一种氧化石墨相氮化碳及其制备方法和应用

文档序号:1637286 发布日期:2020-01-17 浏览:20次 >En<

阅读说明:本技术 一种氧化石墨相氮化碳及其制备方法和应用 (Graphite oxide phase carbon nitride and preparation method and application thereof ) 是由 徐鑫 于俊玲 董宾宾 郝绿原 于 2019-09-17 设计创作,主要内容包括:本发明提供了一种氧化石墨相氮化碳及其制备方法和应用,本发明提供的氧化石墨相氮化碳通过将前驱体石墨相氮化碳溶于浓硝酸溶液中,依次加入高锰酸钾和双氧水反应,得到氧化石墨相氮化碳;其中,通过采用浓硝酸和高锰酸钾对前驱体石墨相氮化碳进行氧化反应,使得制备得到的氧化石墨相氮化碳用于检测碘离子的荧光探针具有选择性好、灵敏度高、信噪比高、可靠性好、无毒、生物相容性好的优点。在细胞及生物活体的碘离子检测中具有很好的应用前景。(The invention provides a graphite oxide phase carbon nitride and a preparation method and application thereof, wherein the graphite oxide phase carbon nitride is prepared by dissolving a precursor graphite phase carbon nitride in a concentrated nitric acid solution, and sequentially adding potassium permanganate and hydrogen peroxide for reaction; the prepared fluorescent probe for detecting the iodide ions by using the graphite-phase carbon nitride precursor has the advantages of good selectivity, high sensitivity, high signal-to-noise ratio, good reliability, no toxicity and good biocompatibility. Has good application prospect in the detection of iodide ions of cells and living organisms.)

一种氧化石墨相氮化碳及其制备方法和应用

技术领域

本发明涉及离子检测技术领域,涉及一种氧化石墨相氮化碳及其制备方法和应用。

背景技术

碘化物作为人体的智力元素,在神经系统和甲状腺功能等多种生物活动中起着至关重要的作用。机体中碘量摄入不足,将会导致甲状腺激素合成不足;且在胚胎期或婴儿出生后发生碘缺乏,将会影响大脑发育,从而导致智力下降。同时,碘过量所引起的机体损伤也越来越引起人们的重视。长期摄入碘量较高或者一次性摄入剂量非常高的碘也会对机体产生较大损伤,甚至导致某些肿瘤的发生。因此,对于碘离子含量的检测,尤其是细胞或者生物体内碘含量的检测是一项具有重要研究意义的工作。然而,报道的用于检测碘离子的荧光探针主要分为两种:一种是基于氢键静电作用的荧光猝灭模式,但其容易受到其他荧光猝灭剂的干扰。这将导致误报信号,导致较低的信噪比和较差的可靠性。另一种是基于金属与碘离子的配位的荧光开启模式,但在检测过程中引入重金属离子极大地限制了它们在生物体中的应用。

因此,提供一种测量结果准确,高效、低毒的碘离子含量测定方法具有重要意义。

发明内容

有鉴于此,本发明所要解决的技术问题在于提供一种氧化石墨相氮化碳及其制备方法和应用,本发明提供的氧化石墨相氮化碳可作为碘离子检测的荧光探针,且检测结果准确。

本发明提供了一种氧化石墨相氮化碳的制备方法,包括:

将前驱体石墨相氮化碳溶于浓硝酸溶液中,依次加入高锰酸钾和双氧水反应,得到氧化石墨相氮化碳。

优选的,所述前驱体石墨相氮化碳按照以下方法制备得到:

将三聚氰胺粉末置于坩埚中,加盖放入马弗炉中高温固相烧结,得到前驱体石墨相氮化碳;

其中,烧结温度为400~600℃,升温速率为3~7℃/min,保温时间为1.5~2.5h。

优选的,所述石墨相氮化碳与浓硝酸的用量比为1g∶(20~30)mL。

优选的,所述石墨相氮化碳与高锰酸钾的用量比为1g∶(1.5~3)g。

优选的,所述双氧水为30w/w%的双氧水。

优选的,所述氧化石墨相氮化碳的制备方法具体为:将前驱体石墨相氮化碳溶于浓硝酸溶液中,混合搅拌20~50min,然后加入高锰酸钾,混合搅拌1~3h,加水稀释,超声震荡2~3小时,混合搅拌6~10h,然后加入双氧水反应,得到氧化石墨相氮化碳。

优选的,加入高锰酸钾时的反应液的温度为低于20℃。

优选的,依次加入高锰酸钾和双氧水反应后,还将反应液进行离心、洗涤和干燥,得到氧化石墨相氮化碳。

本发明还提供了一种本发明所述的制备方法制备的氧化石墨相氮化碳,其中,所述氧化石墨相氮化碳上含有羧基基团,其中,所述羧基位于C2位上。

本发明还提供了一种碘离子的检测方法,包括:

1)将本发明所述的氧化石墨相氮化碳溶于水中,得到胶体;

2)将待测的碘离子溶液加入步骤1)得到的胶体中,混匀,测量混合液的荧光光谱,得到待测液中碘离子的含量。

与现有技术相比,本发明提供了一种氧化石墨相氮化碳及其制备方法和应用,本发明提供的氧化石墨相氮化碳通过将前驱体石墨相氮化碳溶于浓硝酸溶液中,依次加入高锰酸钾和双氧水反应,得到氧化石墨相氮化碳;其中,通过采用高锰酸钾和浓硝酸对前驱体石墨相氮化碳进行氧化反应,使得制备得到的氧化石墨相氮化碳用于检测碘离子的荧光探针具有选择性好、灵敏度高、信噪比高、可靠性好、无毒、生物相容性好的优点。在细胞及生物活体的碘离子检测中具有很好的应用前景。

附图说明

图1为石墨相氮化碳和氧化石墨相氮化碳的FI-IR图谱;

图2为单层g-C3N4分子结构;

图3为石墨相氮化碳和氧化石墨相氮化碳的C1s图谱;

图4为石墨相氮化碳和氧化石墨相氮化碳的N1s图谱;

图5为加有不同碘离子浓度的氧化石墨相氮化碳混合物的荧光光谱,其中,内部图为系统的荧光强度(I0/I)与碘离子浓度的关系曲线,拟合后得到线形关系图;

图6为未键合碘离子、键合碘离子、氟离子的氧化石墨相氮化碳分子的前线轨道电子排布图;

图7为加入碘离子的氧化石墨相氮化碳的猝灭系统在酸碱调控下荧光猝灭及开启的机理示意图;

图8为不同阴离子溶液加入氧化石墨相氮化碳胶体中及继而加入碱性溶液的荧光强度的变化图。

具体实施方式

本发明提供了一种氧化石墨相氮化碳的制备方法,包括:

将前驱体石墨相氮化碳溶于浓硝酸溶液中,依次加入高锰酸钾和双氧水反应,得到氧化石墨相氮化碳。

按照本发明,本发明将前驱体石墨相氮化碳溶于浓硝酸溶液中,依次加入高锰酸钾和双氧水反应,得到氧化石墨相氮化碳;其中,所述石墨相氮化碳与浓硝酸的用量比优选为1g∶(20~30)mL,更优选为1g∶(22~28)mL;所述石墨相氮化碳与高锰酸钾的用量比优选为1g∶(1.5~3)g,更优选为1g∶(2~2.5)g;所述双氧水优选为30w/w%的双氧水。

本发明中,为了使反应更顺利的进行,本发明优选所述氧化石墨相氮化碳的制备方法具体为:将前驱体石墨相氮化碳溶于浓硝酸溶液中,混合搅拌20~50min,优选混合搅拌30~40min;然后加入高锰酸钾,混合搅拌1~3h,优选混合搅拌2~2.5h,加水稀释,超声震荡2~3小时,混合搅拌6~10h,优选混合搅拌8~9h,然后加入双氧水反应,得到氧化石墨相氮化碳;其中,加入高锰酸钾时的反应液的温度为低于20℃;加入双氧水可将多余的高锰酸钾进行还原,双氧水的用量为边加边搅拌至反应混合物变成乳白色即可。

本发明中,本发明对前驱体石墨烯氮化碳的制备方法没有特殊要求,本领域公知的制备方法均可,本发明所述前驱体石墨相氮化碳优选按照以下方法制备得到:将三聚氰胺粉末置于坩埚中,加盖放入马弗炉中高温固相烧结,得到前驱体石墨相氮化碳;其中,烧结温度优选为400~600℃,更优选为500~550℃,所述升温速率优选为3~7℃/min,更优选为5~6℃/min;所述保温时间优选为1.5~2.5h。

本发明中,本发明优选还将依次加入高锰酸钾和双氧水反应后的混合液,依次进行离心、洗涤和干燥,得到氧化石墨相氮化碳;其中,离心的速度优选为4000~9000rpm,更优选为5000~8000mm。

本发明还提供了一种本发明所述的制备方法制备的氧化石墨相氮化碳,其中,所述氧化石墨相氮化碳上含有羧基基团,其中,所述氧化石墨相氮化碳上含有羧基基团,其中,所述羧基位于C2位上;所述氧化石墨相氮化碳中的氧含量优选为18.00~19.50%,更优选为18.30~19.30%,更优选为18.56~19.10%;该羧基是石墨相氮化碳经氧化,C2键合的碳氮键断裂形成的。

本发明还提供了一种碘离子的检测方法,包括:

1)将本发明所述的氧化石墨相氮化碳溶于水中,得到胶体;

2)将待测的碘离子溶液加入步骤1)得到的胶体中混匀,测量混合液的荧光光谱,得到待测液中碘离子浓度的含量。

按照本发明,本发明将所述的氧化石墨相氮化碳溶于水中,得到胶体;其中,氧化石墨相氮化碳与蒸馏水的用量比为1g∶(180~250)mL,更优选为1g∶(200~220)mL。本发明中优选还通过超声震荡,得到稳定的胶体。

按照本发明,将待测的碘离子溶液加入步骤1)得到的胶体中混匀,测量混合液的荧光光谱,得到待测液中碘离子浓度的含量。其中,本申请中,通过加入待测碘离子溶液淬灭后的混合溶液可以加入氢氧化钠溶液重新开启,相比于传统的碘离子荧光猝灭型探针,该猝灭-开启型探针具有较高的可靠性。

本发明提供了一种氧化石墨相氮化碳及其制备方法和应用,本发明提供的氧化石墨相氮化碳通过将前驱体石墨相氮化碳溶于浓硝酸溶液中,依次加入高锰酸钾和双氧水反应,得到氧化石墨相氮化碳;其中,通过采用高锰酸钾和浓硝酸对前驱体石墨相氮化碳进行氧化反应,使得制备得到的氧化石墨相氮化碳用于检测碘离子的荧光探针具有选择性好、灵敏度高、信噪比高、可靠性好、无毒、生物相容性好的优点。在细胞及生物活体的碘离子检测中具有很好的应用前景。

下面将结合本发明实施例的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

实施例1

1、氧化石墨相氮化碳的制备方法,包括以下步骤:

1)称量5g三聚氰胺,研磨后倒入坩埚中,加盖置于马弗炉中进行烧结,升温速率5℃/min,加热至500℃保温2h,制得石墨相氮化碳,冷却至室温后,取出,研磨待用。

2)称取1g石墨相氮化碳,溶于盛有30mL浓硝酸的烧杯中,磁力搅拌30min进行预氧化;称取2g高锰酸钾,缓慢加入溶液中,边加边搅拌,且将其冰浴以保持温度在20℃以下,搅拌2h进行充分氧化,此时溶液会由紫黑色变成棕褐色;再向混合物中加入90mL水进行稀释,超声振荡2h后,再磁力搅拌8h;最后向混合物中逐滴缓慢滴加浓度为30%的双氧水将多余的高锰酸钾进行还原,边加边搅拌至混合物变成乳白色。将氧化后的混合物以7500rmb速度进行离心,多次洗涤至最终测定PH恒定为止。放入烘箱干燥后研磨待用,得到氧化石墨相氮化碳。

将得到的氧化石墨相氮化碳采用FI-IR、XPS等表征手段进行分析,结果见图1~图4,图1为石墨相氮化碳和氧化石墨相氮化碳的FI-IR图谱;图2为单层g-C3N4分子结构;图3为石墨相氮化碳和氧化石墨相氮化碳的C1s图谱;图4为石墨相氮化碳和氧化石墨相氮化碳的N1s图谱;从图中可以看出,本申请的氧化石墨相氮化碳在C2位(见附图2)引入羧基基团,且所述氧化石墨相氮化碳中的氧含量为18.56%。

2、将得到的氧化石墨相氮化碳应用于碘离子,具体包括以下步骤:

1)取0.25g本发明制备的氧化石墨相氮化碳粉末溶于50mL蒸馏水中,超声振荡8h后,形成稳定胶体。分别取3mL该胶体置于5mL离心管中,并对离心管进行标记;称取一定量的碘化钾粉末溶于蒸馏水中,配置浓度分别为1、2、3、5、6、7、9、15、20μmol/L的碘离子溶液;分别取1mL配置的不同浓度的碘离子溶液,加入所制的氧化石墨相氮化碳胶体的离心管中,超声混合均匀。分别测量其荧光光谱,并绘制荧光猝灭强度比与碘离子浓度的关系图。

结果见图5,图5为加有不同碘离子浓度的氧化石墨相氮化碳混合物的荧光光谱,内部图为系统的荧光强度(I0/I)与碘离子浓度的关系曲线,拟合后得到线形关系图;从图中可以看出,拟合得出二者之间的线形关系为I0/I-1=0.12126[I-]+0.0208,相关系数R2为0.9975在检测范围为0-20μmol/L中,显示较好的线形关系,经计算检测限约为12.4nmol/L。

2)称取一定量的氢氧化钠溶于蒸馏水中,配置浓度为10μmol/L的氢氧化钠溶液;将所配置的碱性溶液滴入步骤1)中荧光猝灭的混合溶液,测量其荧光强度,发现荧光开启。

根据上述反应现象推测,其荧光淬灭现象机理如图6~图7所示,图6为未键合碘离子、键合碘离子、氟离子的氧化石墨相氮化碳分子的前线轨道电子排布图;从图6可以看出,碘离子可以和羧基中的氢原子结合形成氢键,由于碘的重原子效应,使得氧化石墨相氮化碳前线轨道的电子轨道对称性发生变化,从而引起荧光猝灭现象。图7为加入碘离子的氧化石墨相氮化碳的猝灭系统在酸碱调控下荧光猝灭及开启的机理示意图,从图7可以看出,加入碘离子的氧化石墨相氮化碳的荧光猝灭系统在加入碱性溶液后荧光开启,是由于碱性溶液中和了羧基中的氢,使得形成的氢键断裂,所以荧光开启。且本实验也证明了重复加入酸性溶液后,氢键又重新形成,在碘的重原子效应下,系统又发生荧光猝灭现象。

3)分别配置浓度为20μmol/L的阴离子F-、Cl-、Br-、S2-、SCN-、PO4 3-、ClO4 -、S2O8 2-、HSO3 -、HCOO-、CH3COO-的溶液,将阴离子溶液分别滴入步骤1)中盛有的氧化石墨相氮化碳胶体的离心管中,发现荧光无变化。具体见图8,图8为不同阴离子溶液加入氧化石墨相氮化碳胶体中及继而加入碱性溶液的荧光强度的变化图。

以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。

10页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!