用于对点云的测量点分类的方法、控制设备、计算机程序和存储介质

文档序号:1923191 发布日期:2021-12-03 浏览:24次 >En<

阅读说明:本技术 用于对点云的测量点分类的方法、控制设备、计算机程序和存储介质 (Method, control device, computer program and storage medium for classifying measurement points of a point cloud ) 是由 傅承煊 于 2021-05-31 设计创作,主要内容包括:公开一种用于通过控制设备对通过至少一个传感器所求取的点云(尤其是由激光雷达传感器、雷达传感器和/或摄像机传感器所求取的点云)的测量点进行分类的方法,其中,针对所述点云的任意测量点求取到相邻测量点的局部表面向量,针对任意局部表面向量分别计算所述局部表面向量相对于重力向量之间的角度,针对所述点云的任意测量点,基于所计算的角度求取具有相对于所述重力向量的最大角度的最大表面向量和归一化表面向量,将所述点云的具有如下归一化表面向量和/或最大表面向量的任意测量点分类为非地面点:所述归一化表面向量和/或所述最大表面向量相对于所述重力向量的角度大于界限值。还公开一种控制设备、一种计算机程序以及一种机器可读的存储介质。(Disclosed is a method for classifying measurement points of a point cloud determined by at least one sensor (in particular a point cloud determined by a lidar sensor, a radar sensor and/or a camera sensor) by means of a control device, wherein for any measurement point of the point cloud a local surface vector to an adjacent measurement point is determined, the angle between the local surface vector with respect to a gravity vector is calculated for any local surface vector in each case, for any measurement point of the point cloud a maximum surface vector and a normalized surface vector with a maximum angle with respect to the gravity vector are determined on the basis of the calculated angles, and any measurement point of the point cloud with the following normalized surface vector and/or maximum surface vector is classified as a non-ground point: the angle of the normalized surface vector and/or the maximum surface vector relative to the gravity vector is greater than a threshold value. A control device, a computer program and a machine-readable storage medium are also disclosed.)

用于对点云的测量点分类的方法、控制设备、计算机程序和存 储介质

技术领域

本发明涉及一种用于对通过至少一个传感器所求取的点云(尤其是由激光雷达传感器、雷达传感器和/或摄像机传感器所求取的点云)的测量点进行分类的方法。本发明还涉及一种控制设备、一种计算机程序和一种机器可读的存储介质。

背景技术

在自动化驾驶辅助功能和自动化驾驶领域中,通常将激光雷达传感器、雷达传感器或摄像机传感器用作环境传感器以执行环境感知。借助环境传感器能够对环境进行扫描,以便求取呈三维点云的形式的多个测量点,其具有到扫描区域中的对象的间距信息。在此,例如执行传播时间测量或者说所谓的飞行时间(Time-of-Flight)测量,并且由所测量的传播时间计算出由所发射的射束已走过的间距。

为了从点云的测量点中探测对象,通常必须将测量点分类为配属于地面的地面点和非地面点。基于分类为非地面点的测量点来进行随后的对象识别。已知用于对点云的测量点进行分类的方法。然而,已知的方法是复杂的,并且因此需要高的计算能力。由于这些方法的复杂性,因此测量数据的实时处理仅能以高的技术开销实现。此外,已知方法在误报率(Falsch-Positiv-Raten)和漏报率(Falsch-Negativ-Raten)方面的性能是不足的。

发明内容

本发明所基于的任务可以视为提出一种用于对测量数据进行分类的方法,该方法具有降低的计算能力需求并且是实时的。

该任务借助一种用于对通过至少一个传感器所求取的点云(尤其是由激光雷达传感器、雷达传感器和/或摄像机传感器所求取的点云)的测量点进行分类的方法、一种控制设备、一种计算机程序和一种机器可读的存储介质来解决。以下还给出了本发明的有利构型。

根据本发明的一个方面,提供一种用于对通过至少一个传感器所求取的点云的测量点进行分类的方法。所述至少一个传感器能够求取呈测量点的形式的测量数据,并且例如可以构型为激光雷达传感器、雷达传感器和/或摄像机传感器。

该方法可以由控制设备实施。在此,该控制设备可以构型为现场可编程门阵列(Field Programmable Gate Array,FPGA)、专用集成电路(ASIC)、微处理器、计算机或构型为硬件加速器。

该算法也可以在FPGA、ASIC或其他类型的硬件加速器中实现,以减少CPU负荷。

在该方法的一个步骤中,针对点云的任意测量点求取到相邻测量点的局部表面向量。可以将局部表面向量作为法向向量来求取,并且朝向相邻测量点地定向。在此,针对任意测量点,首先计算到其相邻点或相邻测量点的表面向量。可选地,各个未知的表面向量也可以通过两个已知的表面向量的叉积(Kreuzprodukt)来计算。

针对任意局部表面向量分别计算相应局部表面向量相对于重力向量之间的角度。随后,针对点云的任意测量点,基于所计算的角度求取具有相对于重力向量的最大角度的最大表面向量和归一化表面向量。

重力向量相应于地球引力垂直于地面(Untergrund或Boden)地定向。

局部表面向量相对于重力向量之间的角度可以优选地位于0°至90°之间的范围内,包括0°和90°。在角度大于90°的情况下,该角度能够以从180°中减去的形式来求取。

可以针对任意测量点确定最大表面向量。任意测量点可以配属有至少一个表面向量。在一个测量点配属有从该测量点指向相邻测量点的多个表面向量的情况下,可以将具有相对于重力向量的最大角度的表面向量定义为最大表面向量。因此,最大表面向量可以相对于X-Y平面基本上平行地取向,由此,相对于重力向量的角度最大。

可以通过由测量点的所有表面向量构造平均值来计算归一化表面向量。在此,也可以求取归一化表面向量与重力向量之间的角度。

在另一步骤中,将点云的具有如下归一化表面向量和/或最大表面向量的任意测量点分类为非地面点:该归一化表面向量和/或最大表面向量相对于重力向量的角度大于界限值。该界限值尤其可以位于45°至90°的角度范围内。由此,将具有如下归一化表面向量的和/或最大表面向量的测量点分类为非地面点:该归一化表面向量的和/或最大表面向量具有相对于重力向量的过大角度。该步骤对于避免进一步处理中的误报结果是重要相关的,因为在可选的区域生长法的算法中没有排除分类为非地面点的测量点,由此能够将区域生长法加速。

在误报结果的情况下,可能将对象的测量点分类为地面点。在漏报结果的情况下,可能将描绘地面的测量点分类为非地面点。

根据本发明的另一方面,提供一种控制设备,其中,该控制设备设置用于实施该方法。该控制设备例如可以是车辆侧的控制设备、车辆外部的控制设备或外部服务器单元(例如云系统)。

此外,根据本发明的一个方面,提供一种计算机程序,该计算机程序包括指令,在通过计算机或控制设备实施该计算机程序时,这些指令促使该计算机或控制设备实施根据本发明的方法。根据本发明的另一方面,提供一种机器可读的存储介质,在该机器可读的存储介质上存储有根据本发明的计算机程序。

该控制设备例如可以用于根据BASt标准能够辅助地、部分自动化地、高度自动化地和/或完全自动化地或无人驾驶地运行的车辆中。这种车辆例如可以作为载客汽车、载重汽车、机器人出租车等。该车辆不限于道路上的运行。而是,该车辆也可以构型为船只、飞机(例如运输无人机)等。

根据一个实施例,求取分类为非地面点的测量点的未分类的相邻测量点,其中,将分类为非地面点的测量点的如下未分类的相邻测量点分类为非地面点:这些未分类的相邻测量点具有相同的方位角和更高或相同的仰角。通过该措施,将所有未分类的相邻测量点在其高度偏差方面与已经分类为非地面点的测量点进行比较。如果相邻的未分类测量点的高度或z值大于分类为非地面点的测量点的高度或z值,则可以将这些测量点同样地分类为非地面点。该方法可以针对点云的测量点的每行和每列进行重复。由此能够进一步降低出现误报结果的概率。

根据另一实施方式,针对点云的任意未分类的测量点,将高度值或z值与传感器在地面上方的高度进行比较,其中,如果点云的未分类的测量点的高度值与传感器在地面上方的高度基本上一致,则将该未分类的测量点分类为地面点。由此,剩余的测量点无需分类就进行z值的比较。如果测量点的z值与重力向量基本上一致且表面向量的方向与重力向量的方向基本上一致,则将该测量点同样地分类为地面点。

根据另一实施例,求取点云的分类为地面点的、具有至少一个未分类的相邻测量点的测量点,并且应用区域生长法。在此,剩余的相邻测量点既不分类为非地面点,也不分类为地面点。通过该措施,使用关键特征来辨识其他地面点,其中,存在相邻地面点的表面向量的相似性。附加地,其他标准(例如z值中的差异)可以由区域生长法考虑。通过该步骤尤其可以避免例如可能在丘陵处出现的漏报结果。

根据另一实施方式,将点云的测量点以具有多个行和列的结构化形式至少暂时地存储在存储单元中。在此,存储单元可以是集成在控制设备中的或可以是外部的存储单元。通过结构化地提供测量点,能够基于行号和列号来访问任意测量点。特别地,由此能够针对任意测量点辨识相邻的测量点。

同一列的测量点优选地具有相同的仰角,同一行(Reihe或Zeile)的测量点具有相同的方位角。

附图说明

以下基于极度简化的示意图进一步阐述本发明的优选实施例。在此示出:

图1示出具有示例性点云的布置的示意图,以示出根据一种实施方式的方法,

图2示出测量点的归一化表面向量相对于重力向量的示意性比较,

图3示出测量点的最大表面向量相对于重力向量的示意性比较,

图4示出分类为非地面点的测量点与具有较大z值的、未分类的测量点之间的示意性比较。

具体实施方式

图1至4示出示意图,以示出根据一种实施方式的方法。该方法用于对通过至少一个传感器2所求取的测量点4进行分类。

在图1中示出具有示例性点云P的布置1的示意图。布置1具有例如构型为激光雷达传感器的传感器2。替代或附加地,传感器2可以具有雷达传感器和/或摄像机传感器。

传感器2可以对扫描区域A进行扫描,并且以测量点4的形式收集测量数据。测量点4存在于栅格或表格中并且可以配属于表格的行和列。在此,行相应于方位角WA,列相应于仰角WE。

传感器2以数据传导的方式与控制设备6连接。控制设备6可以接收传感器2的测量点4,并且至少暂时地将这些测量点存储在存储单元8中。

存储单元8可以构型为机器可读的存储介质,在该机器可读的存储介质上存储有计算机程序,该计算机程序包括指令,在通过控制设备6实施该计算机程序时,该指令促使该控制设备实施该方法。

在图1中,示例性示出具有到相邻测量点12的四个表面向量10的测量点4。针对点云P的任意测量点4求取到相邻测量点12的局部表面向量10。

图2示出测量点4的归一化表面向量16、18相对于重力向量g的示意性比较。为了清楚起见,未示出布置1。在此,示出分类为非地面点的测量数据4的归一化表面向量16和分类为地面点的测量数据4的归一化表面向量18。

在图2中所示出的步骤中,针对任意局部表面向量10分别计算这些局部表面向量10相对于重力向量g之间的角度WD。在此,可以使用地面点的如下关系:这些地面点比非地面点更加平行于重力向量g延伸。

图3示出测量点4的最大表面向量20相对于重力向量g的示意性比较。尤其示出,示例性的建筑物墙壁上的最大表面向量20以相对于归一化表面向量18几乎垂直的方式取向。因此,最大表面向量20和归一化表面向量16、18都必须考虑用于分类,以便稳健实施该方法。

针对点云P的任意测量点4,基于所计算的角度WD求取最大表面向量20和归一化表面向量16、18。最大表面向量20相应于测量点4的多个表面向量10中的一个,该表面向量具有相对于重心向量g的最大角度WD。因此,最大表面向量20基本上平行于x-y平面。

在另一步骤中,将点云P的具有如下归一化表面向量16和/或最大表面向量20的任意测量点4分类为非地面点:该归一化表面向量和/或最大表面向量相对于重力向量g的角度WD大于界限值。

在图4中示出分类为地面点的测量点4与具有较大z值的、未分类的测量点12之间的示意性比较。求取点云P的分类为地面点的、具有至少一个未分类的相邻测量点12的测量点4,并且应用区域生长法。在此,剩余的相邻测量点12既不分类为非地面点,也不分类为地面点。通过该措施,能够使用相邻地面点的表面向量的相似性。例如,由此可以将略微升高的面22进行登记并将其分类为属于地面。箭头24示出区域生长法的示例性方向。

10页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:医学图像标记点识别方法、装置、电子设备及存储介质

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!