有机电致发光材料及其应用

文档序号:899150 发布日期:2021-02-26 浏览:25次 >En<

阅读说明:本技术 有机电致发光材料及其应用 (Organic electroluminescent material and application thereof ) 是由 黄鑫鑫 李之洋 曾礼昌 于 2019-08-20 设计创作,主要内容包括:本发明提供一种化合物,具有通式(1)所示结构,其中各基团如说明书中所定义。还提供包含所述化合物的有机电致发光器件。(The invention provides a compound which has a structure shown in a general formula (1), wherein each group is defined in the specification. Also provided is an organic electroluminescent device comprising the compound.)

有机电致发光材料及其应用

技术领域

本发明涉及一种有机化合物,其可以用于有机电致发光器件中,特别地可用于发光层主体材料或空穴阻挡层材料;本发明还涉及该化合物在有机电致发光器件中的应用,以及包含该化合物的有机电致发光器件。

背景技术

近年来,基于有机材料的光电子器件已经变得越来越受欢迎。有机材料固有的柔性令其十分适合用于在柔性基板上制造,可根据需求设计、生产出美观而炫酷的光电子产品,获得相对于无机材料无以比拟的优势。此类有机光电子器件的示例包括有机发光二极管(OLED),有机场效应管,有机光伏打电池,有机传感器等。其中OLED发展尤其迅速,已经在信息显示领域取得商业上的成功。OLED可以提供高饱和度的红、绿、蓝三颜色,用其制成的全色显示装置无需额外的背光源,具有色彩炫丽,轻薄柔软等优点。

OLED器件核心为含有多种有机功能材料的薄膜结构。常见的功能化有机材料有:空穴注入材料、空穴传输材料、空穴阻挡材料、电子注入材料、电子传输材料,电子阻挡材料以及发光主体材料和发光客体(染料)等。通电时,电子和空穴被分别注入、传输到发光区域并在此复合,从而产生激子并发光。

人们已经开发出多种有机材料,结合各种奇特的器件结构,可以提升载流子迁移率、调控载流子平衡、突破电致发光效率、延缓器件衰减。出于量子力学的原因,常见的荧光发光体主要利用电子和空穴结合时产生的单线态激子发光,现在仍然广泛地应用于各种OLED产品中。有些金属络合物如铱络合物,可以同时利用三线态激子和单线态激子进行发光,被称为磷光发光体,其能量转换效率可以比传统的荧光发光体提升高达四倍。热激发延迟荧光(TADF)技术通过促进三线态激子朝单线态激子的转变,在不采用金属配合物的情况下,仍然可以有效地利用三线态激子而实现较高的发光效率。

随着OLED产品逐步进入市场,人们对这类产品的性能有越来越高的要求。当前使用的OLED材料和器件结构无法完全解决OLED产品效率、寿命、成本等各方面的问题。本发明的研究人员通过认真思考和不断实验,发现了一种巧妙的分子设计方案,并在下文中详细地进行说明。令人惊讶地,本发明所揭示的化合物非常适合应用于OLED并提升器件的性能。

发明内容

本发明披露了一类具有含七元环的大共轭体系结构的化合物,可以提升材料的电荷传输性能,同时调节HOMO/LUMO能级,以期平衡载流子传输,达到提高OLED器件性能的目的。

一方面,本发明提供一种化合物,具有通式(1)所示结构:

其中,

X和Y独立地选自氧、硫、硒、BRa,NRb,CRcRd,SiReRf,CRgRh-CRiRj;Z1-Z10各自独立地为CRz或N;

R1代表0~2个相同或不同的取代基;R2代表0~2个相同或不同的取代基;R3代表0~3个相同或不同的取代基;R4代表0~3个相同或不同的取代基;Ra,Rc,Rd,Re,Rf,Rg,Rh,Ri,Rj,Rz,R1,R2,R3和R4中的每一个独立地选自氢、卤素、C1-C12的烷基、C3-C12的环烷基、C1-C12的烷氧基、C2-C12的环烷氧基、硅烷基、羰基、酰基、酯基、氰基、胺基、C6-C30的芳基、C3-C30的杂芳基,或其组合;

Rb选自卤素、C1-C12的烷基、C3-C12的环烷基、C1-C12的烷氧基、C2-C12的环烷氧基、硅烷基、羰基、酰基、酯基、氰基、胺基、C6-C30的芳基、C3-C30的杂芳基,或其组合;

任意两个相邻的取代基可以相互连接成环,例如五元芳环或六元芳环;当Ra,Rb,Rc,Rd,Re,Rf,Rg,Rh,Ri,Rj或Rz中的任一个存在多个时,它们各自相同或不同。

在一些实施方案中,化合物具有以下结构:

其中,各基团如通式(1)中所定义。

在一些实施方案中,Rb选自以下基团,其可在任意可取代的位置与N原子连接:

在一些实施方案中,化合物具有选自P1-P236所示的结构:

作为本发明的另一个方面,本发明还提供了一种如上所述的化合物在有机电致发光器件中的应用。

作为本发明的又一个方面,本发明还提供了一种有机电致发光器件,包括第一电极、第二电极和插入在所述第一电极和第二电极之间的一个或多个有机材料层,其中至少一个所述有机材料层中包含本发明化合物。

在一些实施方案中,有机电致发光器件的发光层和/或空穴阻挡层中包含本发明化合物。

在一些实施方案中,本发明化合物用作发光层中的发光主体。

在一些实施方案中,本发明化合物用作空穴阻挡层。

具体实施方式

为了使本领域技术人员更好地理解本发明,下面结合具体实施方式对本发明作进一步详细说明。

在本说明书中,烷基、烷氧基、硅烷基可以包含1-12个碳原子,环烷基、环烷氧基可以包含3-12个碳原子,芳基可以包含6-30个碳原子、杂芳基可以包含3-30个碳原子。

本发明中未提到合成方法的化合物的都是通过商业途径获得的原料产品。本发明中所用溶剂和试剂,例如二氯甲烷、石油醚、乙醇、四氢呋喃、N,N-二甲基乙酰胺、无水硫酸镁、咔唑、苯并咪唑等等化学试剂,均可以从国内化工产品市场购买,例如购买自国药集团试剂公司、TCI公司、上海毕得医药公司、百灵威试剂公司等。

下文将以多个具体实施例为例来详述本发明,本发明实施例的化合物可参考下列所示的具体合成例进行合成,但需要说明的是,获取该化合物并不限于本发明中所用到的合成方法和原料,本领域技术人员也可以选取其它方法或路线得到本发明所提出的新颖化合物。本发明中未提到合成方法的化合物都是通过商业途径获得的原料产品,或者通过这些原料产品依据公知的方法来进行自制。

本发明中的中间体和化合物的分析检测使用质谱(ZAB-HS型质谱仪测定,英国Micromass公司制造)。

合成实施例

代表性合成路径1:

代表性合成路径1-1:

代表性合成路径1-2:

代表性合成路径1-3:

代表性合成路径2:

代表性合成路径3:

M1的合成

在氮气氛围下,将1-溴-8-碘萘(66.60g,200mmol)、2-(甲氧基羰基)苯硼酸(36.00g,200mmol)、四(三苯基膦)钯(2.30g,2mmol)、碳酸钾(55.2g,400mmol)、1,4-二氧六环1200ml,蒸馏水400ml放入3L反应容器中,在100℃下回流反应12h。冷却至室温,合并浓缩有机相。利用柱色谱法进行分离得到中间体M1-1 53.75g。分子量计算值:314.20,实测值C/Z:314.2。

在氮气氛围下,将M1-1(47.13g,150mmol)、四氢呋喃500ml放入2L反应容器中,降温至0℃,缓慢加入甲基溴化镁(110.48g,600mmol)。恢复至室温反应12h,加入饱和NH4Cl水溶液,搅拌15min,用乙酸乙酯萃取,并合并浓缩有机相。利用柱色谱法进行分离得到中间体M1-2 44.68g。分子量计算值:341.25,实测值C/Z:341.2。

在氮气氛围下,将M1-2(40.95g,120mmol)、二氯甲烷400ml放入1L反应容器中,降温至0℃,加入甲基磺酸(11.52g,120mmol)、反应12h。加水搅拌1h,萃取并合并浓缩有机相。利用柱色谱法进行分离得到中间体M1 27.54g。分子量计算值:323.23,实测值C/Z:323.2。

合成例1:

P16的合成

在氮气氛围下,将M1(16.16g,50mmol)、2-(甲氧基羰基)苯硼酸(9.00g,50mmol)、四(三苯基膦)钯(1.15g,1mmol)、碳酸钾(13.8g,100mmol)、1,4-二氧六环300ml,蒸馏水100ml放入1L反应容器中,在100℃下回流反应12h。冷却至室温,合并浓缩有机相。利用柱色谱法进行分离得到中间体P16-1 15.78g。分子量计算值:378.47,实测值C/Z:378.5。

在氮气氛围下,将P16-1(15.14g,40mmol)、四氢呋喃200ml放入2L反应容器中,降温至0℃,缓慢加入甲基溴化镁(29.46g,160mmol)。恢复至室温反应12h,加入饱和NH4Cl水溶液,搅拌15min,用乙酸乙酯萃取,并合并浓缩有机相。利用柱色谱法进行分离得到中间体P16-2 11.78g。分子量计算值:378.52,实测值C/Z:378.5。

在氮气氛围下,将P16-2(11.36g,30mmol)、二氯甲烷150ml放入1L反应容器中,降温至0℃,加入甲基磺酸(2.88g,30mmol)、反应12h。加水搅拌1h,萃取并合并浓缩有机相。利用柱色谱法进行分离得到中间体P16-3 7.29g。分子量计算值:360.50,实测值C/Z:360.5。

在氮气氛围下,将P16-3(7.21g,20mmol)、氯化钠(23.38g,400mmol)、三氯化铝(193.14g,800mmol)、苯500ml放入2L反应容器中,回流反应12h。冷却至室温,用NaHCO3饱和水溶液处理掉过量的AlCl3,合并浓缩有机相。利用柱色谱法进行分离得到化合物P163.04g。分子量计算值:358.48,实测值C/Z:358.5。

合成例2:

P18的合成

在氮气氛围下,将M1(32.32g,100mmol)、2-甲硫基苯硼酸(16.80g,100mmol)、四(三苯基膦)钯(1.15g,1mmol)、碳酸钾(27.6g,200mmol)、1,4-二氧六环600ml,蒸馏水200ml放入1L反应容器中,在100℃下回流反应12h。冷却至室温,合并浓缩有机相。利用柱色谱法进行分离得到中间体P18-1 30.55g。分子量计算值:366.52,实测值C/Z:366.5。

在氮气氛围下,将P18-1(29.32g,80mmol)、乙酸300ml放入1L反应容器中,将H2O2(8.16g,240mmol)溶于50ml乙酸,逐滴缓慢加入上述溶液,室温下反应8h。反应结束后,合并浓缩除掉乙酸。利用柱色谱法进行分离得到中间体P18-2 20.41g。分子量计算值:382.52,实测值C/Z:382.5。

在氮气氛围下,将P18-2(19.13g,50mmol)、三氟甲磺酸75ml放入500ml反应容器中,室温搅拌24h,加入40ml吡啶和5ml水,回流反应30min。恢复至室温,用二氯甲烷萃取并合并浓缩有机相。利用柱色谱法进行分离得到中间体P18-3 11.22g。分子量计算值:350.48,实测值C/Z:350.5。

在氮气氛围下,将P18-3(10.52g,30mmol)、氯化钠(35.06g,600mmol)、三氯化铝(289.68g,1200mmol)、苯1000ml放入2L反应容器中,回流反应12h。冷却至室温,用NaHCO3饱和水溶液处理掉过量的AlCl3,合并浓缩有机相。利用柱色谱法进行分离得到P18 4.25g。分子量计算值:348.46,实测值C/Z:348.5。

合成例3:

P174的合成

在氮气氛围下,将M1(32.32g,100mmol)、2-硝基苯基硼酸(16.70g,100mmol)、四(三苯基膦)钯(1.15g,1mmol)、碳酸钾(27.6g,200mmol)、1,4-二氧六环600ml,蒸馏水200ml放入1L反应容器中,在100℃下回流反应12h。冷却至室温,合并浓缩有机相。利用柱色谱法进行分离得到中间体P174-1 29.38g。分子量计算值:366.52,实测值C/Z:366.5。

在氮气氛围下,将P174-1(29.32g,80mmol)、三苯基膦(52.46g,200mmol)、邻二氯苯300ml放入1L反应容器中,在180℃下回流反应12h。冷却至室温,合并浓缩有机相。利用柱色谱法进行分离得到中间体P174-222.68g。分子量计算值:333.43,实测值C/Z:333.4。

在氮气氛围下,将P174-2(20.00g,60mmol)、氯化钠(70.13g,1200mmol)、三氯化铝(579.43g,2400mmol)、苯1500ml放入3L反应容器中,回流反应12h。冷却至室温,用NaHCO3饱和水溶液处理掉过量的AlCl3,合并浓缩有机相。利用柱色谱法进行分离得到中间体P174-38.76g。分子量计算值:331.42,实测值C/Z:331.4。

在氮气氛围下,将M1(6.63g,20mmol)、2-氯-4-苯基喹唑啉(4.81g,20mmol)、碳酸铯(13.04g,40mmol)、DMF 100ml放入250ml反应容器中,回流反应12h。冷却至室温,合并浓缩有机相。利用柱色谱法进行分离得到P174 4.77g。分子量计算值:535.65,实测值C/Z:535.6。

M2的合成

在氮气氛围下,将1-溴-8-碘萘(66.60g,200mmol)、2-甲硫基苯硼酸(33.60g,200mmol)、四(三苯基膦)钯(2.30g,2mmol)、碳酸钾(55.2g,400mmol)、1,4-二氧六环1200ml,蒸馏水400ml放入3L反应容器中,在100℃下回流反应12h。冷却至室温,合并浓缩有机相。利用柱色谱法进行分离得到中间体M2-1 48.12g。分子量计算值:329.26,实测值C/Z:329.3。

在氮气氛围下,将M2-1(47.74g,145mmol)、乙酸600ml放入2L反应容器中,将H2O2(14.79g,435mmol)溶于150ml乙酸,逐滴缓慢加入上述溶液,室温下反应8h。反应结束后,合并浓缩除掉乙酸。利用柱色谱法进行分离得到中间体M2-2 36.21g。分子量计算值:345.25,实测值C/Z:345.2。

在氮气氛围下,将M2-2(34.52g,100mmol)、三氟甲磺酸150ml放入1L反应容器中,室温搅拌24h,加入80ml吡啶和10ml水,回流反应30min。恢复至室温,用二氯甲烷萃取并合并浓缩有机相。利用柱色谱法进行分离得到中间体M2 14.38g。分子量计算值:313.21,实测值C/Z:313.2。

合成例4:

P90的合成

将合成例3中的M1替换成M2,其他不变,得到P90。分子量计算值:525.63,实测值C/Z:525.6。

M3的合成

在氮气氛围下,将1-溴-8-碘萘(66.60g,200mmol)、2-硝基苯基硼酸(33.40g,200mmol)、四(三苯基膦)钯(2.30g,2mmol)、碳酸钾(55.2g,400mmol)、1,4-二氧六环1200ml,蒸馏水400ml放入3L反应容器中,在100℃下回流反应12h。冷却至室温,合并浓缩有机相。利用柱色谱法进行分离得到中间体M3-1 53.04g。分子量计算值:328.17,实测值C/Z:328.2。

在氮气氛围下,将M3-1(52.51g,160mmol)、三苯基膦(104.92g,400mmol)、邻二氯苯600ml放入2L反应容器中,在180℃下回流反应12h。冷却至室温,合并浓缩有机相。利用柱色谱法进行分离得到中间体M3-234.57g。分子量计算值:296.17,实测值C/Z:296.2。

在氮气氛围下,将M3-2(32.58g,110mmol)、碘苯(22.44g,110mmol)、碘化亚铜(20.95g,110mmol)、邻菲罗啉(19.82g,110mmol)、磷酸钾(46.64g,220mmol)、二甲苯500ml放入2L反应容器中,回流反应12h。冷却至室温,合并浓缩有机相。利用柱色谱法进行分离得到中间体M333.91g。分子量计算值:372.27,实测值C/Z:372.3。

合成例5:

P204的合成

将合成例3中的M1替换成M3,2-氯-4-苯基喹唑啉替换成2-氯-4,6-二苯基三嗪,其他不变,得到P204。分子量计算值:611.71,实测值C/Z:611.7。

合成例6:

P208的合成

将合成例3中的M1替换成M3,其他不变,得到P208。分子量计算值:584.68,实测值C/Z:584.7。

合成例7:

P213的合成

在氮气氛围下,将2-氯-4-苯基喹唑啉(7.22g,30mmol)、4-氟苯硼酸(4.20g,30mmol)、四(三苯基膦)钯(0.69g,0.6mmol)、碳酸钾(16.56g,60mmol)、二氧六环100ml,蒸馏水30ml放入500ml反应容器中,在100℃下回流反应12h。冷却至室温,合并浓缩有机相。利用柱色谱法进行分离得到中间体P213-1 8.04g。M:300.3。

将合成例3中的M1替换成M3,2-氯-4-苯基喹唑啉替换成P213-1,其他不变,得到P213。分子量计算值:660.78,实测值C/Z:660.8。

合成对比例1:

D2的合成

在氮气氛围下,将M1(32.32g,100mmol)、2-甲硫基苯硼酸(16.80g,100mmol)、四(三苯基膦)钯(1.15g,1mmol)、碳酸钾(27.6g,200mmol)、1,4-二氧六环600ml,蒸馏水200ml放入1L反应容器中,在100℃下回流反应12h。冷却至室温,合并浓缩有机相。利用柱色谱法进行分离得到中间体D2-1 30.55g。分子量计算值:366.52,实测值C/Z:366.5。

在氮气氛围下,将D2-1(29.32g,80mmol)、乙酸300ml放入1L反应容器中,将H2O2(8.16g,240mmol)溶于50ml乙酸,逐滴缓慢加入上述溶液,室温下反应8h。反应结束后,合并浓缩除掉乙酸。利用柱色谱法进行分离得到中间体D2-2 20.41g。分子量计算值:382.52,实测值C/Z:382.5。

在氮气氛围下,将D2-2(19.13g,50mmol)、三氟甲磺酸75ml放入500ml反应容器中,室温搅拌24h,加入40ml吡啶和5ml水,回流反应30min。恢复至室温,用二氯甲烷萃取并合并浓缩有机相。利用柱色谱法进行分离得到中间体D2 11.22g。分子量计算值:350.48,实测值C/Z:350.5。

器件实施例

实施方式

OLED包括位于第一电极和第二电极,以及位于电极之间的有机材料层。该有机材料又可以分为多个区域。比如,该有机材料层可以包括空穴传输区、发光层、电子传输区。

在具体实施例中,在第一电极下方或者第二电极上方可以使用基板。基板均为具有机械强度、热稳定性、防水性、透明度优异的玻璃或聚合物材料。此外,作为显示器用的基板上也可以带有薄膜晶体管(TFT)。

第一电极可以通过在基板上溅射或者沉积用作第一电极的材料的方式来形成。当第一电极作为阳极时,可以采用铟锡氧(ITO)、铟锌氧(IZO)、二氧化锡(SnO2)、氧化锌(ZnO)等氧化物透明导电材料和它们的任意组合。第一电极作为阴极时,可以采用镁(Mg)、银(Ag)、铝(Al)、铝-锂(Al-Li)、钙(Ca)、镁-铟(Mg-In)、镁-银(Mg-Ag)等金属或合金以及它们之间的任意组合。

有机材料层可以通过真空热蒸镀、旋转涂敷、打印等方法形成于电极之上。用作有机材料层的化合物可以为有机小分子、有机大分子和聚合物,以及它们的组合。

空穴传输区位于阳极和发光层之间。空穴传输区可以为单层结构的空穴传输层(HTL),包括只含有一种化合物的单层空穴传输层和含有多种化合物的单层空穴传输层。空穴传输区也可以为包括空穴注入层(HIL)、空穴传输层(HTL)、电子阻挡层(EBL)中的至少一层的多层结构。

空穴传输区的材料可以选自、但不限于酞菁衍生物如CuPc、导电聚合物或含导电掺杂剂的聚合物如聚苯撑乙烯、聚苯胺/十二烷基苯磺酸(Pani/DBSA)、聚(3,4-乙撑二氧噻吩)/聚(4-苯乙烯磺酸盐)(PEDOT/PSS)、聚苯胺/樟脑磺酸(Pani/CSA)、聚苯胺/聚(4-苯乙烯磺酸盐)(Pani/PSS)、芳香胺衍生物如下面HT-1至HT-34所示的化合物;或者其任意组合。

空穴注入层位于阳极和空穴传输层之间。空穴注入层可以是单一化合物材料,也可以是多种化合物的组合。例如,空穴注入层可以采用上述HT-1至HT-34的一种或多种化合物,或者采用下述HI1-HI3中的一种或多种化合物;也可以采用HT-1至HT-34的一种或多种化合物掺杂下述HI1-HI3中的一种或多种化合物。

发光层包括可以发射不同波长光谱的的发光染料(即掺杂剂,dopant),还可以同时包括主体材料(Host)。发光层可以是发射红、绿、蓝等单一颜色的单色发光层。多种不同颜色的单色发光层可以按照像素图形进行平面排列,也可以堆叠在一起而形成彩色发光层。当不同颜色的发光层堆叠在一起时,它们可以彼此隔开,也可以彼此相连。发光层也可以是能同时发射红、绿、蓝等不同颜色的单一彩色发光层。

根据不同的技术,发光层材料可以采用荧光电致发光材料、磷光电致发光材料、热活化延迟荧光发光材料等不同的材料。在一个OLED器件中,可以采用单一的发光技术,也可以采用多种不同的发光技术的组合。这些按技术分类的不同发光材料可以发射同种颜色的光,也可以发射不同种颜色的光。

在本发明的一方面,发光层采用磷光电致发光的技术。其发光层主体材料选自、但不限于GPH-1至GPH-80中的一种或多种的组合。

在本发明的一方面,发光层采用磷光电致发光的技术。其发光层磷光掺杂剂可以选自、但不限于以下所罗列的GPD-1至GPD-47的一种或多种的组合。

在本发明的一方面,发光层采用磷光电致发光的技术。其发光层磷光掺杂剂可以选自、但不限于以下所罗列的RPD-1至RPD-28的一种或多种的组合。

在本发明的一方面,发光层采用磷光电致发光的技术。其发光层磷光掺杂剂可以选自、但不限于以下所罗列的YPD-1—YPD-11的一种或多种的组合。

OLED有机材料层还可以包括发光层与阴极之间的电子传输区。电子传输区可以为单层结构的电子传输层(ETL),包括只含有一种化合物的单层电子传输层和含有多种化合物的单层电子传输层。电子传输区也可以为包括电子注入层(EIL)、电子传输层(ETL)、空穴阻挡层(HBL)中的至少一层的多层结构。

本发明的一方面,电子传输层材料可以选自、但不限于以下所罗列的ET-1至ET-57的一种或多种的组合。

器件中还可以包括位于电子传输层与阴极之间的电子注入层,电子注入层材料包括但不限于以下罗列的一种或多种的组合。

LiQ,LiF,NaCl,CsF,Li2O,Cs2CO3,BaO,Na,Li,Ca。

本实施例中有机电致发光器件制备过程如下:

实施例1

将涂布了ITO透明导电层的玻璃板在商用清洗剂中超声处理,在去离子水中冲洗,在丙酮:乙醇混合溶剂中超声除油,在洁净环境下烘烤至完全除去水份,用紫外光和臭氧清洗,并用低能阳离子束轰击表面。

把上述带有阳极的玻璃基片置于真空腔内,抽真空至<1×10-5Pa,在上述阳极层膜上按先后顺序真空热蒸镀10nm的HT-4:HI-3(97/3,w/w)混合物作为空穴注入层,60nm的化合物HT-4作为空穴传输层,40nm的化合物P174:RPD-8(100:3,w/w)二元混合物作为发光层,25nm的化合物ET-46:ET-57(50/50,w/w)混合物作为电子传输层,1nm的LiF作为电子注入层,150nm的金属铝作为阴极。所有有机层和LiF的蒸镀总速率控制在0.1nm/秒,金属电极的蒸镀速率控制在1nm/秒。

实施例2-5

按照实施例1中所述的方法制备有机电致发光器件,不同之处在于将P174分别替换为P90、P204、P208和P213。

对比例1

按照实施例1中所述的方法制备有机电致发光器件,不同之处在于将P174替换为如下所示的化合物:

对由上述过程制备的有机电致发光器件进行如下性能测定:

在同样亮度下,使用数字源表及亮度计测定实施例1~5以及对比例1中制备得到的有机电致发光器件的驱动电压和电流效率以及器件的寿命。具体而言,以每秒0.1V的速率提升电压,测定当有机电致发光器件的亮度达到3000cd/m2时的电压即驱动电压,同时测出此时的电流密度;亮度与电流密度的比值即为电流效率;LT95的寿命测试如下:使用亮度计在10000cd/m2亮度下,保持恒定的电流,测量有机电致发光器件的亮度降为9500cd/m2的时间,单位为小时。

有机电致发光器件性能见下表1:

表1.实施例1~5及对比例1的有机电致发光器件性能

以上结果表明,本发明的新型有机材料用于有机电致发光器件,可以有效的降低起降电压,同时保持良好的效率,并提高材料的使用寿命,是性能良好的红光主体材料。

实施例6

将涂布了ITO透明导电层的玻璃板在商用清洗剂中超声处理,在去离子水中冲洗,在丙酮:乙醇混合溶剂中超声除油,在洁净环境下烘烤至完全除去水份,用紫外光和臭氧清洗,并用低能阳离子束轰击表面。

把上述带有阳极的玻璃基片置于真空腔内,抽真空至<1×10-5Pa,在上述阳极层膜上按先后顺序真空热蒸镀10nm的HT-4:HIL-3(97/3,w/w)混合物作为空穴注入层,60nm的化合物HT-4作为空穴传输层,40nm的化合物GPH-62:RPD-8(100:3,w/w)二元混合物作为发光层,5nm的化合物P204作为空穴阻挡层,25nm的化合物ET-46:ET-57(50/50,w/w)混合物作为电子传输层,1nm的LiF作为电子注入层,150nm的金属铝作为阴极。所有有机层和LiF的蒸镀总速率控制在0.1nm/秒,金属电极的蒸镀速率控制在1nm/秒。

实施例7-8

按照实施例6中所述的方法制备有机电致发光器件,不同之处在于将P204分别替换为P208或P213。

对比例2

按照实施例6中所述的方法制备有机电致发光器件,不同之处在于将P204替换为如下所示的化合物:

对由上述过程制备的有机电致发光器件进行如下性能测定:

在同样亮度下,使用数字源表及亮度计测定实施例6~8及对比例2中制备得到的有机电致发光器件的驱动电压和电流效率以及器件的寿命。具体而言,以每秒0.1V的速率提升电压,测定当有机电致发光器件的亮度达到3000cd/m2时的电压即驱动电压,同时测出此时的电流密度;亮度与电流密度的比值即为电流效率;LT95的寿命测试如下:使用亮度计在10000cd/m2亮度下,保持恒定的电流,测量有机电致发光器件的亮度降为9500cd/m2的时间,单位为小时。

有机电致发光器件性能见下表2:

表2.实施例6~8及对比例2的有机电致发光器件性能

以上结果表明,本发明的新型有机材料也可以用于空穴阻挡层材料,可以在保持良好的降低起降电压的同时,提高器件的电流效率和使用寿命。

实施例9-10

按照实施例6中所述的方法制备有机电致发光器件,不同之处在于将P204分别替换为P16或P18。

对比例3

按照实施例6中所述的方法制备有机电致发光器件,不同之处在于将P204替换为合成对比例1中制备的如下所示的化合物:

有机电致发光器件性能见下表3。

表3.实施例9和10及对比例3的有机电致发光器件性能

以上结果表明,P16和P18这类没有吸电子基团的材料也可用于空穴阻挡层材料,与D2相比,这类含有七元环的大共轭体系结构的化合物,可以在保持良好的起降电压和电流效率的同时,使器件的寿命提升。

尽管结合实施例对本发明进行了说明,但本发明并不局限于上述实施例,应当理解,在本发明构思的引导下,本领域技术人员可进行各种修改和改进,所附权利要求概括了本发明的范围。

55页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:玉红霉素类似物、制备方法及其应用

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!