一种氨基酸衍生物和其盐类及制备和应用

文档序号:1703071 发布日期:2019-12-13 浏览:28次 >En<

阅读说明:本技术 一种氨基酸衍生物和其盐类及制备和应用 (Amino acid derivative and salt thereof, preparation and application ) 是由 赵余庆 马璐 于 2019-08-26 设计创作,主要内容包括:本发明涉及药物化学领域,具体公开了一种氨基酸衍生物和其盐类及制备方法和应用。本发明的氨基酸衍生物由氨基酸和萜类、甾体类、黄酮类、多糖类化合物的一种或多种缩合或共轭而成;反应位点为氨基酸的氨基端、羧基端、侧链的氨基、羧基或巯基。同时公开了氨基酸衍生物的制备方法,以及本发明的氨基酸衍生物在制备抗肝纤维化及癌症的应用。本发明的氨基酸衍生物具有高效低毒抑制肝纤维化和肝癌的优点,同时为研究抗肝纤维化和抗肝癌候选药物提供开发模板。(The invention relates to the field of pharmaceutical chemistry, and particularly discloses an amino acid derivative and salts thereof, and a preparation method and application thereof. The amino acid derivative is formed by condensing or conjugating amino acid and one or more of terpenoids, steroids, flavonoids and polysaccharides; the reaction site is amino terminal, carboxyl terminal, amino, carboxyl or sulfhydryl of side chain of amino acid. Simultaneously, the invention also discloses a preparation method of the amino acid derivative and application of the amino acid derivative in preparing anti-hepatic fibrosis and anti-cancer drugs. The amino acid derivative has the advantages of high efficiency, low toxicity and inhibition on hepatic fibrosis and liver cancer, and provides a development template for researching anti-hepatic fibrosis and anti-liver cancer candidate drugs.)

一种氨基酸衍生物和其盐类及制备和应用

技术领域:

本发明涉及药物化学领域,具体公开了一种氨基酸衍生物和其盐类及制备方法和应用。

背景技术:

氨基酸是生命活动的基本物质,有特殊的生理功能。具有良好的生物相容性和细胞亲和力,在活性小分子中引入氨基酸可以增强其对靶细胞的选择性,使药物更容易通过细胞膜,同时降低药物的毒性并增强药物的溶解性,从而起到增强生物活性的作用。氨基酸在抗肿瘤药物改造中也较为常见,报道称氨基酸引入抗肿瘤药物中可提高其抗肿瘤活性降低对正常细胞的毒性。氨基酸中的支链氨基酸如亮氨酸、缬氨酸和异亮氨酸以及其他氨基酸多具有保护肝脏的作用。苏氨酸和蛋氨酸对肝脏可以起的很好的保护作用,防止肝脏中脂肪的累积,分解脂肪,将体内的有害物质去除,促进抗体产生,有效的预防脂肪肝及肝脏功能的疾病发生,由此可见补充氨基酸对肝脏非常有益。

萜类,黄酮,甾体及多糖类化合物均具有良好的抗肝纤维化活性和抗肿瘤活性,其中萜类和黄酮类化合物研究较多,而甾体和多糖类相对较少。但越来越多的研究及数据表明,氨基酸和某些药物分子通过化学手段结合后,可以显著增强药物分子的亲水性和活性,降低毒性。因此,目前急需一种将氨基酸和天然产物及其衍生物的偶联物作为开发抗肝纤维化及癌症的先导化合物。

发明内容

发明目的:

本发明所要解决的技术问题是,针对目前肝纤维化是肝损伤进程中可逆的病理过程,提供一种氨基酸衍生物及其盐类的制备和应用,作为开发新型高效低毒的抗肝纤维化和癌症的先导化合物,并提供开发保肝药物的的合成模板。

技术方案:

一种氨基酸衍生物,氨基酸衍生物由氨基酸和萜类、甾体类、黄酮类、多糖类化合物的一种或多种缩合而成;反应位点为氨基酸的氨基端、羧基端、侧链的氨基、羧基或巯基。

氨基酸衍生物结构如下:

其中R3选自组成人体蛋白质的L-型氨基酸、或D-型氨基酸的侧链取代基及其简单修饰物,或构成人体内天然氨基酸代谢的中间体的侧链取代基;

n取值范围是0~20。

氨基酸衍生物结构如下:

其中,R1和R2选自萜类、甾体类、黄酮类、多糖类化合物与氨基酸偶联反应后的残基及其简单修饰物;

R3选自组成人体蛋白质的L-型氨基酸、或D-型氨基酸的侧链取代基及其简单修饰物,或构成人体内天然氨基酸代谢的中间体的侧链取代基;

n取值范围是0~20。

氨基酸衍生物结构如下:

R1和R2至少有一个选自如下结构:

(a)倍半萜类化合物取代基:

(b)二萜类化合物取代基:

(C1)四环三萜类化合物取代基:

CR4,CR5分别选自具有取代基取代的六碳侧链或六元环,其中所述取代基选自氢、卤素、羧基、羟基、硝基、氰基、巯基、硫烷基、烷基或烷氧基;CR6选自羟基或氢;

(C2)五环三萜类化合物取代基:

(D)甾体类化合物取代基:

(E)黄酮类化合物取代基:

(F)多糖类化合物取代基:

一种氨基酸衍生物的制备方法,将氨基酸原料溶于二氯甲烷中,将4-二甲氨基吡啶加入反应液中搅拌均匀;将溶于二氯甲烷的1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐缓慢滴加到反应液中;再将N-叔丁氧羰基-L-丙氨酸加入至反应液中;继续搅拌直到原料消失,反应结束;通过蒸馏水萃取洗去多余的EDC,取下层溶液;再用饱和氯化钠溶液萃取,取下层溶液旋干,得到固体;最后将固体溶于二氯甲烷中,减压浓缩蒸干溶剂,得粗品产物。

氨基酸衍生物的原料优选为:(1)氨基酸:精氨酸,丙氨酸,色氨酸、牛磺酸、半胱氨酸、谷氨酸、谷氨酰胺、丝氨酸、天门冬酰胺、络氨酸、苯丙氨酸、甘氨酸及其它们的衍生物;(2)天然萜类:倍半萜类,薄荷醇、柏木醇、α桉醇、橐吾环氧素、依瓦菊林及其它们的衍生物;二萜类,紫杉醇、冬凌草甲素、尾叶香茶菜素A及它们其衍生物;四环三萜类,人参皂苷-Rg3、C-K、25-OCH3-PPD、25-OH-PPD、人参二醇、绞股蓝皂苷G和H及其衍生物;五环三萜类,如齐墩果酸、熊果酸及其它们的衍生物;甾体类:固醇类,β-***、睾酮、孕激素、***及其它们的衍生物;甾体皂苷类,薯蓣皂苷元、三角叶薯蓣皂苷、黄连木甾体皂苷、虎眼万年青皂苷、3-氮唑菝葜皂苷元、边缘茄碱、澳洲茄碱、查茄碱、纤细皂苷及其它们的衍生物;C21甾类,通光藤苷元B、通光藤苷元A、白手乌新苷A及其它们的衍生物;黄酮类:槲皮素、黄芩素、甘草素、甘草查耳酮A、芹黄素、染料木素、汉黄芩素、杨梅素、木犀草素、染料木黄酮及其它们的衍生物;多糖类:羧甲基葡聚糖、甲壳素、壳聚糖、CMC及其它们的衍生物中一种或几种。

原料与DMAP、EDC、Boc-Ala-OH的摩尔比分别是:

(10-20):1,(0.5-1):1,(0.5-1):1,反应时间为4-6h。

所述的氨基酸衍生物盐类,还包括其药用盐,其中所述的盐为钾盐、钠盐、铵盐、镁盐、钙盐,盐酸盐,硫酸盐,草酸盐,柠檬酸盐,苹果酸盐,磺酸盐,富马酸盐或乙酸盐中的一种或几种。

氨基酸衍生物在制备抗肝纤维化及癌症的应用。

优点及效果:

本发明基于氨基酸和萜类、甾体类、黄酮类或多糖类化合物的天然保肝功效,将两者通过酯键或酰胺键结合起来,加以药物化学的构效关系分析,充分挖掘潜在的目标化合物。本发明的氨基酸衍生物具有高效低毒抑制肝纤维化和肝癌的优点,同时为研究抗肝纤维化和抗肝癌候选药物提供开发模板。

具体实施方式

下面结合实施例对本发明做进一步的说明:

实施例1

制备:(1)称取560mg薄荷醇原料于50mL的二氯甲烷(2)称取DMAP 0.19g到反应体系中搅拌均匀,置于磁力搅拌器上进行搅拌。(3)称取0.894g的EDC,加入15mL的无水二氯甲烷溶解,缓慢滴加至反应体系中(4)称取1g Boc-Ala-OH加入至反应液中,并搅拌均匀。(5)反应4h后,TLC发现原料消失,反应结束。(6)向反应液中加入50mL蒸馏水萃取洗去EDC,取下层溶液。(7)再用饱和食盐水萃取,取下层溶液。(8)将溶液旋干,得到白色固体。(9)加入20mL的二氯甲烷溶解白色固体,然后加入三氟乙酸,使反应液中的三氟乙酸浓度为12%,冰浴条件下反应30min,减压浓缩蒸干溶剂,得粗品产物。经硅胶柱色谱,用石油醚:乙酸乙酯(3:1)洗脱,得到产物(43%)。1H NMR(400MHz,CDCl3,δ,ppm):δ:6.99(1H,d,J=16.0Hz,H-7),6.45(1H,d,J=16.0Hz,H-8),5.94(1H,s,H-4),2.60(1H,d,J=18.0Hz,H-2a),2.31(3H,s,H-10),2.28(1H,d,J=18.0Hz,H-2b),1.91(3H,s,H-13),1.07(3H,s,H-12),1.03(3H,s,H-11);13C-NMR(CD3OD,125MHz)δ:42.6(C-1),50.5(C-2),200.1(C-3),128.0(C-4),164.7(C-5),80.0(C-6),148.3(C-7),131.7(C-8),200.4(C-9),27.7(C-10),23.5(C-11),24.7(C-12),19.2(C-13)。

实施例2

制备:(1)称取1.09g尾叶香茶菜素A原料溶于50mL的二氯甲烷(2)称取DMAP 0.29g到反应体系中搅拌均匀,置于磁力搅拌器上进行搅拌。(3)称取1.24g的EDC,加入15mL的无水二氯甲烷溶解,缓慢滴加至反应体系中(4)称取1.5g Boc-Arg-OH加入至反应液中,并搅拌均匀。(5)反应4h后,TLC发现原料消失,反应结束。(6)向反应液中加入50mL蒸馏水萃取洗去EDC,取下层溶液。(7)再用饱和食盐水萃取,取下层溶液。(8)将溶液旋干,得到白色固体。(9)加入20mL的二氯甲烷溶解白色固体,然后加入三氟乙酸,使反应液中的三氟乙酸浓度为12%,冰浴条件下反应30min,减压浓缩蒸干溶剂,得粗品产物。经硅胶柱色谱,用石油醚:乙酸乙酯(2:1)洗脱,得到产物(56%)。1H NMR(400MHz,CDCl3,δ,ppm):δ:5.92(1H,s,H-4),5.87(1H,dd,J=6.0,16.0Hz,H-8),5.80(1H,d,J=16.0Hz,H-7),4.43(1H,m,H-9),2.45(1H,d,J=17.0Hz,H-2),2.26(1H,d,J=17.0Hz,H-2'),1.92(3H,s,H-13),1.31(3H,d,J=6.0Hz,H-10),1.12(3H,s,H-11),1.05(3H,s,H-12);13C-NMR(CDCl3,125MHz)δ:41.3(C-1),49.8(C-2),198.0(C-3),127.1(C-4),162.1(C-5),78.3(C-6),129.2(C-7),135.9(C-8),68.2(C-9),24.0(C-10),24.1(C-11),23.0(C-12)。

实施例3

制备:(1)称取1g柴胡皂苷原料溶于50mL的二氯甲烷(2)称取DMAP 0.29g到反应体系中搅拌均匀,置于磁力搅拌器上进行搅拌。(3)称取1.84g的EDC,加入15mL的无水二氯甲烷溶解,缓慢滴加至反应体系中(4)称取2g Boc-Ala-OH加入至反应液中,并搅拌均匀。(5)反应4h后,TLC发现原料消失,反应结束。(6)向反应液中加入50mL蒸馏水萃取洗去EDC,取下层溶液。(7)再用饱和食盐水萃取,取下层溶液。(8)将溶液旋干,得到白色固体。(9)加入20mL的二氯甲烷溶解白色固体,然后加入三氟乙酸,使反应液中的三氟乙酸浓度为12%,冰浴条件下反应30min,减压浓缩蒸干溶剂,得粗品产物。经硅胶柱色谱,用石油醚:乙酸乙酯(2:1)洗脱,得到产物(72%)。1H NMR(400MHz,CDCl3,δ,ppm):δ4.45(dd,1H,J=9.9,4.5Hz,H-3),δ3.53(m,1H,H-12),δ3.10(s,3H,-OCH3),δ1.40(s,3H),δ1.08(s,2×CH3),δ1.06(s,3H),δ0.92(s,3H),δ0.84(s,3H),δ0.82(s,3H),δ0.80(s,3H),δ0.78(s,3H);13C NMR(100MHz,CDCl3,δ,ppm):38.5(C-1),24.9(C-2),81.4(C-3),38.0(C-4),55.9(C-5),18.1(C-6),34.6(C-7),39.7(C-8),50.2(C-9),37.0(C-10),31.2(C-11),70.5(C-12),49.0(C-13),51.5(C-14),31.2(C-15),26.2(C-16),50.2(C-17),16.5(C-18),17.1(C-19),74.1(C-20),21.8(C-21),43.0(C-22),17.3(C-23),40.5(C-24),74.8(C-25),24.9(C-26),23.6(C-27),28.0(C-28),15.6(C-29),17.1(C-30),48.5(-OCH3),48.5(Ala-CH),168.1(Ala-COO),15.6(Ala-CH3);HR-ESIMS:m/z 564.4638[M+H]+(Calcd for C34H62 NO5,564.4628)。

实施例4

制备:(1)称取1g原料β-***溶于50mL的二氯甲烷(2)称取DMAP 0.29g到反应体系中搅拌均匀,置于磁力搅拌器上进行搅拌。(3)称取1.84g的EDC,加入15mL的无水二氯甲烷溶解,缓慢滴加至反应体系中(4)称取2g Boc-Ala-OH加入至反应液中,并搅拌均匀。(5)反应4h后,TLC发现原料消失,反应结束。(6)向反应液中加入50mL蒸馏水萃取洗去EDC,取下层溶液。(7)再用饱和食盐水萃取,取下层溶液。(8)将溶液旋干,得到白色固体。(9)加入20mL的二氯甲烷溶解白色固体,然后加入三氟乙酸,使反应液中的三氟乙酸浓度为12%,冰浴条件下反应30min,减压浓缩蒸干溶剂,得粗品产物。经硅胶柱色谱,用石油醚:乙酸乙酯(2:1)洗脱,得到20(R)-3β-O-(苯丙氨酸)-达玛烷-12β,20,25-三醇(82%)。1H NMR(400MHz,CDCl3,δ,ppm):7.22-7.09(m,5H),δ4.45(dd,1H,J=10.6,4.8Hz,H-3),δ3.52(m,1H,H-12),δ3.10(s,3H,-OCH3),δ1.08(s,2×CH3),δ1.05(s,3H),δ0.92(s,3H),δ0.83(s,3H),δ0.82(s,3H),δ0.77(s,3H),δ0.72(s,3H);13C NMR(100MHz,CDCl3,δ,ppm):38.6(C-1),24.9(C-2),81.8(C-3),37.9(C-4),55.9(C-5),18.1(C-6),34.6(C-7),39.7(C-8),49.0(C-9),37.0(C-10),31.2(C-11),70.5(C-12),49.0(C-13),51.5(C-14),31.2(C-15),26.3(C-16),49.9(C-17),16.5(C-18),17.1(C-19),74.1(C-20),21.8(C-21),43.0(C-22),17.3(C-23),40.5(C-24),74.8(C-25),24.9(C-26),23.6(C-27),28.0(C-28),15.6(C-29),17.3(C-30),48.5(-OCH3),170.8(Phe-COO),55.9(Phe-NH-CH),137.1,129.3,128.6,126.8(Phe-CH);HR-ESIMS:m/z 640.4934[M+H]+(Calcd for C40H66NO5,640.4941)。

实施例5

制备:称取1.2g薯蓣皂苷元原料溶于50mL的二氯甲烷(2)称取DMAP 0.29g到反应体系中搅拌均匀,置于磁力搅拌器上进行搅拌。(3)称取1.97g的EDC,加入15mL的无水二氯甲烷溶解,缓慢滴加至反应体系中(4)称取2.05g Boc-Phe-OH加入至反应液中,并搅拌均匀。(5)反应4h后,TLC发现原料消失,反应结束。(6)向反应液中加入50mL蒸馏水萃取洗去EDC,取下层溶液。(7)再用饱和食盐水萃取,取下层溶液。(8)将溶液旋干,得到白色固体。(9)加入20mL的二氯甲烷溶解白色固体,然后加入三氟乙酸,使反应液中的三氟乙酸浓度为12%,冰浴条件下反应30min,减压浓缩蒸干溶剂,得粗品产物。经硅胶柱色谱,用石油醚:乙酸乙酯(3:1)洗脱,得到产物(89%)。1H NMR(600MHz,CDCl3,δ,ppm):7.22-7.09(m,5H),4.56(1H,dd,J=10.9,5.6Hz,H-12),4.52(1H,dd,J=10.9,4.8Hz,H-3),4.07(1H,d,J=14.4Hz),4.05(1H,d,J=14.4Hz),1.23(6H,s),1.14(3H,s,H-28),0.99(3H,s,H-29),0.91(3H,s),0.89(6H,m);13C NMR(600MHz,CDCl3,δ,ppm):38.6(C-1),26.5(C-2),83.3(C-3),38.7(C-4),56.0(C-5),18.2(C-6),34.6(C-7),39.9(C-8),50.1(C-9),38.2(C-10),31.4(C-11),71.3(C-12),48.5(C-13),51.8(C-14),33.8(C-15),23.7(C-16),50.1(C-17),16.3(C-18),16.6(C-19),74.4(C-20),22.0(C-21),43.1(C-22),17.8(C-23),44.2(C-24),70.8(C-25),29.6(C-26),31.1(C-27),28.1(C-28),15.8(C-29),17.2(C-30),167.3(C=O)。

实施例6

制备:(1)称取1g睾酮原料溶于50mL的二氯甲烷(2)称取DMAP 0.29g到反应体系中搅拌均匀,置于磁力搅拌器上进行搅拌。(3)称取1.84g的EDC,加入15mL的无水二氯甲烷溶解,缓慢滴加至反应体系中(4)称取2g Boc-Gly-OH加入至反应液中,并搅拌均匀。(5)反应4h后,TLC发现原料消失,反应结束。(6)向反应液中加入50mL蒸馏水萃取洗去EDC,取下层溶液。(7)再用饱和食盐水萃取,取下层溶液。(8)将溶液旋干,得到白色固体。(9)加入20mL的二氯甲烷溶解白色固体,然后加入三氟乙酸,使反应液中的三氟乙酸浓度为12%,冰浴条件下反应30min,减压浓缩蒸干溶剂,得粗品产物。经硅胶柱色谱,用石油醚:乙酸乙酯(2:1)洗脱,得到产物(82%)。1H NMR(400MHz,CDCl3,δ,ppm):7.22-7.09(m,5H),δ4.45(dd,1H,J=10.6,4.8Hz,H-3),δ3.52(m,1H,H-12),δ3.10(s,3H,-OCH3),δ1.08(s,2×CH3),δ1.05(s,3H),δ0.92(s,3H),δ0.83(s,3H),δ0.82(s,3H),δ0.77(s,3H),δ0.72(s,3H);13C NMR(100MHz,CDCl3,δ,ppm):38.6(C-1),24.9(C-2),81.8(C-3),37.9(C-4),55.9(C-5),18.1(C-6),34.6(C-7),39.7(C-8),49.0(C-9),37.0(C-10),31.2(C-11),70.5(C-12),49.0(C-13),51.5(C-14),31.2(C-15),26.3(C-16),49.9(C-17),16.5(C-18),17.1(C-19),74.1(C-20),21.8(C-21),43.0(C-22),17.3(C-23),40.5(C-24),74.8(C-25),24.9(C-26),23.6(C-27),28.0(C-28),15.6(C-29),17.3(C-30),48.5(-OCH3)。

实施例7

制备:(1)称取800mg黄芩素原料溶于50mL的二氯甲烷(2)称取DMAP 0.18g到反应体系中搅拌均匀,置于磁力搅拌器上进行搅拌。(3)称取1.56g的EDC,加入15mL的无水二氯甲烷溶解,缓慢滴加至反应体系中(4)称取1.87g Boc-Val-OH加入至反应液中,并搅拌均匀。(5)反应4h后,TLC发现原料消失,反应结束。(6)向反应液中加入50mL蒸馏水萃取洗去EDC,取下层溶液。(7)再用饱和食盐水萃取,取下层溶液。(8)将溶液旋干,得到白色固体。(9)加入20mL的二氯甲烷溶解白色固体,然后加入三氟乙酸,使反应液中的三氟乙酸浓度为12%,冰浴条件下反应30min,减压浓缩蒸干溶剂,得粗品产物。经硅胶柱色谱,用石油醚:乙酸乙酯(1:1)洗脱,得到产物(33%)。1HNMR(300MHz,DMSO-D6,δ,ppm):δ:12.45(1H,s,5-OH),7.99-8.02(2H,m,-C6 H5),7.55-7.56(3H,m,-C6 H5),6.71(1H,s,3-H),4.26(2H,s,N-CH2-),3.32(1H,m,N-CH),1.28-1.29(6H,s,-2CH3)。161.4(C-2),153.6(C-5),132.6(C-6),146.7(C-7),111.1(C-8),153.6(C-9),107.6(C-10),115(C-1′),127.9(C-2′,C-6′),122.6(C-3′,C-5′),161(C-4′)。

实施例8

制备:(1)称取1.02g 25-OH-PPD原料溶于50mL的二氯甲烷(2)称取DMAP 0.48g到反应体系中搅拌均匀,置于磁力搅拌器上进行搅拌。(3)称取2.03g的EDC,加入15mL的无水二氯甲烷溶解,缓慢滴加至反应体系中(4)称取2.07g Boc-Ala-OH加入至反应液中,并搅拌均匀。(5)反应4h后,TLC发现原料消失,反应结束。(6)向反应液中加入50mL蒸馏水萃取洗去EDC,取下层溶液。(7)再用饱和食盐水萃取,取下层溶液。(8)将溶液旋干,得到白色固体。(9)加入20mL的二氯甲烷溶解白色固体,然后加入三氟乙酸,使反应液中的三氟乙酸浓度为12%,冰浴条件下反应30min,减压浓缩蒸干溶剂,得粗品产物。经硅胶柱色谱,用石油醚:乙酸乙酯(4:1)洗脱,得到产物(86%)。1H NMR(400MHz,CDCl3,δ,ppm):δ4.45(dd,1H,J=9.9,4.5Hz,H-3),δ3.53(m,1H,H-12),δ3.10(s,3H,-OCH3),δ1.40(s,3H),δ1.08(s,2×CH3),δ1.06(s,3H),δ0.92(s,3H),δ0.84(s,3H),δ0.82(s,3H),δ0.80(s,3H),δ0.78(s,3H);13C NMR(100MHz,CDCl3,δ,ppm):38.5(C-1),24.9(C-2),81.4(C-3),38.0(C-4),55.9(C-5),18.1(C-6),34.6(C-7),39.7(C-8),50.2(C-9),37.0(C-10),31.2(C-11),70.5(C-12),49.0(C-13),51.5(C-14),31.2(C-15),26.2(C-16),50.2(C-17),16.5(C-18),17.1(C-19),74.1(C-20),21.8(C-21),43.0(C-22),17.3(C-23),40.5(C-24),74.8(C-25),24.9(C-26),23.6(C-27),28.0(C-28),15.6(C-29),17.1(C-30)。

实施例9

制备:(1)称取1.23g次大风子素原料溶于50mL的二氯甲烷(2)称取DMAP 0.48g到反应体系中搅拌均匀,置于磁力搅拌器上进行搅拌。(3)称取1.63g的EDC,加入15mL的无水二氯甲烷溶解,缓慢滴加至反应体系中(4)称取2.07g Boc-Phe-OH加入至反应液中,并搅拌均匀。(5)反应4h后,TLC发现原料消失,反应结束。(6)向反应液中加入50mL蒸馏水萃取洗去EDC,取下层溶液。(7)再用饱和食盐水萃取,取下层溶液。(8)将溶液旋干,得到白色固体。(9)加入20mL的二氯甲烷溶解白色固体,然后加入三氟乙酸,使反应液中的三氟乙酸浓度为12%,冰浴条件下反应30min,减压浓缩蒸干溶剂,得粗品产物。经硅胶柱色谱,用石油醚:乙酸乙酯(4:1)洗脱,得到产物(43%)。1H NMR(400MHz,CDCl3,δ,ppm):7.22-7.09(m,5H),δ4.45(dd,1H,J=10.6,4.8Hz,H-3),δ3.52(m,1H,H-12),δ3.10(s,3H,-OCH3),δ1.08(s,2×CH3),δ1.05(s,3H),δ0.92(s,3H),δ0.83(s,3H),δ0.82(s,3H),δ0.77(s,3H),δ0.72(s,3H);13C NMR(100MHz,CDCl3,δ,ppm):38.6,24.9,81.8,37.9,55.9,18.1,34.6,39.7,49.0,37.0,31.2,70.5,49.0,51.5,31.2,26.3,49.9,16.5,17.1,74.1,21.8,43.0,17.3,40.5,74.8,24.9,23.6,28.0,15.6(C-29),17.3,48.5。

实施例10

制备:(1)称取896mg羧甲基葡聚糖原料溶于50mL的DMSO(2)称取DMAP 0.28g到反应体系中搅拌均匀,置于磁力搅拌器上进行搅拌。(3)称取3.45g的EDC,加入15mL的无水二氯甲烷溶解,缓慢滴加至反应体系中(4)称取1.07g Boc-Ala-OH加入至反应液中,并搅拌均匀。(5)反应24h后,反应结束。(7)将溶液旋干,得到白色固体。(9)加入20mL的二氯甲烷溶解白色固体,然后加入三氟乙酸,使反应液中的三氟乙酸浓度为12%,冰浴条件下反应30min,减压浓缩蒸干溶剂,得粗品产物。经硅胶柱色谱,用石油醚:乙酸乙酯(4:1)洗脱,得到产物(13%)。

实施例11

制备:(1)称取800mg熊果酸原料溶于50mL的二氯甲烷(2)称取DMAP 0.18g到反应体系中搅拌均匀,置于磁力搅拌器上进行搅拌。(3)称取1.56g的EDC,加入15mL的无水二氯甲烷溶解,缓慢滴加至反应体系中(4)称取1.87g Boc-Ala-OH加入至反应液中,并搅拌均匀。(5)反应4h后,TLC发现原料消失,反应结束。(6)向反应液中加入50mL蒸馏水萃取洗去EDC,取下层溶液。(7)再用饱和食盐水萃取,取下层溶液。(8)将溶液旋干,得到白色固体。(9)加入20mL的二氯甲烷溶解白色固体,然后加入三氟乙酸,使反应液中的三氟乙酸浓度为12%,冰浴条件下反应30min,减压浓缩蒸干溶剂,得粗品产物。经硅胶柱色谱,用石油醚:乙酸乙酯(1:1)洗脱,得到中间产物(29%)。(10)称取上述中间产物52mg溶于20mL的二氯甲烷,按照(2)(3)中操作进行,再加入100mg白杨素原料。后处理同(6)(7)(8),石油醚:乙酸乙酯(2:1)洗脱过硅胶柱纯化,得到终产物(33%)。1HNMR(300MHz,DMSO-D6,δ,ppm):δ:12.45(s,1H),7.99-8.02(m,2H),7.55-7.56(m,3H),6.71(s,1H),4.26(2H,s),3.32(m,1H),1.57(m,10H),1.4(s,1H),1.31(s,1H),1.24(s,6H),1.20,(s,3H).13C NMR(100MHz,DMSO-D6),δ198.7,177.8,170.7,170.6,169.9,166.6,124.4,116.1,100.8,86.8,82.5,81,80.8,80.4,78.6,72.8,68.2,59.5,51.3,49.3,46.8,45.0,43.8,41.3,39.5,35.3,34.0,32.7,32.3,31.0,30.2,30.0,29.7,29.1,27.9,26.8,23.4,22.9。

实施例12

制备:(1)称取450mg薄荷醇原料溶于30mL的二氯甲烷(2)称取DMAP 0.15g到反应体系中搅拌均匀,置于磁力搅拌器上进行搅拌。(3)称取1.03g的EDC,加入15mL的无水二氯甲烷溶解,缓慢滴加至反应体系中(4)称取1.21g Boc-Ile-OH加入至反应液中,并搅拌均匀。(5)反应2h后,TLC发现原料消失,反应结束。(6)向反应液中加入50mL蒸馏水萃取洗去EDC,取下层溶液。(7)再用饱和食盐水萃取,取下层溶液。(8)将溶液旋干,得到白色固体。(9)加入10mL的二氯甲烷溶解白色固体,然后加入三氟乙酸,使反应液中的三氟乙酸浓度为12%,冰浴条件下反应30min,减压浓缩蒸干溶剂,得粗品产物。经硅胶柱色谱,用石油醚:乙酸乙酯(2:1)洗脱,得到中间产物(45%)。(10)称取上述中间产物80mg溶于15mL的二氯甲烷,按照(2)(3)中操作进行,再加入97mg松脂酸原料。后处理同(6)(7)(8),石油醚:乙酸乙酯(4:1)洗脱过硅胶柱纯化,得到终产物(37%)。1H NMR(300MHz,CD3OD,δ,ppm)δ:8.44(d,J=2.5Hz,1H),8.26(d,J=2.5Hz,1H),4.73(d,J=2.3Hz,1H),4.61(dd,J=2.3,1.4Hz,1H),3.17-3.06(m,1H),3.01(d,J=16.6Hz,1H),2.73-2.59(m,1H),2.51(d,J=16.6Hz,1H),2.20-2.05(m,1H),2.04-1.74(m,4H),1.71(s,3H),1.70-1.33(m,16H),1.31(s,3H),1.29(s,3H),1.07(s,3H),1.07(s,3H),0.83(s,3H);13C NMR(75MHz,CD3OD)δ182.4,161.4,152.3,152.0,143.8,142.3,110.0,57.1,54.3,51.2,50.1,48.1,43.7,41.9,40.62,39.4,39.1,37.9,34.6,34.3,31.9,31.8,30.7,27.0,24.4,22.8,21.2,19.6,16.6,16.3,15.0。

实施例13

实施例8中氨基酸衍生物的盐酸盐制备:称取500mg的实施例8中的氨基酸衍生物,室温下,在50mL的40%的盐酸中搅拌,4-7h后析出固体。抽滤,所得滤渣用乙酸乙酯洗,得到实施例8中氨基酸衍生物的盐酸盐。

实施例14

实施例2氨基酸衍生物的钠盐制备:将10mL水和32mg碳酸氢钠加入锅中,加热至40℃,搅拌下加入实施例2中氨基酸衍生物的钠盐至反应pH值为7-7.5。加热使二氧化碳脱尽,抽滤,浓缩滤液,得实施例2中氨基酸衍生物的钠盐化物。

实施例15

氨基酸衍生物抑制肿瘤细胞及肝星状细胞的细胞毒活性结果。

取对数生长期的BGC-823,HepG2,HSC及IOSE144制成单细胞悬液,以1×104/孔的密度。

接种于96孔板上,培养终体积为100μL/孔,37℃5%CO2的培养箱内培养,24h待细胞贴壁开始加药,结果见下表1:

表1氨基酸衍生物对BGC-823,HepG2,HSC及IOSE144细胞的细胞毒活性评估

由表1中数据可知,氨基酸衍生物对BGC-823,HepG2和HSC均有不同程度的抑制细胞增长作用。且对IOSE144无细胞毒活性。其中实施例3制备的丙氨酸经25-OH-PPD修饰的衍生物的抗肝纤维化及抗肝癌的活性最优(IC50=3.7±0.3μM,11.6±1.3μM),显著提升丙氨酸的活性,且显著优于对照水飞蓟素和丝裂霉素。

实施例16

氨基酸衍生物体内抗肝纤维化活性研究。

健康雄性Wistar大鼠107只,SPF级,体重180-210g。每只大鼠首次后腿皮下注射纯CCl4 0.05mL/kg,以后注射40%CCl4橄榄油0.03mL/kg(v/v),每周2次,共9周。

将实验动物随机分为4组:①空白对照组,大鼠接受橄榄油后腿皮下注射,首次0.05mL/kg,以后0.03mL/kg,每周2次。同时予0.5%羧甲基纤维素钠溶液经口灌胃,5mL/kg,1次/d。②肝纤维化模型组。③实施例3的化合物实验组也就是表1中编号为4的化合物。各组每隔3周处死8只大鼠,最后一次处死大鼠为第9周末。用3%戊巴比妥钠腹腔注射0.02mL/kg,麻醉后,经股动脉放血,分离血清,-20℃保存。留取肝组织标本。

模型组、实施例3化合物实验组不同时相ALT含量均显著高于同期空白对照组(P<0.01,P<0.05),而以模型组最高,显著高于其它同期各组(P<0.01)。模型组不同时相白蛋白下降、球蛋白增加,与其它各组比较差异显著,见表2。

表2各组大鼠肝功能变化(X±S,n=8)

实施例17

实施例3化合物体内抗肝癌活性研究。

建立小鼠肝癌皮下瘤模型。当小鼠肝癌皮下瘤长到体积为0.09-0.12cm3时,随机将荷有HepG2肺癌皮下瘤的小鼠(20-26g)分为三个组,实施例3化合物实验组、水飞蓟素实验组和生理盐水组各5只。给药组使用4mg/kg,100μL的剂量于第0、4、8天分别通过尾静脉注射到相应的实验组,生理盐水组注射100μL的生理盐水,每两天用游标卡尺测量肿瘤的最长处(L)和最宽处(W),计算肿瘤体积V=L×W2/2。第十二天将各实验组和生理盐水组的小鼠处死,剥出皮下瘤并称重。实施例3化合物实验组、水飞蓟素实验组和生理盐水组不同时间点相对肿瘤体积结果见表3。

表3不同时间点实施例3化合物和生理盐水组相对肿瘤体积结果

由表3中数据可知,实施例3化合物的体内抗肝癌活性均强于生理盐水组,且优于水飞蓟素组。因此该化合物具有后续研究开发的价值和意义。

从表3可以看出,随着时间的增长,实施例3化合物实验组、水飞蓟素实验组的肿瘤体积变小,但是相比于现有的水飞蓟素,本申请的实施例3的氨基酸衍生物效果更明显。

17页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种制备3-甲氧基-N-苯基丙酰胺的方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!

技术分类