游方向向外扩口。

示例

在以下示例中阐述了本技术的若干个方面。

1.一种用于将假体心脏瓣膜装置递送至患者心脏中的系统,所述系统包括:

细长导管主体;

递送封壳,所述递送封壳由细长导管主体承载,所述递送封壳包括平台以及具有侧壁和近侧边沿的壳体,所述壳体构造成沿着所述平台从容纳构造滑动至部署构造,并且所述平台和所述侧壁限定出用于以所述容纳构造保持假体心脏瓣膜装置的腔室;以及

能够扩张的无创伤构件,所述无创伤构件与所述封壳相关联,所述无创伤构件具有开口、无创伤表面和周界部分,其中,所述无创伤构件构造成处于:(a)紧凑构造,在所述紧凑构造中,所述无创伤构件在处于所述容纳构造的所述腔室内,以及(b)扩张构造,在所述扩张构造中,所述周界部分在处于所述部署构造的所述壳体的所述近侧边沿之上侧向向外延伸。

2.如示例1所述的系统,其中,所述壳体在所述近侧边沿处是开口的,使得所述腔室在所述容纳构造中是面向近侧开口的。

3.如前述示例中任一项所述的系统,其中,所述无创伤构件包括截头锥形构件。

4.如前述示例中任一项所述的系统,其中,所述截头锥形构件包括泡沫、弹性体或编织线材。

5.如前述示例中任一项所述的系统,其中,所述无创伤构件包括接口和臂,所述臂在所述扩张构造中向外扩口。

6.如示例5所述的系统,其中,所述臂包括形状记忆材料。

7.如前述示例中任一项所述的系统,其中,所述无创伤构件包括具有远侧部分的臂,所述远侧部分在所述扩张构造中沿远侧方向径向向外扩口。

8.如前述示例中任一项所述的系统,其中,所述无创伤表面是沿远侧方向向外扩口的倾斜表面。

9.如示例8所述的系统,其中,所述倾斜表面由向外扩口的臂限定。

10.如前述示例中任一项所述的系统,还包括假体心脏瓣膜装置,所述假体心脏瓣膜装置在处于所述容纳构造中的所述腔室中处于低轮廓状态,并且其中,所述无创伤构件以所述紧凑构造位于所述假体心脏瓣膜装置的远侧部分内。

11.一种用于治疗天然心脏瓣膜的系统,所述系统包括:

细长导管主体;

递送封壳,所述递送封壳由细长导管主体承载,所述递送封壳包括支承件和壳体,所述支承件具有平台,所述壳体具有侧壁和近侧边沿,并且所述壳体构造成沿着所述平台从容纳构造滑动至部署构造,并且其中,所述壳体和所述平台在所述容纳构造中限定出腔室;

可扩张的假体心脏瓣膜装置,所述假体心脏瓣膜装置在所述容纳构造中至少部分地在所述壳体的所述腔室内;以及

可扩张的无创伤构件,所述无创伤构件由所述封壳承载,所述无创伤构件具有开口、近侧无创伤表面和周界部分,所述支承件延伸穿过所述开口,其中,所述无创伤构件构造成:(a)在紧凑构造中具有第一直径,以及(b)当所述假体心脏瓣膜装置从所述腔室释放时,在扩张构造中向外扩张至大于所述第一直径的第二直径,使得所述周界部分从所述壳体的所述近侧边沿侧向向外延伸。

12.如示例11所述的系统,其中,当所述无创伤构件处于紧凑构造时,所述无创伤构件位于所述封壳的所述支承件与所述假体心脏瓣膜装置之间。

13.如示例11-12中任一项所述的系统,其中,所述无创伤构件包括截头锥形构件。

14.如示例13所述的系统,其中,所述截头锥形构件包括泡沫、弹性体或编织线材。

15.如示例11-14中任一项所述的系统,其中,所述无创伤构件包括接口和臂,所述臂在所述扩张构造中向外扩口。

16.如示例15所述的系统,其中,所述臂包括形状记忆材料。

17.如示例11-16中任一项所述的系统,其中,所述无创伤构件包括接口和附连于所述接口的可扩张构件,并且其中,所述可扩张构件在所述扩张构造中沿远侧方向径向向外扩口。

18.如示例11-17中任一项所述的系统,其中,所述无创伤表面是沿远侧方向向外扩口的倾斜表面。

19.如示例18所述的系统,其中,所述倾斜表面是泡沫表面。

20.如示例18所述的系统,其中,所述倾斜表面由向外扩口的臂限定。

21.一种递送假体心脏瓣膜装置的方法,所述方法包括:

将承载假体心脏瓣膜的递送封壳定位在人类的心脏内的天然心脏瓣膜处,其中,所述封壳处于容纳构造;

使所述封壳的壳体从所述容纳构造运动至部署构造,由此所述假体心脏瓣膜自扩张并从所述封壳释放;以及

使无创伤构件从压缩构造扩张至扩张构造,使得所述无创伤构件的周界部分相对于所述壳体的近侧边沿侧向向外延伸,在所述压缩构造中,所述无创伤构件具有第一直径,在所述扩张构造中,所述无创伤构件具有大于所述第一直径的第二直径。

结论

以上对技术实施例的详细描述不意在穷尽或将技术限制为以上公开的精确形式。尽管以上出于说明目的而描述本技术的特定实施例和示例,但是如本领域技术人员将认识到的,在本技术的范围内可以进行各种等同修改。例如,尽管以给定顺序呈现各步骤,但替代的实施例可以不同的顺序来执行这些步骤。另外,参照图7A-11示出和描述的无创伤构件的若干实施例的各种特征可以彼此互换。例如,所有无创伤构件能够可选地包括织物或金属线材编织的覆盖件。本文中描述的各种实施例还可结合以提供其它实施例。

根据前述内容,应当理解的是,本文出于说明目的已经描述了本技术的特定实施例,但是未示出或详细描述公知的结构和功能,以避免不必要地使本技术的实施例的描述不清楚。在上下文允许的情况下,单数或复数的术语也可分别包含复数或单数术语。

此外,除非单词“或”明确局限于指仅一个物件,排除涉及两个或多个物件列表的其它物件,否则所述列表中使用“或”解释为包含(a)列表中的任何单个物件,(b)列表中的所有物件或(c)列表中物件的任何组合。此外,术语“包括”在全文中用于表示至少包括所叙述的(一个或多个)特征,使得不排除任何更多数量的相同特征和/或其它类型的其它特征。还应当理解的是,本文出于说明的目的已经描述了特定实施例,但是可以在不脱离本技术的情况下进行各种修改。进一步地,尽管已经在那些实施例的上下文中描述了与该技术的某些实施例相关联的优点,但是其它实施例也能展示这类优点,并且并非所有实施例都必须展示这类优点才落入本技术的范围。因此,本公开和相关联的技术可以涵盖本文未明确示出或描述的其它实施例。

40页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:用于补救膝关节的方法、系统以及设备

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!

技术分类