Dna成像缓冲液中的dna保护试剂

文档序号:1966748 发布日期:2021-12-14 浏览:9次 >En<

阅读说明:本技术 Dna成像缓冲液中的dna保护试剂 (DNA protective agents in DNA imaging buffers ) 是由 斯尼泽纳·德尔马纳茨 马修·J·卡洛 拉多吉·T·德尔马纳茨 于 2021-04-19 设计创作,主要内容包括:本发明公开了用于保护DNA免受在使用荧光染料进行DNA测序期间发生的光诱导损伤和其他修饰的方法和组合物。(Methods and compositions for protecting DNA from light-induced damage and other modifications that occur during DNA sequencing using fluorescent dyes are disclosed.)

DNA成像缓冲液中的DNA保护试剂

对先前申请的引用

本申请要求于2020年4月20日提交的美国临时专利申请63/012,836的优先权,其全部内容通过引用并入本文以用于所有目的。

背景技术

许多DNA测序方法和其他分析方法涉及将荧光标记的核苷酸掺入多核苷酸中,并基于通过激发波长照射多核苷酸时产生的荧光信号来检测该掺入。例如,合成测序方法涉及通过引物延伸掺入标记的核苷酸、照射该标记的核苷酸和检测荧光信号的多个循环。已经观察到该方法损坏延伸的引物和/或多核苷酸模板,从而限制读取长度并降低长读数的准确性。

发明内容

本公开提供了用于保护DNA免受使用荧光染料进行DNA测序期间发生的光诱导损伤和其他修饰的方法和组合物。在标准条件下进行的反应中,在20或95个合成测序循环期间累积的损伤导致信号损失高达50%。通过在每个循环的成像步骤中使用成像缓冲液保护DNA模板和生长链,可使相同循环次数的信号损失最小化到低于10%。

下文描述提供了大规模平行核酸测序方法的更多细节。该方法可包括使用阵列进行至少20个核酸测序循环,所述阵列在该阵列上的预定位置处包含固定化DNA模板。每个循环包括:i)将可逆终止子核苷酸掺入阵列上的多个生长链或延伸的引物中,其中荧光染料分子在掺入之前或之后与掺入的可逆终止子核苷酸结合;ii)使该阵列与包含5mM至200mM还原型L-谷胱甘肽的成像缓冲液接触,其中该成像缓冲液的pH值为约7.5至约9;iii)照射该阵列以诱导荧光染料分子的荧光发射并检测该荧光发射;然后iv)从该阵列中去除成像缓冲液和荧光染料分子。当使用成像缓冲液时,与不使用成像缓冲液时发生的信号损失相比,累积的信号损失减少。

在步骤(iv)中,可同时去除成像缓冲液和荧光染料分子。荧光染料可与掺入的可逆终止子核苷酸缀合。荧光标记可附接到与结合掺入的可逆终止子核苷酸的亲和试剂上。亲和试剂可以为单克隆抗体。成像缓冲液还可包括浓度为0.5mM至25mM,优选地2mM至4mM的trolox。成像缓冲液中的谷胱甘肽的浓度可以为10mM至500mM,优选地100mM。成像缓冲液的pH可以为约7.5至约9.0。检测或成像可以在约50℃的温度下进行。

固定化DNA模板可以呈各自具有模板序列的多个拷贝的DNA纳米球(DNB)的形式。另选地,DNA模板可以呈各自通常具有模板序列的一个拷贝的DNA链的克隆簇的形式。可进行至少20、50、100、200、300、400、500或1000个测序循环。

成像缓冲液的保护作用可通过将一定循环次数后的荧光发射强度与较早时或开始时的强度进行比较来量化。举例来说,在第20个测序循环中测量的荧光发射可以为在第一个循环中测量的发射的至少90%。在存在还原型L-谷胱甘肽的情况下,在第20个测序循环中测量的发射相对于第一个循环中发射的减少可比在不存在还原型L-谷胱甘肽的情况下,在第20个测序循环中测量的发射相对于在第一个循环中发射的减少小50%。

本公开还提供了用于DNA测序的成像缓冲液,该成像缓冲液包含还原的L-谷胱甘肽,其中该缓冲液的pH在约7.5至约9之间。该成像缓冲液还可包含trolox,通常浓度为0.5mM至25mM或2mM至4mM,任选地包括缓冲试剂、增溶剂和以任何组合的其他组分。举例来说,成像缓冲液可包含1000mM Tris缓冲液、400mM NaCl、0.05聚乙二醇脱水山梨糖醇单月桂酸酯、4mM trolox和100mM还原型谷胱甘肽,其在pH 7.5至9.0下缓冲。这种成像缓冲液可用于改进核酸测序,以维持通过多个测序循环进行测序中使用的荧光染料的发射强度。通常,至少20个测序循环通过如下程序进行:(a)将可逆终止子核苷酸掺入阵列上的多个生长链中,其中荧光染料分子在掺入之前或之后与掺入的可逆终止子核苷酸结合,然后(b)照射该阵列以诱导自荧光染料分子的荧光发射并检测该荧光发射。通过进行照射以及任选地在根据本公开配制的成像缓冲液中掺入可逆终止子来改善合成方法。

本公开还提供了用于DNA测序的反应混合物,该混合物包含单链DNA模板、荧光染料和本文所述的成像缓冲液中的任一者。

本公开还提供了一种试剂盒,其包含(a)本文所述的成像缓冲液、第一容器,以及在至少一个附加容器中,(b1)可逆终止子核苷酸(rt-dNTP),其中至少一些包含与其连接的荧光染料,或(b2)可逆终止核苷酸(rt-dNTP)和亲和试剂,任选地单克隆抗体,其包含与其连接的荧光染料,或(b3)可逆终止核苷酸(rt-dNTP)、一级亲和试剂和二级亲和试剂,其包含与其连接的荧光染料。

本发明的其他方面在以下描述、附图和所附权利要求中提供。

附图说明

图1A和1B示出根据本公开的成像缓冲液在用于测序ssDNA的荧光染料成像期间保护单链DNA(ssDNA)免受激光损伤。在图1A中,使用保护剂谷胱甘肽配制成像缓冲液以保护ssDNA模板。在图1B中,成像缓冲液不含保护成分。

图2示出了与相同循环中Rho强度的变化相比,与90个测序循环中的错配率(或错误率)相关联的数据。

具体实施方式

本文公开了用于改进在DNA测序中获得的结果的方法和组合物。不旨在受特定机制的束缚,使用含有还原型L-谷胱甘肽和trolox(6-羟基-2,5,7,8-四甲基色满-2-羧酸)的成像缓冲液可保护单链DNA模板和延伸引物免受成像过程中发生的损坏(例如,与模板和延伸引物相关的荧光染料的激光激发)。这种损坏降低信号并限制读取长度。不旨在受特定机制的束缚,使用包含还原型L-谷胱甘肽和trolox组合的成像缓冲液可减少此类损伤(即“保护”模板和延伸引物),从而延长读取长度并提高DNA测序的准确性。

术语

如本文所用,当使荧光染料物理接近核酸时,如在测序(例如,合成测序)中,荧光染料与核酸(例如,模板和延伸引物)“缔合”。出于说明但并非限制的目的,结合荧光染料的两种常用方法是(1)通过将染料连接到rt-dNTP(例如,通过可切割的接头)并将rt-dNTP掺入延伸引物中,以及(2)通过将未标记的可逆终止子核苷酸(NLRT-dNTP)掺入延伸引物中,并将荧光标记的亲和试剂与掺入的NLRT核苷酸结合。

如本文所用,术语“L-还原型谷胱甘肽”、“还原型L-谷胱甘肽”、“L-谷胱甘肽还原型”和“还原型谷胱甘肽”具有相同含义,并在本公开和优先权文件中可互换使用以指还原型L-谷胱甘肽。

如本文所用,“引物延伸产物”、“延伸产物”、“延伸引物”和“生长链”具有相同的含义,并且是指通过将核苷酸添加到退火至模板的引物(例如,第一次测序循环)而产生的引物延伸产物或在随后测序循环中产生的延伸引物。

“MPS”意指“大规模并行测序”。

如本文所用,术语“荧光的”和“荧光”可互换使用。

如本文所用,术语“荧光染料”、“荧光标记”和“荧光团”可互换使用并指荧光化合物,即吸收特定波长的光能并在较长波长下重新发射光的化合物。

术语“信号损失”是指在引物延伸和成像的多个循环过程中由模板的克隆群产生的引物延伸产物的荧光发射强度的显著降低。“信号损失”也称为对DNA的“激光诱导降解”或“激光诱导损伤”,它们可互换使用,并且是指在DNA测序期间随照射循环次数增加发生的荧光信号的逐渐损失(信号损失)。

如本文所用,术语“约”和“大约”一般应意指考虑测量的性质或精度,所测得的量的可接受的误差程度。通常,示例性误差程度在指定值或值范围的10%以内,更优选地在5%以内。

概述

如上所述,意料不到地发现,在循环合成测序方法的照射步骤期间,使用含有还原型L-谷胱甘肽和trolox(6-羟基-2,5,7,8-四甲基色满-2-羧酸)的成像缓冲液保护DNA模板和/或延伸引物免受损坏。

许多DNA测序方法涉及将荧光染料与多核苷酸(例如模板和延伸引物)结合。执行多个测序循环,其中在每个循环中在引起发射不同波长(发射波长)的光的波长(激发波长)下照射荧光染料。可认为照射“诱导”荧光发射。荧光染料用于多种测序方法,包括合成测序、杂交测序、连接测序和cPAL(美国专利8,551,702)。本公开关注于使用可逆终止子dNTP的大规模平行合成测序,但所述方法、成像缓冲液和其他试剂可用于多种测序应用中。

使用可逆终止子dNTP进行大规模平行合成测序的方法是本领域众所周知的,并且在科技文献中有详细描述。参见,例如,Drmanac et al.“Nucleic acid sequencing usingaffinity reagents”,美国专利10,851,410和专利公布20180223358A1;Drmanac et al.(2020)”CoolMPSTM:Advanced massively parallel sequencing using antibodiesspecific to each natural nucleobase”bioRxiv doi:doi.org/10.1101/2020.02.19.953307;Shendure et al.,“DNA sequencing at 40:past,present andfuture”Nature 550(7676):345-353;Metzker,2010,“Sequencing technologies–thenext generation,”Nat Rev Genet,11:31-46;Guo et al.,2010“An integrated systemfor DNA sequencing by synthesis using novel nucleotide analogues”Acc ChemRes,43:551-563;van Dijk et al.,2018,“The Third Revolution in SequencingTechnology Trends Genet 34(9):666-681”;Mardis(2017)DNA sequencingtechnologies:2006-2016,”Nat Protoc.12(2):213-218;以及Levy and Myers,2016,“Advancements in Next-Generation Sequencing”Annual Review of Genomics andHuman Genetics 2016 17:1,95-115,其全部公开内容以引用方式并入本文。

合成测序方法是众所周知的,并且可包括以下步骤:

i)提供固定化DNA模板的阵列(通常在流动池中)。通常,DNA模板位于阵列上的预定位置;

ii)将引物退火到固定化模板(通常固定化模板是单链DNA模板)。在一些实施方案中,固定化模板通过原位变性制成单链;

iii)进行多个循环:

a)在可逆终止子脱氧核糖核苷酸(rt-dNTP)的存在下,在含有DNA聚合酶的延伸缓冲液中使引物延伸,从而产生退火至DNA模板的延伸引物。延伸引物与或可与荧光染料结合;

b)去除延伸缓冲液并使阵列与成像缓冲液接触(任选地在用成像缓冲液淹没该阵列之前冲洗掉延伸缓冲液);

c)照射阵列以诱导自荧光染料分子的荧光发射;

d)获取示出荧光发射模式的图像;和

e)去除成像缓冲液和荧光染料,并去除掺入的可逆终止子的保护部分,以允许引物延伸的进一步循环。

这些步骤的某些方面将更详细地描述。

步骤(i)和(ii):提供固定化DNA模板的阵列(通常在流动池中)。(通常DNA模板位于阵列上的预定位置);将引物退火至固定化模板(通常固定化模板是单链DNA模板)。

在一种方法中,DNA模板存在于阵列上,例如微阵列或纳米阵列。在典型的实施方案中,阵列存在于流动池中,流动池是将试剂(诸如成像缓冲液)递送至阵列的DNA模板的流体装置。本方法中使用的示例性DNA模板可以为适用于所涉及的测序方法的任何单链DNA模板。在一些实施方案中,DNA模板是DNA模板的克隆群。通常模板通过扩增产生,包括通过PCR、乳液PCR、桥式扩增、滚环扩增或其他方法产生的模板。示例性DNA模板包括DNA纳米球(DNB)(通过滚环复制产生的DNA单体的线性多联体)。参见,Drmanac et al.(2010)Science327:78-81。在一些实施方案中,用于DNA测序的模板包括DNB的有序阵列。通常,阵列表面包括离散间隔区域(或“点”)的有序阵列,每个区域捕获DNB。在一些实施方案中,DNB的长度为1,000-50,000个核苷酸。

其他示例性DNA模板包括模板序列(例如,适配模板序列)的克隆簇,其可通过扩增(例如,桥式扩增和其他扩增方法)产生。参见,例如,美国专利公布2008/0009420和2007/0128624,以及上文列出的参考文献。

DNA模板可以为多种长度。在一些实施方案中,DNA模板序列是DNB的单体。在一些实施方案中,DNA模板序列是PCR扩增子。例如,在一些实施方案中,DNA模板的长度为250-2000个核苷酸。在特定实施方案中,DNA模板的长度为约250至约1,000个核苷酸。

步骤(iii)(a):在可逆终止子脱氧核糖核苷酸(rt-dNTP)的存在下,在含有DNA聚合酶的延伸缓冲液中使引物延伸,从而产生退火至DNA模板的延伸引物。延伸引物与荧光染料结合或可以与荧光染料结合。

“可逆终止子脱氧核糖核苷酸(rt-dNTP)”是修饰的核苷酸类似物,其在掺入引物延伸产物(延伸引物)中时可逆地终止引物延伸。一般来讲,可逆终止子核苷酸具有“可去除的保护基团”,即连接到核苷酸糖(例如脱氧核糖)的化学部分,其通常位于糖部分的3'-O位置,其阻止聚合酶在该位置处添加核苷酸。可去除的保护基团可通过酶促(例如,使用磷酸酶或酯酶)、化学反应、热、光等来去除,以在核苷或核苷酸的3'-位提供羟基,从而由聚合酶进一步添加核苷酸可能会发生。可逆终止子核苷酸的术语“可去除的保护基团”也可称为“可逆保护基团”、“保护部分”、“保护基团”、“可逆终止子保护基团”等。示例性的保护基团包括3'-O-叠氮甲基、3'-O-烯丙基和美国专利10,851,410中所述的其他保护基团。还参见美国专利7,771,973。

其他可逆终止子核苷酸包括3'-未保护的可逆终止子(参见,Wu等,Wu et al.,2015,“Photocleavable labeled nucleotides and nucleosides and methods fortheir use in DNA sequencing”,美国专利8,969,535)。

掺入的rt-dNTP可被直接荧光标记。例如,荧光团可以共价连接至核碱基、末端磷酸酯或rt-dNTP的另一部分。参见,例如,美国专利7,771,973、9,670,539、10,059,986和10,513,731;欧洲专利3091026B1;和.Guo et al.Proc.Natl.Acad.Sci.2008,105,9145-9150。荧光团可通过可切割的接头连接到核苷酸上。

另选地,掺入的rt-dNTP可未被标记并被荧光标记的亲和试剂(例如抗体)结合,从而荧光染料分子与模板和延伸引物结合。在一种方法中,掺入未标记的rt-dNTP,并且荧光标记的亲和试剂(诸如,单克隆抗体或接头)直接或间接地结合到掺入的3'末端核苷酸上。参见,Drmanac et al.“CoolMPSTM:“Advanced massively parallel sequencing usingantibodies specific to each natural nucleobase”,BioRxiv(2020)和美国专利10,851,410。在另一个示例中,在通过连接法测序时,染料可由于其连接到探针的5'端而与探针结合。

步骤(iii)(b):去除延伸缓冲液并使阵列与成像缓冲液接触。在荧光染料与生长链结合后,例如,通过掺入标记的rt-dNTP或将标记的亲和试剂与掺入的未标记rt-dNTP结合,引入成像缓冲液,并照射荧光染料。如实施例中所讨论的,已发现某些成像缓冲液组合物可显著减少信号损失。在一种方法中,这涉及洗去延伸缓冲液并用成像缓冲液淹没该阵列。在一种方法中,成像缓冲液用于洗去延伸缓冲液和试剂。在另一种方法中,在第一次缓冲液交换中去除延伸缓冲液和试剂,然后添加成像缓冲液。

步骤(iii)(c):照射该阵列以诱导自荧光染料分子的荧光发射。荧光染料的照射可使用一种或多种激光器进行。可选择一种或多种激光器以发射波长对应于所用荧光团的激发光谱峰值的光。激光器通常与一个或多个截止或带通滤波器一起使用。示例性激光器类型包括氩离子、DPSS、OPSL、二极管激光器、其他激光器等适用于DNA测序的激光器。激光器可在任何功率下使用,例如5mW-2W。每个循环中的照射可以为任何合适的持续时间,例如10、20、30、40、50、60、70、80、90、100、110、120、130、140或150ms。本领域技术人员能够容易地确定要使用的最佳激光器及其使用条件,例如,考虑到进行的DNA测序的类型、使用的荧光染料、DNA模板的性质、阵列性质、循环数等。可在被荧光团吸收的波长下照射荧光染料,从而诱导激发电子单线态。于是当荧光团返回基态时,其发出不同的、更长波长的光。例如,可使用范围从300nm到1000nm,或从300-400nm、400-500nm、500-600nm、600-700nm或700-800nm的光进行照射。在一个实施方案中,使用对应于4种染料的四种波长,例如约488nm、约514nm、约532nm和约640nm或660nm。考虑到所使用的一种或多种荧光染料,本领域技术人员能够容易地确定用于测序的一个或多个最佳波长。参见,例如,Fluorescence Microscopyand Fluorescent Probes,Slavik(Ed.),Springer US,1996;Fluorescence Spectroscopy(Pesce et al.,Eds.),Marcel Dekker,New York,1971;Haugland,Handbook ofFluorescent Probes and Research Chemicals,Molecular Probes,Eugene,2005;Fluorescence Microscopy,From Principles to Biological Applications,2nd Ed.,(Kubitscheck,Ed.),Wiley-VGH,2017;其全部公开内容以引用方式并入本文。

可使用任何适用于DNA测序的荧光团,包括WO 2013/044018中列出的染料(包括:DEG527,Dy681,DEG527,Atto532,Atto465,488,495/Atto514,520,532,550,565;Atto 520,532,550/Atto565,590,594,Rhol 1,Rho 12,Rho 13;Atto 647,655,665/Atto 680,700,725;Alexa 647,660,Cy5/Alexa 680,700,Cy5.5;Alexa532,Cy3/Alexa555,556,578,590,Cy3.5;Alexa 488/Alexa532,555,556,578;Dy 647,648,649,650,651,652,654/Dy675,676,677,678,679,680,681,682,700,701,703,704;Dy490,495,505/Dy530,547,548,549,550,554,555,556,560;Dy530,547,548,549,550,554,555,556,560/Dy590,591,594,605,610,6150罗丹明染料,花菁类染料(例如Cy 3,Cy 5),荧光素(FITC),Alexa Fluor染料(Invitrogen/Molecular Probes),BODIPY FLTM(Invitrogen/Molecular Probes),香豆素,俄勒冈绿,太平洋蓝,太平洋橙,Yakima黄、德克萨斯红,芘,AttoTM(ATTO-Tec),EterneonTM(BaseClick),DyTM(Dynomics GmbH),OysterTM(Luminartis),AbberiorTM(Abberior GmbH),ChromeoTM(Active Motif),FAMTM(例如,5-FamTM,6-FamTM),joe,LizTM,TamraTM,VicTM,HEX(例如6-HEX),CAL Fluor(例如CAL Fluor Green 520,Gold 540,Orange 560,Red 590,Red610,Red 615,Red 635),或这些染料中任一者的任何形式、衍生物或类似物。合适染料的选择和关于它们在DNA测序中的用途的指导说明是本领域公知的。许多染料可从多个商业来源获得,例如得自Invitrogen(Molecular Probes)、ATTO-Tec、BaseClick、Dynomics GmbH、Luminartis、Abberior、Active Motif、iba、biomers或Rockland。包含适用于本发明的荧光部分的修饰核苷酸在例如美国专利7,057,026和10,513,731中;以及在授权前的公开US2019/0144482 A1中有所描述。

染料的照射通常在室温下进行,例如在20℃至30℃,例如20℃至25℃下进行。在一些应用中,染料的照射在升高的温度下进行,例如30℃至60℃,例如40℃至60℃下进行,例如以支持并发的生化反应或最小化由于先前或稍后的生化反应的温度上升的时间。应当理解,由于照射(例如激光)光能在阵列位置处可能发生局部加热的情况将被避免。

步骤(iii)(d):可以检测(例如,使用配备有电荷耦合器件(CCD)相机的显微镜)并电子记录从阵列上的位置发射的荧光(荧光信号)。来自经照射阵列的荧光发射模式构成了“图像”,该图像被收集并存储以用于计算机分析。

步骤(iii)(e):去除成像缓冲液和荧光染料,并去除掺入的可逆终止子的保护部分以允许引物延伸的进一步循环。在照射和检测由染料发出的荧光后,去除可逆终止子保护部分和荧光团,以制备用于后续测序循环的产物。可通过多种本领域已知的方法实现去除,包括通过切割标记的rt-PCR的趋膦接头。可使用国际专利公布WO2020097607A1(Drmanac et al.,2020,“Massively parallel sequencing using unlabelednucleotides”)中描述的策略去除标记的亲和试剂,并去除3'保护基团。

成像缓冲液

在本发明的一方面,成像缓冲液是含有还原型L-谷胱甘肽和trolox的缓冲溶液。任选地,可不包含trolox。L-谷胱甘肽是一种三肽,其包含L-谷氨酸、L-半胱氨酸和甘氨酸。

成像缓冲液中还原型L-谷胱甘肽的浓度通常在1-500mM的范围内,更常见的是5-400mM,例如5-300mM、50-200mM或90-110mM。例如,成像缓冲液可包含约100mM还原型的L-谷胱甘肽。

Trolox是维生素E的水溶性类似物,其可充当抗氧化剂和自由基清除剂(PubChem.CID 40634;MW 250.294g·mol-1)。

Trolox可得自Sigma-Aldrich、TCI和Cayman Chemical等商业供应商。

当以一定浓度范围存在于成像缓冲液中时,Trolox与谷胱甘肽一起能够保护单链DNA模板免受激光诱导的降解,所述浓度例如约0.1-20mM、0.1-1mM、1-2mM、2-3mM、3-4mM、4-5mM、5-6mM、6-7mM、7-8mM、8-9mM、9-10mM、1-10mM、10-20mM、或约1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19或20mM。成像缓冲液可包含2mM至4mM或约4mM的trolox。trolox的浓度可针对给定的DNA测序应用并且考虑到诸如执行的循环数、激光器或使用的其他照射源的性质(诸如功率和波长),成像缓冲液中还原型L-谷胱甘肽和潜在地其他保护试剂的浓度,以及DNA模板的性质等参数进行调整。

例如,成像缓冲液可包含100mM还原型L-谷胱甘肽和4mM trolox。完整的缓冲成像溶液可包含1000mM Tris(预设晶体)pH 8.2、400mM NaCl、0.05%Tween-20(洗涤剂)、4mMtrolox和100mM还原型谷胱甘肽。Tween-20是聚乙二醇脱水山梨糖醇单月桂酸酯(CAS号:9005-64-5)并且可商购获得(例如,Sigma-Aldrich)。

成像缓冲液可包含在50mM 3-巯基-1-丙磺酸盐、700mM硫酸铵、5%DMSO和450mMTris缓冲液中的还原型L-谷胱甘肽和trolox,pH9。

用于在测序过程中保护核酸复合物的成像缓冲液通常包含缓冲体系以将pH值维持在约7.5和约9之间。在实施方案中,pH值可以在7-10的范围内,优选为8-10,诸如8-9。成像缓冲液可包含在缓冲溶液中的还原型L-谷胱甘肽(例如,以100mM的浓度)或L-谷胱甘肽和trolox,其中pH为约7至约9、或约7-8、8-9、7.0-7.5、7.5-8.0、8.0-8.5或8.5-9.0。合适的缓冲体系包含Tris(三(羟甲基)氨基甲烷)、HEPES或其他缓冲液。

L-还原型谷胱甘肽可以合成或得自商业来源。参见,例如Lu(2013)BiochimBiophys Acta 1830(5):3143-3153(描述了生物合成)。

谷胱甘肽具有四种立体异构体。可商购获得的谷胱甘肽通常是从生物来源获得的,因此它几乎总是由纯L-异构体组成并且是优选的。然而,其他立体异构体或其混合物可通过固相化学合成来制备(T.Oikawa et al.,J Nutr Sci Vitaminol(Tokyo)1999;45(2):223-9;Y.Hashizume et al.,Anticancer Drugs.2001Jul;12(6):549-54)并用于本发明。

在一些情况下,含有还原型谷胱甘肽的成像缓冲液基本上不含氧化形式的谷胱甘肽。在本文中,“基本上不含”意指缓冲液中谷胱甘肽的至少80%是还原型谷胱甘肽,缓冲液中谷胱甘肽的至少85%、至少90%、至少95%或至少99%是还原型谷胱甘肽。

从成像缓冲液中排除的其他缓冲液组分和化合物

除了还原型L-谷胱甘肽、trolox和缓冲体系之外,还可在成像缓冲液中包括一种或多种附加的试剂以增强保护或用于其他原因。示例是半胱氨酸、N-乙酰半胱氨酸(NAC)、2-巯基乙醇、2-巯基乙胺、锥虫胱甘肽、霉菌硫醇、甲硫醇、乙硫醇、1-丙硫醇、2-丙硫醇、烯丙基硫醇、丁硫醇、叔丁基硫醇、戊硫醇、苯基硫醇、二巯基丁二酸和硫代乙酸。NAC可以以约1-500mM,更经常地5-400mM,诸如5-300mM、50-200mM、50-150mM被包含,或可以10、20、30、40、50、60、70、80、90、100、110、120、130、140、150、160、170、180、190或200mM被包含。其他可能包含在成像缓冲液中的化合物包括3-巯基-1-1丙磺酸盐、硫酸铵或DMSO;抗褪色剂,例如FluoroguardTM、CitifluorTM、ProLongTM或SlowFadeTM,以及已知用于提供针对DNA损伤的保护作用的化合物和添加剂。此类化合物的示例包括自由基清除剂等,并且包括但不限于,抗坏血酸、二硫苏糖醇、巯基乙胺、β-巯基乙醇、没食子酸正丙酯、对苯二胺、对苯二酚、叠氮化钠、重氮双环辛烷、环辛四烯、麦角硫因、蛋氨酸、N-叔丁醇-α-苯基硝基酮、咖啡酸、香豆酸、绿原酸、叶绿素、氯化花翠素、DL-a-硫辛酸、鞣花酸、丁子香酚、阿魏酸、芒柄花黄素、岩藻黄质、没食子酸、银杏内酯B、橙皮苷、3-羟基酪醇、山奈酚、亚油酸、硫辛酸、木犀草素、赖氨酸、新绿原酸、油酸、白藜芦醇、芦丁水合物、硒基-L-蛋氨酸、亚硒酸钠、生育酚、叶黄素、巴柳氮二钠、胆红素、半胱氨酸、β-二甲基半胱氨酸、丁基羟基苯甲醚、丁基羟基甲苯、没食子酸丙酯、叔丁基氢醌、去甲二氢愈创木酸、巯丙酰甘氨酸、MESNA、甲巯丙脯酸、咪唑、多酚、类胡萝卜素、类黄酮、儿茶素、胡萝卜素、番茄红素、花黄素、虾青素、角黄素、神经孢子素、玫红品、胭脂素、降胭脂树素、玉米黄质、叶黄素、胆绿素、生育酚、多烯二醛、褪黑激素、维生素E、维生素B6、维生素B6类似物、肼、亚硫酸钠、羟胺、组氨酸、色氨酸、抗坏血酸和没食子酸(没食子酸)、或这些中两种或多种的组合。

在某些实施方案中,从成像缓冲液中明确排除了先前段落中列出的试剂中的一种、多于一种、全部或任何组合。在一个实施方案中,成像缓冲液不含抗坏血酸。在一个实施方案中,成像缓冲液不含没食子酸。在一实施方案中,成像缓冲液不含NAC。

信号损失

可通过多种方式比较各种条件下的信号损失。

照射相对于无照射方法

在一种方法中,可以如以下实施例中所述比较各种条件下的信号损失。简而言之,在利用激发光照射的重复循环之后进行一个或多个照射的终止循环之后,或者在不具有照射的重复循环而仅进行照射的一个或多个终止循环之后来测量由模板的克隆群产生的荧光发射引物延伸产物的强度。参见实施例,图1A和1B,以及下表。在具有和不具有重复照射循环的情况下的荧光发射强度之间不存在差异的情况下,没有信号损失。当具有重复照射循环情况下的荧光发射强度(a)低于不具有重复照射循环情况下的荧光发射强度(b)时,信号损失的量可以表示为分数,(a)/(b)。

还原型L-谷胱甘肽和trolox对光照介导的荧光信号损失(即,由于照射阵列导致的累积信号损失)的保护作用可通过使用包含固定化DNA纳米球作为模板的阵列(例如纳米阵列)进行合成测序来进行评估:例如,使用荧光标记的可逆终止子(RT)。在该测定中,两个纳米阵列在相同条件下进行平行测序,不同的是一个使用包含5-200mM(例如100mM)还原型L-谷胱甘肽的成像缓冲液,而第二个使用不含还原型L-谷胱甘肽的成像缓冲液。执行指定数量的测序循环(可能是20个)。对于这两个阵列(例如,纳米阵列),阵列的一部分在任何循环中都不被照射,因此不应经历任何照射介导的信号损失。相比之下,阵列的第二部分在每个周期中都被照射,因此将示出与照射循环相关的信号损失。

在指定的循环次数结束时,对于每个阵列,整个阵列都被照射并检测到荧光发射,通过将阵列在每个循环中已被照射的部分的信号(示出信号损失)与阵列的未被照射的部分中的信号(代表可能的非照射相关的信号损失因素)进行比较来确定信号损失。可通过将在存在还原型L-谷胱甘肽的情况下测序的阵列中的信号损失差异与在不存在还原型L-谷胱甘肽的情况下测序的阵列中的信号损失差异进行比较,来确定还原型L-谷胱甘肽的保护作用。测定可在第一阵列的成像缓冲液中具有还原型L-谷胱甘肽和trolox两者的情况下进行,以及在第二阵列的成像缓冲液中既没有还原型L-谷胱甘肽也没有trolox的情况下进行。

较早循环相对于较晚循环方法

在另一种方法中,信号损失可通过将较晚循环中的荧光发射强度与较早循环中相同阵列中的荧光发射强度进行比较来测量。例如,一个或多个荧光团的荧光发射可在指定数量的测序循环的最后一个循环中进行测量,并与第一个测序循环中的一个或多个相同荧光团的发射进行比较。第一个循环和后一个循环之间的信号差异反映了在指定循环次数期间发生的DNA模板降解的程度。

在不存在还原型L-谷胱甘肽和trolox(或L-谷胱甘肽,以及任选的trolox)的情况下进行的DNA测序可导致20个循环之后荧光信号的降低,其是在存在还原型L-谷胱甘肽和任选的trolox的情况下下进行的DNA测序中发生的荧光信号降低的至少2倍。在存在还原型L-谷胱甘肽和trolox(或L-谷胱甘肽,和任选的trolox)的情况下,在20个循环后测得的信号可以为在第一个循环中观察到的信号的80%、90%或更多。

减少信号损失并增加读取长度

如以下实施例中所示,使用包含还原型L-谷胱甘肽的成像缓冲液进行测序减少了信号损失。不旨在受特定机制的束缚,据信成像缓冲液可保护模板DNA和/或延伸引物免受损坏或修饰。尽管对模板克隆群中的任何单个模板或延伸引物的损坏可能很少见,但在多个循环过程中累积的损坏或修饰会导致生产模板(可从中准确测量荧光的模板)的数量减少。此外,不旨在受特定机制的束缚,损坏或修饰的模板或延伸引物可能会影响净荧光信号分布从而不准确地反映模板序列。

在缓冲液测定中,DNA测序通常进行至少20个循环。在实践中,本文所公开的成像缓冲液的使用允许针对更多循环数(例如,至少50、100、150、200、300、400、500、600、700、800、1000或1500次循环)进行准确测序。本方法将允许执行更多数量的循环,同时与先前所实现的相比保持可检测信号。

如实施例1中所展示的(图2中所示的数据),平均DNB强度和错误率成反比。这意指利用根据本公开的成像缓冲器保持高图像强度将有助于避免测序的准确性被侵蚀。这使用户能够执行更长的序列读取,同时有助于保持准确性。

信号损失机制

不旨在受特定机制的束缚,在多个测序循环的过程中可发生各种类型的损坏。激光诱导的降解可由于DNA与另一种底物的交联而导致信号损失。激光诱导的降解可由于DNA的切割而导致信号损失。激光诱导的降解可由于DNA中一个或多个碱基的丢失而导致信号损失。激光诱导的降解可由照射对DNA的直接影响造成,也可能是照射染料的荧光发射和由照射导致自由基或其他化学副产物的产生的间接结果。

由于随着测序循环数的增加,荧光信号逐渐损失,可检测到DNA的降解或修饰,包括DNA与DNA、DNA与表面、或DNA与蛋白质(包括聚合酶)的交联,或在模板DNA或延伸链、或这两者上产生无碱基位点(单链或双链,如果聚合酶具有核酸外切酶功能)。在每个循环中,反应混合物的激光介导的照射可损坏或切割混合物中一定比例的单链DNA模板,使损坏或切割的模板无法用于后续测序循环,从而降低荧光发射信号。

互补链合成

在成像步骤期间可能发生的对DNA的损伤或修饰可影响模板DNA、延伸链,并且也可能影响互补DNA链的合成。例如,对于通过由聚合酶进行核苷酸掺入的循环对DNA模板的另一端进行测序,互补链由已测序的模板制成。在本发明的一方面,在第二链或互补链合成期间使用本文所述的成像缓冲液。

制造互补链的一种方法是使用受控链置换方法(或第二链测序),如下文实施例2中所述(通常如美国专利10,227,647中所述)。简而言之,如下进行第二链测序:将含有衔接头序列和插入的基因组DNA(衔接头-基因组DNA亚基的多联体)的拷贝的DNB与用于第一端测序的引物杂交。在产生第一端读数后,通过链置换DNA聚合酶进行受控的持续延伸,以产生多条互补链。当新合成链的3'端到达下游链的5'端时,5'端被DNA聚合酶取代,从而产生单链DNA悬垂,并形成支链DNB结构。第二端测序引物与新形成支链中的衔接头拷贝杂交以生成第二端读取。

对于DNB,一种相关的方法通过同步控制多重置换扩增(MDA)来进行。为了使MDA能够产生所需的DNA支链,特别是对于较长的模板(例如300-500个碱基、或400-700个碱基、或500-1000个碱基),聚合酶必须拷贝大约1000至2000个碱基或2000至4000个带有衔接头的连接模板的碱基。如果通过荧光成像效应引入了频繁的聚合酶端(例如缺口或交联),则支链形成可提前终止,从而减少形成的互补模板的数量。

缓冲液和试剂盒

可设想到反应混合物、成像缓冲液和包含成像缓冲液的试剂盒。例如,用于DNA测序的成像缓冲液可包括还原型L-谷胱甘肽和trolox,其中缓冲液的pH在约7.5至约9.0的范围内。

试剂盒可包括含有成像缓冲液的第一容器或多个第一容器,以及含有可用于DNA测序的其他试剂一个或多个附加容器,所述其他试剂诸如荧光染料、酶、核苷酸、核苷酸类似物(如可逆终止子)、抗体和/或固体载体。成像缓冲液的试剂盒可包含溶液形式的组分,或固相试剂形式的组分,其在使用前用水或其他溶剂重新配制。在其他形式中,试剂盒成像缓冲液可以为更高浓度的形式,其在使用前用水或其他溶剂稀释。在其他形式中,一些组分可预组合并且成像缓冲液的一些组分可在使用之前添加到预组合的组分中。测序试剂盒可包含成像缓冲液的容器和其他用于测序的试剂的容器,所述试剂诸如洗涤缓冲液、可逆终止子再生试剂、聚合酶和可逆终止子核苷酸。试剂盒试剂可预组合,或单独提供以在使用前组合。

实施例

方法

阵列加载有单链DNA纳米球(DNB),其包含大肠杆菌或人预切基因组DNA。在下面的实施例1中,使用MGI的图案阵列进行成像测试,其中间距大小为900nm,结合区域约为200nm(例如,BGISEQ-500RSTM高通量测序试剂盒(PN:85–05238-01,BGI))。在随后的实施例中,试剂来自DNBSEQ-G400RSTM高通量测序组(FCL PE100),货号1000016950,MGI Tech Co.,Ltd.。

实施例1.评估在存在或不存在还原型L-谷胱甘肽的情况下的信号损失

本实施例示出,在成像缓冲液中包含还原型L-谷胱甘肽可减少由于DNA模板损坏而导致的累积信号损失。

使用DNB模板和荧光标记的可逆终止子核苷酸进行了20个循环的合成测序。可逆终止子核苷酸具有经由可切割接头核碱基连接的荧光染料和核糖的3'-OH位置处的保护部分。使用四种有色染料代表四种碱基。终止子是叠氮甲基和二硫化物的混合物。

在每个循环中,在使用DNA聚合酶掺入可逆终止子核苷酸之后,聚合酶和未掺入的核苷酸通过在50℃下在添加成像缓冲液或对照缓冲液之前用洗涤缓冲液淹没阵列来洗去。成像缓冲液为50mM 3-巯基-1-丙磺酸盐、700mM硫酸铵、5%DMSO、450mM Tris缓冲液,pH 9,其具有还原型L-谷胱甘肽。对照缓冲液为50mM 3-巯基-1-丙磺酸盐、700mM硫酸铵、5%DMSO、450mM Tris缓冲液,pH 9。

阵列流动池泳道的某些位点在每个掺入循环之后暴露于激光并成像,其余位点未暴露于激光。在指定的循环次数结束时,然后在最后的掺入循环后重新成像整个载玻片通道,以计算和比较在存在或不存在还原型L-谷胱甘肽的情况下曝光区域的信号损失。使用的成像仪器为MGISeq 500TM,曝光时间为130毫秒,是该测序仪常用的40毫秒曝光时间的3倍以上。如果发生光效,则使用更长的曝光时间来促进光效。在每个循环之后,染料和保护基团用膦THPP去除。

图1A和1B示出了结果。该描述是流动池泳道中成像场强度的渐变密度表示。BGI-SEQ-500TM流通池的部分表面积表示为按行和列排列的场矩阵,其中每个场表示为圆角正方形。在每个循环中,在每个位点掺入荧光标记的可逆终止子核苷酸。然而,出于在该过程的每个循环期间成像的目的,仅第1至7行和第1至38列暴露于荧光染料的激发波长(约532nm和660nm)下的激光并持续130毫秒。其他场仅在最后一个循环中暴露于激光,从而在不存在模板损坏的情况下为信号提供基线。从捕获图像的原始像素强度级别中提取强度级别。

对于每个场的每种基础染料类型,强度由计算机汇总,并表示为多个DNB的每个成像场的“Rho”强度。(测量DNB阵列中每个单独点或DNB的荧光发射应给出类似的结果,但强度值可能会受到相邻点和序列环境的影响。)每个方块代表Rho值强度水平,并用代表较高强度的空心方块以及代表较低的强度的更密集的带点方块进行缩放。每个面板中的六个实心填充(或红色)方块是用于定位和解释所得的图像的标记。图1A中有两个缺失的方块:当由于灰尘、气泡或其他干扰而无法正确登记某些场方格时,则不报告该方格的数据。

图1A示出了在50℃下在对照缓冲液中20个循环的成像效果。与仅在最终循环中用激光照射的场相比,在每个循环中用激光照射的部位的平均图像强度降低40-50%。

图1B示出了在50℃下在成像缓冲液(包含100mM还原型L-谷胱甘肽)中20个循环的成像效果。在这些条件下,与仅在最终循环中用激光照射的场相比,在每个循环中用激光照射的场的平均图像强度降低了4-10%。

这些结果指示,在成像缓冲液中包含还原型L-谷胱甘肽可减少由于对DNA模板、延伸链或上述两者的影响而导致的累积信号损失。

图2是将90个测序循环中的错配率(或错误率)与相同循环中Rho强度变化相比较的数据图。为了获得这些数据,使用标准(非谷胱甘肽)缓冲液在MGIseq-2000仪器上对由大肠杆菌DNA文库生成的DNB进行测序并持续90个循环。来自五个场的序列读数被映射到大肠杆菌参考数据库,以识别其位置与该读数位置处的预期碱基检出不匹配的读数。示出了每个位置与参考不一致的碱基检出百分比。对于相同的场,确定每个位置处的每个碱基的平均rho强度,然后确定每个位置处的4个碱基的平均值。

数据示出图像强度和错误率成反比。这意指利用根据本公开的成像缓冲液保持高图像强度将有助于避免测序的准确性受到侵蚀。这使得用户能够通过保持准确性来执行更长的序列读取。

实施例2.pH8.2下的还原型L-谷胱甘肽

该实验评估了还原型L-谷胱甘肽与Trolox的组合是否能有效保护DNA,从而防止pH 8.2下的图像强度损失。成像条件在MGISEQ-2000测序平台上并且与实施例1中使用的BGISEQ-500平台具有相似的条件。曝光时间通常为40ms。

通常如美国专利10,227,647中所述的受控链置换方法(或第二链测序)用于制备和测序第二链。简而言之,如下进行第二链测序:将含有衔接头序列的拷贝和插入的基因组DNA(衔接头基因组DNA亚基的多联体)的DNB与用于第一端测序的引物杂交。在产生第一端读数后,通过链置换DNA聚合酶进行受控的持续延伸,以产生多条互补链。当新合成链的3'端到达下游链的5'端时,5'端被DNA聚合酶取代,从而产生单链DNA悬垂,并形成支链的DNB结构。第二端测序引物与新形成的支链中的衔接头拷贝杂交以生成第二端读取。

结果在下表1A和1B中示出。Rho强度表示基于成组DNB由于每个DNB中主要掺入的碱基而在强度空间中分组的趋势,用于所述成组DNA的四种荧光染料发射的光的平均强度。强度组中的多个DNB产生代表DNB组的单个Rho值。

在每个表的上半部分,样品全部用测序试剂处理并持续95个循环(SE95)。将在所有95个测序循环中暴露于激发波长光的位点与以相同方式处理但仅暴露于光并持续附加的5个循环的位点进行比较。在100个循环和第二条链形成后,引物退火至另一链并反向延伸持续5个循环(PE5)。

在表1A中,含有还原型L-谷胱甘肽的流动池含有100mM还原型L-谷胱甘肽和4mMtrolox,pH8.2。对于95个循环预成像的DNB的平均强度(“SE95”,第48列)和最后5个循环(第49列)成像的那些DNB的平均强度的差在约4.9%至6.8%的范围内。这与在成像试剂(IR)“维生素C IR”存在的情况下下成像的标准条件流动池非常相似或优于该流动池,所述成像试剂包含维生素C、2mM trolox、5mM没食子酸和5mM二硫苏糖醇(表1B)。维生素C IR缓冲液是先前的成像缓冲液,其用于本实验进行比较。

表1A TROLOX和谷胱甘肽

表1B

关于来自第二链测序(“PE5”)的图像强度,暴露于成像并持续95个循环(第一条链的95个循环,然后是第一条链的另外5个循环和第二条链的5个循环)的流动池区域示出当使用还原型L-谷胱甘肽时,非成像区域和成像区域之间的约2.5%至4.9%的差异。这优于标准对照流动池,所述标准对照流动池示出成像区域和非成像区域之间存的3.6%至4.7%的差异。影响第二链测序的成像过程中的损害反映在聚合酶生成第二链的能力上,并通过在pH 8.2下将L-谷胱甘肽还原至与维生素C类似的程度来最小化。

换句话讲,荧光成像的效果具有两个读数:在第一链的95个测序循环期间的强度降低,以及在与第二条链交叉后的强度降低。在这两种情况下,含有谷胱甘肽和trolox两者的缓冲液有助于防止在多次测序循环中强度逐渐降低。这两种读数以多种方式不同。使用不同的聚合酶,一种用于可逆终止子掺入,另一种用于链置换扩增。两个过程都依赖于功能性可扩展引物和完整的模板链,但每个过程可在不同程度上依赖于这些元素。谷胱甘肽和trolox对这两个过程所展示的有益效果示出添加剂对测序过程的多个方面的效用和有益结果。

实施例3.含有N-乙酰半胱氨酸(NAC)和Trolox的成像缓冲液

据证明,N-乙酰半胱氨酸(NAC)与trolox的组合也保护DNA免受在多个测序循环中观察到的损伤。

该实验示出,当与使用不具有保护性添加剂的成像缓冲液进行分析相比,NAC的光保护特性得到改善。在100个测序循环中,当不存在添加剂时,成像区域和非成像区域之间的强度差异可为约50%(即,在成像区域中观察到的强度为非成像区域的一半)。

当添加还原剂例如trolox和二硫苏糖醇时,第一链测序的成像和非成像区域之间的强度差异可减小至仅15%差异。然而,与非成像区域相比,成像区域的来自第二链测序的强度仍然低30%。DTT作为成像缓冲液的常用成分用于比较。在这些实验中,GSH加trolox通常比NAC加trolox表现更好。

在大约95个循环的DNB第一链合成测序(其中仅对流动池泳道的一部分进行成像)之后,测序区域扩大到包括先前未成像(因此未暴露于光)的区域。在准备用于测序的第二链之前,第一链测序的循环持续约5个循环以确定成像区域相对于非成像区域的强度。在这个过程中,在第一链测序过程中产生的链通过添加的聚合酶进一步延伸,附加的第二链由添加的引物产生,最终形成由于聚合酶的置换特性处于单链状态的支链第二链。

第二链的测序通过添加与第二链杂交的引物来进行,并且测序继续进行,其中流动池成像的区域扩大。在曝光测序循环的最初95个循环期间,模板DNB链或延伸链的损坏或修饰可影响制备足够的第二链的能力,预期这种损坏将反映在基于最初95个循环期间的暴露观察到第二链测序的强度水平上。

当使用含有100mM NAC加Trolox的pH 8.2的成像缓冲液时,在流动池的成像区域相对于非成像区域中观察到约8%差异,并且在第二链上在成像区域相对于非成像区域中观察到约6%差异。

这些数据示出NAC有助于保护DNA,从而降低强度损失率,并提供保护,其允许更有效地生成第二链以进行第二链测序。

当添加到成像缓冲液中时,NAC也可保护DNA。这种影响发生在7至9的pH值范围内,但通常偏好在较高pH值(例如,pH 8-10、pH 8-9.5、pH 8.5-9)下。例如,与当成像缓冲液含有150Mm NAC且pH9时,第二链强度比第一链强度增加1.9倍相比,在pH 7下使用含有150mMNAC的成像缓冲液,观察到第二链强度比第一链强度增加约1.2倍。

使用两个流动池比较强度损失和第二链回收,一个在pH 9的成像缓冲液中使用50mM NAC,另一个在pH 7的成像缓冲液中使用维生素C。与使用维生素C的结果相比,含有NAC的成像缓冲液的平均第二链回收相似(分别为1.91倍相对于1.86倍回收率)。两种条件之间的每个循环的强度损失率在0.4%至0.5%之间也相似。这两个观察结果展示出,N-乙酰半胱氨酸可在测序过程中替代光相关成像保护中的维生素C。

实施例4.谷胱甘肽和NAC一起使用

还原型谷胱甘肽和NAC单独地或与其他保护试剂(例如,trolox和二硫苏糖醇,DTT)或成像缓冲液中的其他添加剂组合示出良好的DNA保护,包括在高温(例如57℃)下成像。在pH 8.2下的一些实验中,发现还原型L-谷胱甘肽优于NAC。在较高的温度下,在较高(碱性更强)的pH值下可实现更好的保护(例如pH 9优于pH 7)。

对于在较低温度(例如15-40℃)下的成像,还原型L-谷胱甘肽针对更宽的pH范围提供类似的保护,例如在pH 7至pH 9或pH 8至pH 9的范围内。浓度的保护范围20-200mM,更优选50-150mM。

实施例5.成像缓冲液中成分的比较

为了进一步表征成像缓冲液中添加剂的有益效果,进行了实验室工作以检查多循环曝光对MGIseq2000TM测序流动池泳道中选定数量的成像场的影响。流动池的所有场都接收测序试剂,但可选择在测序循环的图像收集步骤期间是否将场暴露于光。

表2示出了使用既不包含谷胱甘肽也不包含trolox的成像缓冲液获得的结果。每个已测序碱基A、C、G或T的强度值和差异(Rho强度是DNB组的平均强度表示)。第48列是指已成像的一组场,而第49列是指接近但未成像的一组场。在上图中,场在进行全泳道成像和第二链合成之前进行95次测序循环(SE95)和减影成像,然后在第二链上进行另外5次测序(PE5)。示出了成像场和非成像场之间的强度差异。

表2

表2中的数据比较了在不含谷胱甘肽或不含维生素C的缓冲液中暴露于成像或未成像95个测序循环的场之间的每个测序碱基A、C、G或T的强度值。一般来讲,所有缓冲液都含有1000mM Tris(Tris(羟甲基)氨基甲烷)、400mM NaCl和0.05%Tween-20。Tween-20是聚乙二醇脱水山梨糖醇单月桂酸酯(CAS号:9005-64-5)并且可商购获得(例如,Sigma-Aldrich)。在95个循环的第一链测序后,成像和非成像区域之间的强度差异可高达15.65%。对于第二链测序的强度差异,这种差异可增加到29.56%。含有还原型谷胱甘肽/trolox或维生素C/trolox的成像缓冲液在成像和非成像区域之间的差异通常小于6%(表3和表4)。这表明,相对于不含保存试剂的成像缓冲液,各自与trolox组合的谷胱甘肽或维生素C,可对强度损失产生保护作用。

表3示出了还原型谷胱甘肽(100mM)、trolox(4mM)、pH 8.2的成像缓冲液的结果。每个已测序碱基A、C、G或T的强度值和差异(Rho强度是DNB组的平均强度表示)。第48列是指已成像的一组场,而第49列是指接近但未成像的一组场。在上图中,场在进行全泳道成像和第二链合成之前进行95次测序(SE95)循环和减影成像,然后在第二链上进行另外5次测序(PE5)。示出了成像和非成像场之间的强度差异。

表3

表4示出含有维生素C的成像缓冲液的结果。每个测序碱基A、C、G或T的强度值和差异(Rho强度是DNB组的平均强度表示)。第48列是指已成像的一组场,而第49列是指接近但未成像的一组场。在上图中,场在进行全泳道成像和第二链合成之前进行95次测序循环(SE95)和减影成像,然后在第二条链上进行另外5次测序(PE5)。示出了成像和非成像场之间的强度差异。

表4

当将来自表5和表3的数据进行比较时,包含trolox提供了如下所示的附加的有益效果。不添加trolox的还原型谷胱甘肽(表5)示出强度差异为7.21%至11.8%,并且在第二链制备后具有相似差异。含有trolox的谷胱甘肽示出成像/未成像区域之间的差异小于6%(表3)。

表5示出了不含trolox的还原型谷胱甘肽成像缓冲液pH8.2的结果。每个已测序碱基A、C、G或T的强度值和差异(Rho强度是DNB组的平均强度表示)。第48列是指已成像的一组场,而第49列是指接近但未成像的一组场。在上图中,场在进行全泳道成像和第二链合成之前进行95次测序循环(SE95)和减影成像,然后在第二链上进行另外5次测序(PE5)。示出成像和非成像场之间的强度差异。

表5

较低pH7.2(表6)增加了成像和非成像区域之间的差异,第一链测序时的差异为33%-42%,第二链测序的差异为约60%,从而表明谷胱甘肽在较低pH值下的保护作用较小。

谷胱甘肽的浓度从100mM降低至25mM示出成像区域和非成像区域之间的差异略有增加,如表3和表7的数据所示。第一链差异在使用25mM谷胱甘肽的情况下为约6-7%,与使用100mM谷胱甘肽的情况下差异为4-5%相比。

表6示出了pH 7.2的包含还原型谷胱甘肽的成像缓冲液的结果。每个已测序碱基A、C、G或T的强度值和差异(Rho强度是DNB组的平均强度表示)。第48列是指已成像的一组场,而第49列是指接近但未成像的一组场。在上图中,场在进行全泳道成像和第二链合成之前进行95次测序循环(SE95)和减影成像,然后在第二链上进行另外5次测序(PE5)。示出成像和非成像场之间的强度差异。

表6

表7示出了还原型谷胱甘肽(25mM)成像缓冲液的结果。每个已测序碱基A、C、G或T的强度值和差异(Rho强度是DNB组的平均强度表示)。第48列是指已成像的一组场,而第49列是指接近但未成像的一组场。在上图中,场在进行全泳道成像和第二链合成之前进行95次测序循环(SE95)和减影成像,然后在第二链上进行另外5次测序(PE5)。示出成像和非成像场之间的强度差异。

表7

实施例数据汇总

上述表1A至7中的数据可以近似和总结如表8所示。

表8

在这些反应条件下,pH 8.2的4mM Trolox和100mM谷胱甘肽的组合将第一链的信号损失从14%降低到6%(57%改善),并将第二链的信号损失从29%降低到3%(90%改善)(表1A和3,与表2相比)。与单独的谷胱甘肽相比,存在trolox与谷胱甘肽的组合在防止第一链和第二链合成中的信号损失方面分别提高40%和66%(表5)。当在工作pH值范围之外使用时,谷胱甘肽的有益效果丧失(表6),但当谷胱甘肽的浓度降低至25mM时(表7),其有益效果大部分得以保留。

于在美国和其他有效的司法管辖区的所有目的,本公开中引用的每个出版物和专利文件在此以引用方式全文并入本文以用于所有目的,其程度如同与每个此类出版物或文件被具体地和单独地指示为以引用方式并入本文那样。

虽然本发明已参考具体实施例和说明进行了描述,但是可以做出改变并且可替换等同物以适应特定上下文或旨在用作常规开发和优化的问题并且在本领域普通技术人员的范畴内,从而在不脱离所要求保护的范围及其等同物的情况下实现本发明的有益效果。

26页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:用于检测淋病奈瑟氏球菌的组合物和方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!