阵列基板及其制备方法、显示装置

文档序号:1468151 发布日期:2020-02-21 浏览:6次 >En<

阅读说明:本技术 阵列基板及其制备方法、显示装置 (Array substrate, preparation method thereof and display device ) 是由 肖军城 艾飞 罗成志 于 2019-10-16 设计创作,主要内容包括:本发明公开了一种阵列基板及其制备方法、显示装置,阵列基板包括薄膜晶体管结构层;以及公共电极层设于薄膜晶体管结构层上;第一开孔设于公共电极层上;钝化层覆于公共电极层上且填充于第一开孔;像素电极层覆于钝化层上并穿过钝化层和第一开孔连接至薄膜晶体管结构层;开口从像素电极层延伸至公共电极层的表面;第一填充层覆于公共电极层、像素电极层上并填充于开口;所述钝化层的光的透过率小于所述第一填充层的光的透过率。本发明的阵列基板及其制备方法、显示装置,提高了阵列基板整体透过率。(The invention discloses an array substrate, a preparation method thereof and a display device, wherein the array substrate comprises a thin film transistor structure layer; the common electrode layer is arranged on the thin film transistor structure layer; the first opening is arranged on the common electrode layer; the passivation layer covers the common electrode layer and is filled in the first opening; the pixel electrode layer is covered on the passivation layer and connected to the thin film transistor structure layer through the passivation layer and the first opening; the opening extends from the pixel electrode layer to the surface of the common electrode layer; the first filling layer covers the public electrode layer and the pixel electrode layer and is filled in the opening; the light transmittance of the passivation layer is less than that of the first filling layer. The array substrate, the preparation method thereof and the display device improve the overall transmittance of the array substrate.)

阵列基板及其制备方法、显示装置

技术领域

本发明涉及显示技术领域,具体为一种阵列基板及其制备方法、显示装置。

背景技术

近年来,在TFT-LCD中,正在推进用于节省电力化、高清晰化及提高色再现性的项目开发。其中提高穿透性能、提升TFT-LCD的亮度、减少电力损耗,是世界各家面板厂都在攻克的难关。TFT-LCD面板的穿透性是指背光源透过TFT-LCD面板前后的光强之比。通常情况下TFT-LCD的光的透过率只有3-10%,也就是说超过90%的光是无法得到利用的。对于TFT-LCD的阵列基板(TFT)来说,除开金属走线外,对穿透率影响较大的还有由氧化硅、氮化硅、氧化铟锡、平坦层所用材料构成的多层膜结构。每层膜的折射率和消光系数都会对多层膜的整体穿透率产生影响。因此,可以通过调节每层膜的折射率、消光系数、膜层结构等参数来提高多层膜的透过率。

目前业界常用的阵列基板的膜层结构的底层缓冲层由氮化硅和氧化硅构成,间绝缘层由氮化硅和氧化硅构成,钝化层13’(PV)由氮化硅构成。通常来说,氮化硅的折射率会大于氧化硅的折射率,因此,光在穿过氮化硅和氧化硅界面时会有反射,造成透过率降低。为了提高透过率,可用氧化硅代替氮化硅。如图1所示,对于钝化层13’(PV)的氮化硅来说,一部分氮化硅裸露在开口3’中与空气接触,即开口3’处的氮化硅与空气接触;一部分氮化硅与其顶面的氧化铟锡材料制成的像素电极14’接触。如果直接用氧化硅来代替钝化层13’(PV)的氮化硅,与空气接触处的氧化硅的透过率,由于氧化硅与空气的折射率差值小而得到大幅提高,但与像素电极14’接触处的透过率由于氧化硅与像素电极的折射率差值大而降低。最终结果是阵列基板整体的透过率提高并不明显。

发明内容

为解决上述技术问题:本发明提供一种阵列基板及其制备方法、显示装置,以提高阵列基板整体的光的透过率。

解决上述问题的技术方案是:本发明提供一种阵列基板,包括薄膜晶体管结构层;以及公共电极层,设于所述薄膜晶体管结构层上;第一开孔,设于所述公共电极层上;钝化层,覆于所述公共电极层上且填充于所述第一开孔;像素电极层,覆于所述钝化层上并穿过所述钝化层和所述第一开孔连接至所述薄膜晶体管结构层;开口,从所述像素电极层延伸至所述公共电极层的表面;第一填充层,覆于所述公共电极层、所述像素电极层上并填充于所述开口;所述钝化层的光的透过率小于所述第一填充层的光的透过率。

在本发明一实施例中,所述薄膜晶体管结构层包括基底;有源层,设于所述基底上;栅极绝缘层,覆于所述基底上并覆盖所述有源层;栅极层,设于所述栅极绝缘层上;层间介质层,覆于所述栅极绝缘层上并覆盖所述栅极层;第二开孔,从所述层间介质层延伸至所述有源层的表面;源极和漏极,设于所述层间介质层上并分别通过一第二开孔连接至所述有源层;平坦化层,设于所述层间介质层上并覆盖所述源极和所述漏极;所述像素电极层连接至所述漏极。

在本发明一实施例中,所述源极和所述漏极覆于所述第二开孔的孔壁上;所述薄膜晶体管结构层还包括填充层,填充于所述第二开孔中且覆于所述源极和所述漏极的表面;所述填充层所用材料为氧化硅或氮化硅材料。

所述薄膜晶体管结构层还包括金属遮光层,设于所述基底远离所述有源层的一面且对应于所述有源层所在区域。

在本发明一实施例中,所述基底所用材料为氧化硅和/或氮化硅;所述层间介质层所用材料为氧化硅和/或氮化硅;所述像素电极层和所述公共电极层所用材料均为氧化铟锡材料。

在本发明一实施例中,所述钝化层所用材料为氮化硅材料,所述第一填充层所有材料为氧化硅材料

本发明还提供了一种制备方法,用以制备所述的阵列基板,其特征在于,包括以下步骤:制备所述薄膜晶体管结构层;形成所述公共电极层于所述薄膜晶体管结构层上;形成贯穿所述公共电极层的所述第一开孔;形成所述钝化层于所述第一开孔中和所述公共电极层的表面;形成贯穿所述钝化层、所述第一开孔并延伸至所述薄膜晶体管结构层内的第三开孔;形成所述像素电极层于所述第三开孔中和所述钝化层上;涂布光阻材料于所述像素电极层上形成光阻层,并曝光显影所述光阻层形成像素电极图案;根据形成的所述像素电极图案,湿法刻蚀所述像素电极层形成像素电极以及所述像素电极之间的第一缺口;在所述第一缺口中,干法刻蚀所述钝化层形成第二缺口,所述第一缺口和第二缺口形成所述开口;去除所述光阻层;沉积填充材料于所述开口中和所述公共电极层、所述像素电极层的表面形成所述第一填充层。

在本发明一实施例中,在制备所述薄膜晶体管结构层步骤中,包括提供一基底;形成有源层于所述基底上;形成栅极绝缘层于所述基底上并覆盖所述有源层;形成栅极层于所述栅极绝缘层上;形成层间介质层于所述栅极绝缘层上并覆盖所述栅极层;形成从所述层间介质层延伸至所述有源层的表面的第二开孔;形成源极和漏极于所述层间介质层上以及所述第二开孔的孔壁上和所述第二开孔的孔底的所述有源层上;沉积氧化硅或氮化硅材料于所述第二开孔中形成填充层;形成平坦化层于所述层间介质层上并覆盖所述源极、所述漏极和所述填充层;在形成第三开孔步骤中,所述第三开孔延伸至所述漏极的表面。

在本发明一实施例中,在提供一基底步骤中,所述基底的远离所述有源层的一面且对应于所述有源层所在区域具有金属遮光层。

本发明还提供了一种显示装置,包括所述的阵列基板。

本发明的有益效果是:本发明的阵列基板、显示装置,将与空气接触处的钝化层中的氮化硅用氧化硅代替,减小界面反射从而提高与空气接触处的透过率;并在与像素电极层接触处的上部增加第一填充层,减小像素电极层处与空气的界面反射,大幅度地提高了阵列基板整体的光的透过率。阵列基板的制备方法简单,便于操作,能够有效实现提高阵列基板整体透过率的目的。

附图说明

下面结合附图和实施例对本发明作进一步解释。

图1是现有技术中的阵列基板的结构图,主要体现钝化层、开口以及像素电极的位置关系以及钝化层一部分裸露于开口与空气接触,一部分设置在像素电极下方与像素电极接触。

图2是本发明实施例的形成第二开孔后的阵列基板的结构图。

图3是本发明实施例的形成平坦化层后的阵列基板的结构图。

图4是本发明实施例的形成第一开孔后的阵列基板的结构图。

图5是本发明实施例的形成第三开孔后的阵列基板的结构图。

图6是本发明实施例的曝光显影光阻层形成像素电极图案的阵列基板的结构图。

图7是本发明实施例的形成第一缺口后的阵列基板的结构图。

图8是本发明实施例的形成第二缺口,即形成开口后的阵列基板的结构图。

图9是本发明实施例的形成第一填充层后的阵列基板的结构图。

图10是本发明实施例的采用掩膜板遮挡阵列基板,沉积的氧化硅材料于开口中和公共电极层上时的装置结构图。

图11为本发明实施例的第一填充层厚度与其透过率的曲线图,其中A为钝化层与空气接触处的阵列基板的透过率与该处的第一填充层厚度的曲线,B为钝化层与像素电极层接触处的阵列基板的透过率与该处的第一填充层厚度的曲线。

附图标记:

1阵列基板; 10显示装置;

11薄膜晶体管结构层; 12公共电极层;

13、13’钝化层; 14、14’像素电极层;

15第一填充层; 110金属遮光层;

111基底; 112有源层;

113栅极绝缘层; 114栅极层;

115层间介质层; 116源极;

117漏极; 118填充层;

119平坦化层; 21第一开孔;

22第二开孔; 23第三开孔;

31第一缺口; 32第二缺口;

3、3’开口; 4光阻层;

5掩膜板; 6玻璃基板。

具体实施方式

以下实施例的说明是参考附加的图式,用以例示本发明可用以实施的特定实施例。本发明所提到的方向用语,例如「上」、「下」、「前」、「后」、「左」、「右」、「顶」、「底」等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本发明,而非用以限制本发明。

如图9所示,在一实施例中,本发明的阵列基板1包括薄膜晶体管结构层11、公共电极层12、钝化层13、像素电极层14、第一填充层15。

如图2至图3所示,所述薄膜晶体管结构层11包括基底111、有源层112、栅极绝缘层113、栅极层114、层间介质层115、源极116和漏极117、平坦化层119以及填充层118。具体地讲,所述有源层112设于所述基底111上;所述栅极绝缘层113覆于所述基底111上并覆盖所述有源层112;所述栅极层114设于所述栅极绝缘层113上;所述层间介质层115覆于所述栅极绝缘层113上并覆盖所述栅极层114;所述第二开孔22从所述层间介质层115延伸至所述有源层112的表面;所述源极116和漏极117设于所述层间介质层115上并分别通过一第二开孔22连接至所述有源层112;所述平坦化层119设于所述层间介质层115上并覆盖所述源极116和所述漏极117。

所述薄膜晶体管结构层11还包括金属遮光层110,所述金属遮光层110设于所述基底111远离所述有源层112的一面且对应于所述有源层112所在区域。所述基底111所用材料为氧化硅和/或氮化硅;所述层间介质层115所用材料为氧化硅和/或氮化硅。

如图4所示,所述公共电极层12设于所述薄膜晶体管结构层11上,所述公共电极层12中具有一第一开孔21,所述第一开孔21对应所述漏极117。所述公共电极层12所用材料均为氧化铟锡材料。

如图5所示,所述钝化层13覆于所述公共电极层12上且填充于所述第一开孔21,所述钝化层13所用材料为氮化硅。

如图6所示,所述像素电极层14覆于所述钝化层13上并穿过所述钝化层13和所述第一开孔21连接至所述薄膜晶体管结构层11的所述漏极117。所述像素电极层14具有开口3,参见图7至图8所示,所述开口3从所述像素电极层14延伸至所述公共电极层12的表面。所述像素电极层14所用材料均为氧化铟锡材料。所述像素电极层14的厚度为10nm-100nm。

如图9所示,所述第一填充层15覆于所述公共电极层12、所述像素电极层14上并填充于所述开口3,第一填充层15所用材料为氧化硅材料,所述钝化层13的光的透过率小于所述第一填充层15的光的透过率。

本发明还提供了一种制备方法,用以制备所述的阵列基板1,包括以下步骤。

制备所述薄膜晶体管结构层11;具体的讲,如图2所示,在制备所述薄膜晶体管结构层11步骤中,包括提供一基底111,在提供一基底111步骤中,所述基底111的远离所述有源层112的一面且对应于所述有源层112所在区域具有金属遮光层110;形成有源层112于所述基底111上;形成栅极绝缘层113于所述基底111上并覆盖所述有源层112;形成栅极层114于所述栅极绝缘层113上;形成层间介质层115于所述栅极绝缘层113上并覆盖所述栅极层114;参见图3所示,形成从所述层间介质层115延伸至所述有源层112的表面的第二开孔22;形成源极116和漏极117于所述层间介质层115上以及所述第二开孔22的孔壁上和所述第二开孔22的孔底的所述有源层112上;参见图4所示,沉积氧化硅或氮化硅材料于所述第二开孔22中形成填充层118;形成平坦化层119于所述层间介质层115上并覆盖所述源极116、所述漏极117和所述填充层118。

参见图4所示,形成所述公共电极层12于所述薄膜晶体管结构层11上。具体地讲,沉积氧化铟锡材料于所述平坦化层119上形成所述公共电极层12。

参见图4所示,形成贯穿所述公共电极层12的所述第一开孔21。

参见图5所示,沉积氮化硅于所述第一开孔21中和所述公共电极层12的表面形成所述钝化层13。

参见图5所示,形成贯穿所述钝化层13、所述第一开孔21并延伸至所述薄膜晶体管结构层11内的第三开孔23;在形成第三开孔23步骤中,所述第三开孔23延伸至所述漏极117的表面。

参见图6所示,形成所述像素电极层14于所述第三开孔23中和所述钝化层13上。

参见图6所示,涂布光阻材料于所述像素电极层14上形成光阻层4,并曝光显影所述光阻层4形成像素电极图案。

参见图7所示,根据形成的所述像素电极图案,湿法刻蚀所述像素电极层14形成像素电极以及所述像素电极之间的第一缺口31;参见图8所示,在所述第一缺口31中,干法刻蚀所述钝化层13形成第二缺口32,所述第一缺口31和第二缺口32形成所述开口3。

参见图9所示,剥离去除所述光阻层4。沉积氧化硅材料于所述开口3中和所述公共电极层12、所述像素电极层14的表面形成所述第一填充层15。具体地讲,参见图10所示,利用所述掩膜板5将玻璃基板6上每个阵列基板1的下边缘非显示区遮住,然后利用化学气相沉积法制备第一填充层15,厚度为1nm-2000nm。所述掩膜板5的作用是防止第一填充层15将端子区遮盖而无法与IC、柔性电路板等连接。

如图11所示,图11中,A为钝化层与空气接触处的阵列基板的透过率与该处的第一填充层厚度的曲线,B为钝化层与像素电极层接触处的阵列基板的透过率与该处的第一填充层厚度的曲线。由图11可知,第一填充层厚度在1nm-2000nm时,阵列基板的整体的光的透过率在80%以上。

参见图9所示,本发明还提供了一种显示装置10,包括所述的阵列基板1。本发明的设计要点在于所述阵列基板1,对于显示装置10的其他器件,如彩膜基板、封装结构等就不再一一赘述。

以上仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

15页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种阵列基板、其制备方法及其显示面板

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!

技术分类