液电耦合驱动多执行器系统及控制方法

文档序号:1962116 发布日期:2021-12-14 浏览:18次 >En<

阅读说明:本技术 液电耦合驱动多执行器系统及控制方法 (Liquid-electric coupling driving multi-actuator system and control method ) 是由 权龙� 乔舒斐 郝云晓 葛磊 王波 于 2021-11-17 设计创作,主要内容包括:本发明涉及一种液电耦合驱动多执行器系统及控制方法,属于液压传动和电机械传动技术领域,液电耦合驱动多执行器系统包括:一个或多个液电混驱执行器;与液电混驱执行器数量一致的第一逆变器及控制阀;各液电混驱执行器对应连接一个第一逆变器及一个控制阀;集中式液压单元,与各控制阀连接,用于为各液电混驱执行器供油并进行功率补偿;控制单元,分别与各液电混驱执行器连接,用于根据各液电混驱执行器的压力信息,控制对应的液电混驱执行器电机的输出扭矩,使各液电混驱执行器的驱动腔压力相等,极大地降低了由于各执行器的负载差异而导致的节流损失。(The invention relates to a hydraulic-electric coupling driving multi-actuator system and a control method, belonging to the technical field of hydraulic transmission and electromechanical transmission, wherein the hydraulic-electric coupling driving multi-actuator system comprises: one or more hydro-electric hybrid actuators; the number of the first inverters is consistent with that of the hydraulic-electric hybrid actuators; each hydraulic-electric hybrid-driven actuator is correspondingly connected with a first inverter and a control valve; the centralized hydraulic unit is connected with each control valve and is used for supplying oil to each hydraulic-electric hybrid drive actuator and performing power compensation; and the control unit is respectively connected with each hydraulic-electric hybrid-driven actuator and used for controlling the output torque of the corresponding hydraulic-electric hybrid-driven actuator motor according to the pressure information of each hydraulic-electric hybrid-driven actuator, so that the pressure of the driving cavity of each hydraulic-electric hybrid-driven actuator is equal, and the throttling loss caused by the load difference of each actuator is greatly reduced.)

液电耦合驱动多执行器系统及控制方法

技术领域

本发明涉及液压传动和电机械传动技术领域,特别是涉及一种液电耦合驱动多执行器系统及控制方法。

背景技术

液压系统因具有功率密度大等优点,被广泛应用在航空航天、深海装备、工程机械、筑路机械、矿山机械、林业机械和农业机械等各类非道路移动装备中。目前,对于多执行器液压系统,普遍采用集中动力源供能、多路阀分配动力的方式,泵输出压力与最高负载联相匹配,其余各联通过各自压力补偿器补偿负载差异的影响,导致低负载联的压力补偿器和各控制阀上存在较大的节流损失,系统整体能效较低。此外,具有举升装置的装备还存在严重的动势能浪费问题。

电机械执行器驱动系统是一种通过机械传动将电机旋转运动转换为直线运动的技术,相比于液压驱动,电机械执行器驱动具有节能环保、易于控制和控制精度高等优点,但电机械执行器功率密度较低,承载能力差。而且目前多电机械执行器驱动系统是单电机械执行器驱动系统的简单叠加,系统整体装机功率较大。

基于上述问题,亟需一种新的多执行器控制系统以降低节流损失和装机功率。

发明内容

本发明的目的是提供一种液电耦合驱动多执行器系统及控制方法,可降低节流损失及装机功率。

为实现上述目的,本发明提供了如下方案:

一种液电耦合驱动多执行器系统,所述液电耦合驱动多执行器系统包括:

一个或多个液电混驱执行器;

与所述液电混驱执行器数量一致的第一逆变器、控制阀、压力传感器组;

各液电混驱执行器对应连接一个第一逆变器、一个控制阀、一个压力传感器组;所述压力传感器组用于检测对应的液电混驱执行器的压力信息;

集中式液压单元,与各控制阀连接,用于为各液电混驱执行器供油并进行功率补偿;

控制单元,分别与各液电混驱执行器及各压力传感器连接,用于根据各液电混驱执行器的压力信息,控制对应的液电混驱执行器电机的输出扭矩,使各液电混驱执行器的驱动腔压力相等。

可选地,所述液电混驱执行器包括:

电机;

减速器,与所述电机连接;

缸筒,与所述减速器固定连接;

推杆,设置在所述缸筒内,且与所述缸筒活动连接;

丝杠,设置在所述缸筒内,且一端与所述减速器连接,另一端与所述推杆通过螺旋传动副连接;所述丝杠在所述电机和所述减速器的控制下产生旋转运动,进一步通过螺旋传动副带动推杆产生直线运动;

所述推杆与所述缸筒之间设置有密封件;所述密封件将所述缸筒分成两个腔,所述缸筒靠近所述减速器的一侧为无杆腔,靠近推杆的一侧为有杆腔;

所述控制阀的工作油口分别与对应的液电混驱执行器的两腔连通;所述控制阀用于根据所述液电混驱执行器电机输出扭矩信息,通过工作油口为对应的液电混驱执行器提供功率补偿;所述控制阀的回油口与油箱连通。

可选地,所述压力传感器组包括:

第一压力传感器,与对应的液电混驱执行器的无杆腔连接,用于检测对应的液电混驱执行器无杆腔的压力信息;

第二压力传感器,与对应的液电混驱执行器的有杆腔连接,用于检测对应的液电混驱执行器有杆腔的压力信息。

可选地,所述集中式液压单元包括:第二逆变器、电动机、液压泵、油箱、供油管路、溢流阀、旁通比例阀以及梭阀;

所述电动机与所述第二逆变器连接;

所述液压泵与所述电动机同轴连接,且所述液压泵的吸油口与所述油箱连通,所述液压泵的出油口与所述供油管路连通;

所述溢流阀分别与所述供油管路及所述油箱连通;

所述梭阀与各液电混驱执行器对应的控制阀的负载检测端连接,所述梭阀用于检测液电混驱执行器的最高负载压力;

所述旁通比例阀开设有第一工作油口、第二工作油口、第三工作油口、弹簧端以及压力检测端;

所述旁通比例阀的第一工作油口与所述油箱连通;所述旁通比例阀的第二工作油口与蓄能器连通;所述旁通比例阀的第三工作油口与所述供油管路连通;所述旁通比例阀的弹簧端与所述梭阀连接,所述旁通比例阀用于检测各液电混驱执行器的最大负载反馈压力;

所述旁通比例阀的压力检测端与所述供油管路连接,所述压力检测端用于检测所述液压泵的出口压力;

所述旁通比例阀受液压泵的出口压力、负载反馈压力和弹簧力的控制,使液压泵的出口压力始终高于负载压力一个固定值。

可选地,所述液电耦合驱动多执行器系统还包括:

直流母线,分别与所述第一逆变器及第二逆变器连接,用于为各液电混驱执行器进行能量分配和能量共享。

可选地,所述液电耦合驱动多执行器系统还包括:在所述直流母线上依次连接的电源开关、整流器、DC-DC变换器以及超级电容组。

为实现上述目的,本发明还提供了如下方案:

一种液电耦合驱动多执行器控制方法,所述液电耦合驱动多执行器控制方法包括:

当负载差异下的多个液电混驱执行器共同动作时,各液电混驱执行器的运行速度通过各自联电机控制;

集中式液压单元统一对各液电混驱执行器的电驱动进行功率补偿;

根据各液电混驱执行器的压力信息,调节各液电混驱执行器的电机的输出扭矩,进而控制各液电混驱执行器的驱动腔压力,使各液电混驱执行器的驱动腔压力相等。

优选地,所述液电耦合驱动多执行器控制方法还包括:

通过控制旁通比例阀,使液压泵的出口压力比最高负载压力高一个固定值,使各联控制阀的开口最大。

优选地,所述液电耦合驱动多执行器控制方法还包括:

根据流量匹配原理,计算各联液电混驱执行器的需求流量;

根据需求流量,调整液压泵的斜盘摆角,控制液压泵的输出流量与需求流量一致。

根据本发明提供的具体实施例,本发明公开了以下技术效果:通过压力传感器检测各液电混驱执行器的压力信息,并根据压力信息,控制对应的液电混驱执行器电机的输出扭矩,使各液电混驱执行器的驱动腔压力相等,极大地降低了由于各液电混驱执行器负载差异而导致的节流损失。另外,通过增设控制阀及集中式液压单元,对所有液电混驱执行器进行功率补充,可实现小功率电机驱动牵引大功率执行器,显著降低了多执行器系统总的装机功率,特别适用于多执行器的工程装备。

附图说明

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。

图1为本发明液电耦合驱动多执行器系统的结构示意图;

图2为本发明液电耦合驱动多执行器控制方法的流程图;

图3为电液耦合驱动挖掘机的机械结构示意图;

图4为本发明液电耦合驱动多执行器系统应用在挖掘机整机的回路原理图。

符号说明:

电源开关-1,整流器-2,直流母线-3,滤波电容-4,直流-直流(Direct Current,DC-DC)变换器-5,超级电容组-6,

第一逆变器-7,动臂联逆变器-7-1、7-2,斗杆联逆变器-7-3、7-4,回转联逆变器-7-5;

液电混驱执行器-8,动臂联液电混驱执行器-8-1、8-2,斗杆联液电混驱执行器-8-3、8-4;

电机-9,减速器-10,丝杠-11,推杆-12,缸筒-13,密封件-14;

第一压力传感器-15、15-1、15-2、15-3、15-4,第二压力传感器-16、16-1、16-2、16-3、16-4;

控制阀-17,动臂联控制阀-17-1,铲斗联控制阀-17-2,斗杆联控制阀-17-3,回转联控制阀-17-4;

第三压力传感器-18、18-1、18-2,第二逆变器-19、19-1、19-2,电动机-20、20-1、20-2,液压泵-21、21-1、21-2,油箱-22,溢流阀-23、23-1、23-2,旁通比例阀-24,蓄能器-25,梭阀-26,压差补偿器-27,阀芯位移传感器-28,开关阀-29;

行走装置-30,回转马达-31,回转平台-32,动臂-33,斗杆-34,铲斗-35,铲斗液压缸-36;回转电机37;

控制阀的第一工作油口-A,控制阀的第二工作油口-B,控制阀的进油口-P,控制阀的回油口-T,控制阀的负载压力检测端-LS,供油管路-L,旁通比例阀的第一工作油口-E,旁通比例阀的第二工作油口-F,旁通比例阀的第三工作油口-C。

具体实施方式

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

本发明的目的是提供一种液电耦合驱动多执行器系统及控制方法,通过压力传感器检测各液电混驱执行器的压力信息,并根据压力信息,控制对应的液电混驱执行器电机的输出扭矩,使各液电混驱执行器的驱动腔压力相等,极大地降低了由于各液电混驱执行器负载差异而导致的节流损失。另外,通过增设控制阀及集中式液压单元,对所有液电混驱执行器进行功率补充,可实现小功率电机驱动牵引大功率执行器,显著降低了多执行器系统总的装机功率,特别适用于多执行器的工程装备。

为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。

如图1所示,本发明液电耦合驱动多执行器系统包括:

一个或多个液电混驱执行器8;

与所述液电混驱执行器8数量一致的第一逆变器7、控制阀17、压力传感器组。优选地,所述控制阀17为具有负载压力反馈功能的三位四通控制阀。

各液电混驱执行器8对应连接一个第一逆变器7、一个控制阀17、一个压力传感器组;所述压力传感器组用于检测对应的液电混驱执行器8的压力信息。

集中式液压单元,与各控制阀17连接,用于为各液电混驱执行器8供油并进行功率补偿。

控制单元,分别与各液电混驱执行器8及各压力传感器连接,用于根据各液电混驱执行器8的压力信息,控制对应的液电混驱执行器8电机的输出扭矩,使各液电混驱执行器8的驱动腔压力相等。无节流损失地消除了各执行器负载差异的影响,极大地降低了由于各液电混驱执行器8的驱动腔压力不同而导致的节流损失。

本发明通过增设控制阀17以及集中式液压单元,对所有电机进行功率补充,可实现小功率电机驱动牵引大功率执行器,显著降低多执行器系统总的装机功率,特别适用于多执行器的工程装备。

进一步地,所述液电混驱执行器8包括:电机9、减速器10、缸筒13、推杆12以及丝杠11。

其中,所述减速器10与所述电机9连接。

所述缸筒13与所述减速器10固定连接。

所述推杆12设置在所述缸筒13内,且与所述缸筒13活动连接。

所述丝杠11设置在所述缸筒13内,且一端与所述减速器10连接,另一端与所述推杆12通过螺旋传动副连接;所述丝杠11在所述电机9和所述减速器的控制下产生旋转运动,进一步通过螺旋传动副带动推杆12产生直线运动。由于是机械传动,故液电混驱执行器的控制性能较好。

所述推杆12与所述缸筒13之间设置有密封件14;所述密封件14将所述缸筒13分成两个腔,所述缸筒13靠近所述减速器的一侧为无杆腔,靠近推杆12的一侧为有杆腔;

所述控制阀17的工作油口分别与对应的液电混驱执行器8的两腔连通;所述控制阀17用于根据所述液电混驱执行器8的驱动腔的压力信息,通过工作油口为对应的液电混驱执行器8提供功率补偿;所述控制阀17的回油口与油箱22连通。

在保证系统流量分配精度的基础上,增大各联控制阀17的阀口开度,最大化减小阀口的节流损失,实现控制阀17节流损失最小化,进而实现整个系统节流损失最小化。

更进一步地,所述压力传感器组包括:第一压力传感器15和第二压力传感器16。

其中,所述第一压力传感器15与对应的液电混驱执行器8的无杆腔连接,所述第一压力传感器15用于检测对应的液电混驱执行器8无杆腔的压力信息。

所述第二压力传感器16与对应的液电混驱执行器8的有杆腔连接,所述第二压力传感器16用于检测对应的液电混驱执行器8有杆腔的压力信息。

具体地,所述集中式液压单元包括:第二逆变器19、电动机20、液压泵21、油箱22、供油管路L、溢流阀23、旁通比例阀24、蓄能器25以及梭阀26。

所述电动机20与所述第二逆变器19连接。

所述液压泵21与所述电动机20同轴连接,且所述液压泵21的吸油口与所述油箱22连通,所述液压泵21的出油口与所述供油管路L连通。

所述溢流阀23分别与所述供油管路L及所述油箱22连通。

所述梭阀26与各液电混驱执行器8对应的控制阀17的负载检测端连接,所述梭阀26用于检测液电混驱执行器8的最高负载压力。

所述旁通比例阀24开设有第一工作油口E、第二工作油口F、第三工作油口C、弹簧端以及压力检测端。

所述旁通比例阀24的第一工作油口E与所述油箱22连通;所述旁通比例阀24的第二工作油口F与蓄能器25连通;所述旁通比例阀24的第三工作油口C与所述供油管路连通;所述旁通比例阀24的弹簧端与所述梭阀26连接,所述旁通比例阀24的弹簧端用于检测各液电混驱执行器8的最大负载反馈压力。

所述旁通比例阀24的压力检测端与所述供油管路L连接,所述压力检测端用于检测所述液压泵21的出口压力。

所述旁通比例阀24受液压泵21的出口压力、负载反馈压力和弹簧力的控制,使液压泵21的出口压力始终高于负载压力一个固定值。

优选地,所述集中式液压单元还包括第三压力传感器18。所述第三压力传感器18与所述供油管路L连通,所述第三压力传感器18用于实时检测所述供油管路L的压力。

可选地,所述液电耦合驱动多执行器系统还包括:直流母线3。所述直流母线3分别与所述第一逆变器7及第二逆变器19连接,所述直流母线3用于为各液电混驱执行器8进行能量分配和能量共享。

进一步地,所述液电耦合驱动多执行器系统还包括:在所述直流母线3上依次连接的电源开关1、整流器2、DC-DC变换器5以及超级电容组6。

通过直流母线3及超级电容组6,可实现动势能回收利用。当液电混驱执行器8处于超越负载工况,执行器的动势能通过电机9转换为电能,通过直流母线3存储至超级电容组6,也可通过直流母线3直接利用系统产生的动势能,实现能量共享。多余的能量也可以进一步通过集中式液压单元的电动机20、液压泵21转换为液压能存储至蓄能器25。能量利用过程与回收过程相反。

在本实施例中,所述蓄能器25为气囊式蓄能器、活塞式蓄能器、弹簧式蓄能器中的一种。所述电动机20通过第二逆变器19与所述直流母线3电连接以获取动力。

如图2所示,本发明液电耦合驱动多执行器控制方法包括:

S1:当负载差异下的多个液电混驱执行器8共同动作时,各液电混驱执行器8的运行速度通过各自联电机控制。

S2:集中式液压单元统一对各液电混驱执行器8的电驱动进行功率补偿。

S3:根据各液电混驱执行器8的压力信息,调节各液电混驱执行器8的电机的输出扭矩,进而控制各液电混驱执行器8的驱动腔压力,使各液电混驱执行器8的驱动腔压力相等。

进一步地,所述液电耦合驱动多执行器控制方法还包括:

S4:通过控制旁通比例阀,使液压泵21的出口压力比最高负载压力高一个固定值,使各联控制阀17的开口最大。

更进一步地,所述液电耦合驱动多执行器控制方法还包括:

S5:根据流量匹配原理,计算各联液电混驱执行器8的需求流量。

S6:根据需求流量,调整液压泵21的斜盘摆角,控制液压泵21的输出流量与需求流量一致。

以下为本发明液电耦合驱动多执行器系统及控制方法应用到挖掘机的一实施例:

图3为本发明电液耦合驱动挖掘机的机械结构示意图,挖掘机作为一种被广泛应用的典型多执行器机械设备,主要包括:行走装置30,配置于行走装置30上的回转平台32以及驱动回转平台32旋转的回转马达31,与回转平台32连接并进行上下方向相对转动的动臂33以及驱动动臂33举升下降的动臂联液电混驱执行器8-1、8-2,安装在动臂33前端并可相对转动的斗杆34以及驱动斗杆34运动的斗杆联液电混驱执行器8-3,安装在斗杆34前端并可相对转动的铲斗35以及驱动铲斗35运动的铲斗液压缸36。

图4为本发明液电耦合驱动多执行器系统应用于挖掘机整机的回路原理图。如图4所示,电驱动挖掘机回路包括:

直流母线3;

一个或两个动臂联液电混驱执行器8-1、8-2,一个或两个动臂联逆变器7-1、7-2,动臂联控制阀17-1;

一个或两个斗杆联液电混驱执行器8-3、8-4,一个或两个斗杆联逆变器7-3、7-4,斗杆联控制阀17-3;

铲斗液压缸36,铲斗联控制阀17-2;

回转马达31,回转电机37,回转联逆变器7-5,回转联控制阀17-4;

两个集中式液压单元以及控制单元,每个集中式液压单元均包括第二逆变器19、电动机20、液压泵、油箱22、溢流阀23。

所述直流母线3连接有电源开关1、整流器2、滤波电容4、DC-DC变换器5以及超级电容组6。

所述动臂联逆变器7-1、7-2,斗杆联逆变器7-3、7-4,回转联逆变器7-5,第二逆变器19-1、19-2均与所述直流母线3电连接。

所述直流母线3通过各逆变器分别为各执行器联进行电力分配和能量共享,并将多余的能量存储至超级电容组6。

所述动臂联液电混驱执行器8-1、8-2为本发明液电耦合驱动多执行器系统的液电混驱执行器,所述动臂联液电混驱执行器8-1、8-2分别与所述动臂联逆变器7-1、7-2连接,所述动臂联液电混驱执行器的两腔分别与动臂联控制阀17-1的工作油口A、B连通。

所述斗杆联液电混驱执行器8-3、8-4为本发明液电耦合驱动多执行器系统的液电混驱执行器,所述斗杆联液电混驱执行器8-3、8-4分别与所述斗杆联逆变器7-3、7-4连接,所述斗杆联液电混驱执行器的两腔分别与斗杆联控制阀17-3的工作油口A、B连通。

所述回转马达31与所述回转电机37同轴连接,所述回转电机37与所述回转联逆变器7-5连接,所述回转马达的两腔分别与回转联控制阀17-4的工作油口A、B连通。

所述铲斗液压缸36的两腔分别与铲斗联控制阀17-2的工作油口A、B连通,铲斗联进一步增设有压差补偿器27及阀芯位移传感器28。所述压差补偿器的出油口与铲斗联控制阀17-2的进油口连通,所述铲斗联控制阀17-2为具有负载压力检测功能的三位四通控制阀,压差补偿器17-2的弹簧端与负载压力检测口LS连通,另一端与控制阀进油口P连通。

所述集中式液压单元为本发明液电耦合驱动多执行器系统的集中式液压单元,第一集中式液压单元与动臂联控制阀17-1、铲斗联控制阀17-2连接,第二集中式液压单元与斗杆联控制阀17-3、回转联控制阀17-4连接,所述集中式液压单元用于为动臂联液电混驱执行器、斗杆联液电混驱执行器、回转马达以及铲斗液压缸供油,进行功率补偿。

第一集中式液压单元与第二集中式液压单元之间通过开关阀29连接,当单个集中式液压单元不能提供足够的流量时,控制单元控制开关阀29连通,两个集中式液压单元进行合流,为执行器进行供油。

所述控制单元分别与各个液电混驱执行器、回转电机、控制阀、开关阀、电动机、液压泵连接。

所述控制单元根据所述动臂联液电混驱执行器8-1、8-2,所述斗杆联液电混驱执行器8-3、8-4,所述回转马达31、所述铲斗液压缸36、以及所述压力传感器检测出的多执行器的最大负载压力信息,控制对应的动臂联液电混驱执行器8-1、8-2的电机输出扭矩、斗杆联液电混驱执行器8-3、8-4的电机输出扭矩,以及回转电机37的输出扭矩,补偿多执行器之间的载荷差异,使协同动作的各个执行器的驱动腔压力尽可能相等,减小由于多执行器负载差异造成的控制阀口处的节流损失。

挖掘机系统的具体控制方法与本发明液电耦合驱动多执行器控制方法相同。

本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。

15页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种分油合油自转换的拖拉机液压系统

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!