一种基于CRISPR/Cas12a与链置换扩增反应的PSA检测方法

文档序号:1856641 发布日期:2021-11-19 浏览:27次 >En<

阅读说明:本技术 一种基于CRISPR/Cas12a与链置换扩增反应的PSA检测方法 (PSA detection method based on CRISPR/Cas12a and strand displacement amplification reaction ) 是由 王万河 王京 刘建华 刘瀞琦 于 2021-08-17 设计创作,主要内容包括:本发明涉及一种基于CRISPR/Cas12a与链置换扩增反应的PSA检测方法,首先通过基于核酸适配体的链置换扩增反应,将PSA的信号转换为链置换扩增反应产物DNA的信号,同时链置换扩增反应产物DNA激活CRISPR/Cas12a系统的反向酶切功能,并将连接两种金纳米颗粒的单链DNA切成含2-4个碱基的片段,使金纳米颗粒由聚集变为分散状态,溶液的颜色表现为紫色向红色的变化。本发明对于PSA检测,通过肉眼可见的颜色变化,紫外可见吸收光谱和动态光散射(DLS)研究了该方法的可行性。(The invention relates to a PSA detection method based on CRISPR/Cas12a and strand displacement amplification reaction, which comprises the steps of firstly converting a PSA signal into a signal of a product DNA of the strand displacement amplification reaction through the strand displacement amplification reaction based on a nucleic acid aptamer, activating the reverse enzyme digestion function of a CRISPR/Cas12a system by the product DNA of the strand displacement amplification reaction, and cutting the single-stranded DNA connecting two kinds of gold nanoparticles into fragments containing 2-4 bases, so that the gold nanoparticles are changed into a dispersed state from aggregation, and the color of a solution is changed from purple to red. The feasibility of the method was investigated by macroscopic color change, ultraviolet visible absorption spectroscopy and Dynamic Light Scattering (DLS) for PSA detection.)

一种基于CRISPR/Cas12a与链置换扩增反应的PSA检测方法

技术领域

本发明属于生物传感器的开发方法,涉及一种基于CRISPR/Cas12a与链置换扩增反应的PSA检测方法。

背景技术

目前为止,已开发出许多检测PSA的方法,如荧光光谱法(Clin Cancer Res 2019,25(1),177)、基于化学发光的免疫检测法(Luminescence 2017,32(8),1547)、酶联免疫吸附检测法(ELISA)(Biosens Bioelectron 2015,69,128)、电化学发光法(Sens.ActuatorsB Chem.2020,315,128155)、表面增强荧光免疫酶法(ACS Nano 2017,11(5),4926)和表面增强拉曼散射法(Biosens Bioelectron 2018,119,126)。然而,这些方法大多基于免疫反应,存在一些不足,比如需要昂贵且易变性的抗体、专业的技术人员和特定的仪器设备,这为PSA的检测增加了难度。另外,本课题组前期申请的“一种超灵敏检测前列腺特异性抗原PSA的方法”发明专利,目前已在公开阶段,公开号CN112301095A,中国。该发明专利联合聚合酶链扩增技术(PCR)与动态光散射技术,通过监测金纳米颗粒(AuNPs)的直径变化实现PSA的定量与超灵敏检测。该专利通过引入核酸适配体避免了抗体的使用,但由于需要使用PCR技术,仍然需要专业的技术人员的专业操作才能实现。此外,该发明专利与现申请专利的区别表现在:(1)PCR技术是一种变温放大技术,需要依赖特定的仪器设备,而现申请专利中的放大技术是等温放大技术,反应条件温和,室温下即可进行,不需要额外的仪器设备;(2)该发明专利是通过金纳米颗粒的直径变化来定量PSA,而本发明专利是通过金纳米溶液的吸收光谱的变化来定量PSA,并且可通过肉眼观察颜色的变化初步判断PSA含量的高低。新发明避免了昂贵且易变性的抗体的使用,降低了检测过程对专业仪器设备与专业操作人员的依赖性,使PSA的检测不再局限于实验室等特定场合。

发明内容

要解决的技术问题

为了避免现有技术的不足之处,本发明提出一种基于CRISPR/Cas12a与链置换扩增反应的PSA检测方法,通过链置换扩增反应将PSA的检测转化为DNA的检测降低检测成本;CRISPR/Cas12a系统与链置换扩增反应联合应用提高PSA的检测灵敏度;引入与AuNPs实现可视化检测PSA,降低现有检测技术对仪器的依赖性。

技术方案

一种基于CRISPR/Cas12a与链置换扩增反应的PSA检测方法,其特征在于DNA序列表如下:

其中:n是2-10中的随机数字,x是6-20中的随机数字,y是1-50中的随机数字;PSA检测步骤如下:

步骤1、制备修饰了DNA的金纳米粒子:将巯基修饰的DNA:Oligo 6和Oligo 7分别溶解于60.0μL的pH为5.0的醋酸盐缓冲溶液,再加入12.0μL的20.0mM的三(2-羧乙基)膦TCEP,以还原修饰在DNA上的巯基为二硫键;然后将上述溶液全部转移至10.0mL AuNPs溶液中,室温孵育16.0小时;

然后在接下来的44.0小时内,向金纳米粒子溶液中加入5.0M的氯化钠NaCl溶液,使最终溶液中NaCl的浓度为100.0mM;

修饰完成,将溶液离心处理三次,除去未修饰到金纳米粒子表面的DNA,每次离心后用pH 8.0的三羟甲基氨基甲烷-醋酸Tris-Ac缓冲溶液洗涤;

得到修饰了DNA的金纳米粒子;

步骤2、基于核酸适配体的链置换扩增反应:将发卡结构的DNA,Oligo 3在85.0~105.0℃的条件下加热不少于5.0分钟,然后自然冷却至室温;将被测溶液与适配体:Oligo2,在20.0~40.0℃孵育不少于5.0分钟,在20.0~40.0℃条件下继续延伸反应;

被测溶液与适配体即Oligo 2在缓冲溶液中20.0~40.0℃反应不少于5.0分钟,然后加入克列诺片段聚合酶,按1:10:10的比例加入Oligo 1、Oligo 3、Oligo 4和过量的dNTPs,20.0~40.0℃条件下进行不少于30分钟的扩增反应;

扩增反应的产物离心后取上清液;

步骤3、CRISPR/Cas12a反向酶切功能激活的反应:

Cas12a/crRNA反应液中含有但不仅限于NaCl、Tris-HCl、MgCl2和牛胎血清蛋白;向反应液中按5:6的比例加入Cas 12a与crRNA,再加入Oligo 5,20.0~40.0℃孵育不少于5分钟,再加入步骤2得到的上清液,20.0~40.0℃反应不少于30分钟得到反应液;

步骤4、显色反应及吸收光谱的测量:向步骤3的反应液中加入步骤1制备的修饰了DNA的金纳米粒子的溶液,若溶液出现的向红色方向变色情况,证明被测溶液中存在PSA。

当检测到PSA时,采用紫外可见吸收光谱测量溶液的吸收光谱与吸光度。

所述溶液的PSA的浓度与吸光度,在PSA的浓度在0.1~5.0ng/mL范围时,PSA的浓度与吸光度为线性关系,A=0.1285+0.09281C,A为吸光度,C为PSA浓度,单位为C:ng mL-1。,在PSA的浓度在0.1~5.0ng/mL范围时,PSA的浓度与吸光度为线性关系,A=0.1285+0.09281C,A为吸光度,C为PSA浓度,单位为C:ng mL-1

所述步骤1的离心处理以不少于10000.0rpm转速的离心机处理,每次离心不少于15.0分钟。

所述步骤2的离心速度为不少于1000.0转速。

所述金纳米粒子的制备:将柠檬酸钠溶液快速加入煮沸的氯金酸溶液中搅拌,待溶液颜色由淡黄色变为酒红色后,再回流搅拌,通过连续搅拌将溶液冷却到室温,并储存在4.0℃的冰箱中。

所述本发明中用到的序列由生工生物技术有限公司合成。

有益效果

本发明提出的一种基于CRISPR/Cas12a与链置换扩增反应的PSA检测方法,首先通过基于核酸适配体的链置换扩增反应,将PSA的信号转换为链置换扩增反应产物DNA的信号,同时链置换扩增反应产物DNA激活CRISPR/Cas12a系统的反向酶切功能,并将连接两种金纳米颗粒的单链DNA切成含2-4个碱基的片段,使金纳米颗粒由聚集变为分散状态,溶液的颜色表现为紫色向红色的变化。

本发明对于PSA检测,通过肉眼可见的颜色变化,紫外可见吸收光谱和动态光散射(DLS)研究了该方法的可行性。如图1A所示,加入10.0ng mL-1PSA前后,溶液颜色变化显著,在没有PSA的情况下,溶液中的金纳米颗粒聚集沉降并使溶液颜色呈现淡紫色,加入10.0ngmL-1PSA后,溶液中的金纳米颗粒不聚集,溶液颜色是红色。紫外可见吸收光谱也表明随着PSA的加入,溶液的吸光度呈现明显的增加,表明金纳米颗粒从聚集状态变为分散状态(图1B)。DLS图像进一步证实这一结果,加入10.0ng mL-1PSA前,金纳米颗粒水合直径大,颗粒处于聚集状态,加入10.0ng mL-1PSA后,金纳米颗粒水合直径小,颗粒处于分散状态(图1C)。这些结果表明,该方法可以通过测量AuNPs的吸收光谱的变化来定量PSA。

对分析物的线性响应是分析的关键,因此该方法测定了不同浓度PSA存在时球形核酸溶液吸收光谱的变化情况,并以522nm处吸收光谱值为判断依据。由图2可知,随着PSA浓度的增加,522nm处球形核酸的吸收值逐渐增加,结果显示在0.1ng mL-1到5.0ng mL-1范围内,球形核酸的紫外吸收随PSA浓度的线性减小。线性回归方程A(吸光度)=0.1285+0.09281C(PSA)(C:ng mL-1)和检出限28.0pg mL-1(3δ/斜率)。这些结果表明,该生物传感器能够实现PSA的高灵敏度检测。

附图说明

图1:(A)溶液的颜色;(B)吸收光谱的结果;(C)动态光散射的结果;(a)没有加入PSA的结果;(b)加入10.0ng mL-1PSA的结果。

图2:溶液的吸光度与PSA浓度变化的线性关系,PSA的浓度从0.1ng mL-1到5.0ngmL-1。误差棒表示三次测量值的标准差。

具体实施方式

现结合实施例、附图对本发明作进一步描述:

本方法实施例所需要的DNA序列列于表1-1,由生工生物技术有限公司合成,具体如下表:

1-1本发明中用到的序列

注:n是2-10中的随机数字,x是6-20中的随机数字,y是1-50中的随机数字。

本方法实施例的操作步骤如下:

步骤1:金纳米粒子(AuNPs)的制备(参考已有的方法)。将2.0mL 38.8mM柠檬酸钠溶液快速加入煮沸的1.0mM氯金酸(HAuCl4)溶液中搅拌,待溶液颜色由淡黄色变为酒红色后,再回流搅拌15.0分钟,通过连续搅拌将溶液冷却到室温。最后AuNPs通过0.4μm尼龙滤膜过滤收集并储存在4.0℃的冰箱待用。

接着制备脱氧核糖核酸(DNA)修饰的AuNPs:首先,将巯基修饰的DNA(Oligo6和Oligo 7)分别溶解于60.0μL的pH为5.0的醋酸盐缓冲溶液,再加入12.0μL的20.0mM的三(2-羧乙基)膦(TCEP),以还原修饰在DNA上的巯基为二硫键,然后将上述溶液全部转移至10.0mL AuNPs溶液中,室温孵育16.0小时。

然后在接下来的44.0小时内,向金纳米粒子溶液中加入5.0M的氯化钠(NaCl)溶液,并使最终溶液中NaCl的浓度为100.0mM。修饰完成。

将溶液放置在13800.0rpm转速的离心机离心三次,每次离心30.0分钟,以除去未修饰到金纳米粒子表面的DNA(每次用pH 8.0的三羟甲基氨基甲烷-醋酸(Tris-Ac)缓冲溶液洗涤)。最后将制备的修饰了DNA的金纳米粒子(球形核酸)稀释到所需浓度,储存于4.0℃冰箱于步骤3中使用。

步骤2:基于核酸适配体的链置换扩增反应。当PSA不存在时,Oligo 1和Oligo 2为DNA/DNA双链结构,无法引发链替换扩增反应,反应终止。当PSA存在时,PSA与适配体Oligo2结合释放引物Oligo 1,释放的Oligo 1因与发卡DNA Oligo 3互补而打开发卡形成DNA/DNA双链结构,引物Oligo 4与打开的Oligo 3序列部分互补形成双链,并在克列诺片段聚合酶的作用下以彼此为模板延伸,得到两条更长的DNA链,并释放引物Oligo 1。释放的Oligo1可以继续打开发卡Oligo 3实现链替换扩增反应,而新生成的长DNA链在步骤(3)中可激发CRISPR/Cas12a系统的反向切割活性,影响溶液中AuNPs的颜色和吸收信号的变化,将PSA的检测转化为DNA的检测,通过观察颜色变化与测定吸收信号的变化可以定量PSA。

基于核酸适配体的链置换扩增反应条件:将发卡结构的DNA(Oligo 3)在85.0~105.0℃的条件下加热5.0分钟,然后自然冷却至室温。将被测液体与适配体(Oligo 2)在20.0~40.0℃孵育不少于5.0分钟,在20.0~40.0℃条件下继续延伸反应;

被测溶液与适配体(Oligo 2)在含有20.0mM Tris-OAc(pH 7.9)、50.0mM KOAc、10.0mM Mg(OAc)2和1.0mM DTT的溶液中,20.0~40.0℃反应不少于5.0分钟,,然后加入0.5U克列诺片段聚合酶、2.5μL 0.1μM Oligo 1、2.5μL 1.0μM Oligo 3、2.5μL1.0μM Oligo4和2.5μL 10.0mM dNTPs,,20.0~40.0℃条件下进行不少于30分钟的扩增反应;

扩增反应的产物在桌面离心机以10000.0rpm的速度离心1分钟,取上清液于步骤(3)中使用。

步骤3:CRISPR/Cas12a反向酶切功能的激活。Cas12a蛋白(LbCpf1、FnCpf1、AsCpf1)同时具有正向(cis)和反向(trans)切割单链DNA的活性。当Cas12a与特定的crRNA及其目标DNA形成三元复合物时,该复合物获得强大反向切割活性,并将单链DNA切成2-4个核苷酸片段。利用Cas12a的这种性质,首先通过链替换扩增反应将PSA的信号检测转换为DNA的信号检测,然后链替换扩增的双链DNA产物与设计的crRNA(Oligo 8)互补并激发Cas12a的反向切割活性。

CRISPR/Cas12a反向酶切功能激活的反应条件:20μL pH为7.9的Cas12a/crRNA反应液中含有100.0mM NaCl、50.0mM Tris-HCl、10.0mM MgCl2和100.0μg mL-1牛胎血清蛋白(BSA)。反应液中加入100.0nM Cas 12a、120.0nM crRNA和400.0nM Oligo 5,20.0~40.0℃孵育不少于5分钟;再加入5.0μL步骤(2)中的上清液,20.0~40.0℃反应不少于30分钟得到反应液;留作步骤4中使用。

步骤4:显色反应及吸收光谱的测量。因Oligo 5可分别与Oligo 6和Oligo 7互补形成双螺旋而拉近Oligo 6和Oligo 7修饰的金纳米颗粒的距离,使金纳米颗粒由分散状态变为聚集状态,溶液颜色呈现紫色,但是激活的Cas12a可以将Oligo 5切成2-4个碱基的片段,使金纳米颗粒不聚集,溶液颜色保持红色。

显色反应及吸收光谱的测量条件:分别向步骤(3)的反应液中加入25.0μL 0.34nM(1)中制备的球形核酸,等待10分钟,通过肉眼观察溶液的变色情况,再用紫外可见吸收光谱测量溶液的吸收光谱。

在PSA的浓度在0.1~5.0ng/mL范围时,PSA的浓度和吸光度满足线性变化,采用线性回归方程A(吸光度)=0.1285+0.09281C(PSA浓度)能够得到在0.1~5.0ng/mL范围内的两者关系,浓度单位C:ng mL-1)。这些结果表明,该生物传感器能够实现PSA的高灵敏度检测。

实例一:通过加标回收率研究该检测方法在复杂生物体质中的检测能力,即在没有被测物质的样品基质中加入定量的标准物质,按样品的处理步骤分析,得到的结果与理论值的比值。具体过程如下:首先,向链置换扩增反应的缓冲液中加入5%人血清和0.2ngmL-1的标准PSA样品,经过链置换扩增反应,用本发明方法检测到的PSA浓度是0.22ng mL-1,回收率是110.0%,相对标准偏差(RSD)是3.6%。

实例二:通过加标回收率研究该检测方法在复杂生物体质中的检测能力,即在没有被测物质的样品基质中加入定量的标准物质,按样品的处理步骤分析,得到的结果与理论值的比值。具体过程如下:首先,向链置换扩增反应的缓冲液中加入5%人血清和1.0ngmL-1的标准PSA样品,经过链置换扩增反应,用本发明方法检测到的PSA浓度是1.12ng mL-1,回收率是111.9%,相对标准偏差(RSD)是1.8%。

实例三:通过加标回收率研究该检测方法在复杂生物体质中的检测能力,即在没有被测物质的样品基质中加入定量的标准物质,按样品的处理步骤分析,得到的结果与理论值的比值。具体过程如下:首先,向链置换扩增反应的缓冲液中加入5%人血清和5.0ngmL-1的标准PSA样品,经过链置换扩增反应,用本发明方法检测到的PSA浓度是5.01ng mL-1,回收率是100.2%,相对标准偏差(RSD)是2.2%。

10页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种鉴定橄榄油掺杂的检测方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!