氨基吡啶型季铵盐阳离子表面活性剂、制备方法及应用

文档序号:2456 发布日期:2021-09-17 浏览:44次 >En<

阅读说明:本技术 氨基吡啶型季铵盐阳离子表面活性剂、制备方法及应用 (Aminopyridine type quaternary ammonium salt cationic surfactant, preparation method and application ) 是由 王利民 韩露 刘祥海 程小蓉 张蒙 程毅 田禾 韩建伟 于 2021-05-26 设计创作,主要内容包括:本发明公开了一种氨基吡啶型季铵盐阳离子表面活性剂、制备方法及应用,该表面活性剂的结构如下所示:本发明选用氨基吡啶为原料制备上述季铵盐型阳离子表面活性剂,合成方法简单,条件温和,制备的表面活性剂临界胶束浓度低,最低表面张力低,表面活性好,对铜的腐蚀抑制作用强,抗菌效果好,可用在缓蚀剂、铜管清洗剂、抗菌剂等领域。相同质量浓度下,全系产物对铜的腐蚀抑制作用明显优于市售季铵盐缓蚀剂。(The invention discloses an aminopyridine type quaternary ammonium salt cationic surfactant, a preparation method and application thereof, wherein the surfactant has the following structure: the quaternary ammonium salt cationic surfactant is prepared by taking aminopyridine as a raw material, the synthesis method is simple, the conditions are mild, the prepared surfactant is low in critical micelle concentration, low in lowest surface tension, good in surface activity, strong in corrosion inhibition effect on copper and good in antibacterial effect, and can be used in the fields of corrosion inhibitors, copper pipe cleaning agents, antibacterial agents and the like. Under the same mass concentration, the corrosion inhibition effect of the complete product on copper is obviously better than that of the commercial quaternary ammonium salt corrosion inhibitor.)

氨基吡啶型季铵盐阳离子表面活性剂、制备方法及应用

技术领域

本发明属于表面活性剂,具体涉及一种氨基吡啶型季铵盐阳离子表面活性剂、制备方法及应用。

背景技术

金属腐蚀广泛存在于日常生活及工业生产领域,其不仅带来巨大的经济损失,同时设备腐蚀容易诱发生产安全事故。合理使用缓蚀剂是抑制腐蚀最有效和经济的措施。

添加缓蚀剂分子是防止金属腐蚀的有效方法之一,目前已被广泛应用于化学清洗、大气环境、石油产品的生产加工等生产过程中。因其成本较低、工艺简单等优点,有关缓蚀剂的已发表论文数量呈上升趋势。

季铵盐型阳离子表面活性剂是产量高、应用广的阳离子表面活性剂,其中比较典型、最为常见的一类为吡啶季铵盐阳离子表面活性剂,因其水溶性好,既耐酸又耐碱且具有较强的杀菌作用,被广泛应用于工业生产和日用产品中。

吡啶季铵盐阳离子表面活性剂主要包括烷基吡啶季铵盐阳离子表面活性剂及含氟季铵盐型阳离子表面活性剂,但其合成工艺还有待研究和完善,存在产物提纯困难、复杂等问题;同时其表面张力以及缓释抑制作用尚有待增强,以降低对环境的影响程度。

发明内容

本发明是为解决上述技术问题进行的,提供了一种新的氨基吡啶型季铵盐阳离子表面活性剂及其制备方法,并将其应用于制备缓蚀剂、铜管清洗剂或抗菌剂。

本发明的改进思路如下:通过有机合成、电化学分析、界面性能分析等手段,开发性能优异、具有实用价值的氨基吡啶型季铵盐阳离子表面活性剂。所制备的吡啶型季铵盐阳离子表面活性剂临界胶束浓度低、最低表面张力低、表面活性好,对铜的腐蚀抑制作用强。

本发明的首要目的在于提供一种氨基吡啶型季铵盐阳离子表面活性剂;第二目的在于提供该表面活性剂的制备方法;第三目的在于提供该表面活性剂的应用,将其用于制备缓蚀剂、铜管清洗剂或抗菌剂,并与市面上常用的咪唑啉季铵盐进行对比。

本发明的第一方面,提供了一种氨基吡啶型季铵盐阳离子表面活性剂,其结构如式(1)所示:

其中:

R1独立地选自C1-C20饱和或不饱和的烷基链或全氟链;

R2独立地选自苄基、直链烃基、支链烃基、芳基、C1-C20链烯基取代的芳基、取代或未取代的环烷基或杂环基中的一种;

X为卤素,优选自Cl、Br以及I中的任意一种。

优选的,该氨基吡啶型季铵盐阳离子表面活性剂的结构式如式A~式J任一种所示:

本发明实施例部分,以上述结构为例进行制备和性能测试,表面活性、临界胶束浓度以及缓释效果均优异。卤素选择上,还可以选择Cl以及I。

本发明的第二方面,提供了上述氨基吡啶型季铵盐阳离子表面活性剂的制备方法,反应过程的结构式如下:

具体反应步骤如下:

S1、将氨基吡啶(2)溶于溶剂并加入反应器中,冰浴条件下加入缚酸剂,搅拌一定时间后加入酰氯(3),所述氨基吡啶与酰氯的摩尔比为0.5~3:1,反应温度在0℃~50℃,反应时间为1h~48h,获得中间体化合物(4);

S2、将中间体化合物(4)溶于溶剂中,加入季铵化试剂(5),控制反应温度在10℃~100℃,反应时间为1h~48h,获得吡啶型季铵盐阳离子表面活性剂(1),其中,所述中间体化合物(4)与季铵化试剂(5)的摩尔比为1:0.5~3。

优选的,步骤S1中,氨基吡啶与酰氯的摩尔比为1~1.5:1,氨基吡啶与缚酸剂的摩尔比为1:1;溶剂选自二氯甲烷、二氯乙烷、氯仿、丙酮、乙腈中的任意一种或多种组合;缚酸剂选自三乙胺、吡啶、N,N-二异丙基乙胺中的任意一种或多种组合。

此外,步骤S1中,反应结束后,采用多次水萃取洗去多余酰氯及缚酸剂,有机层旋除溶剂后,得到中间体化合物(4)。

优选的,步骤S2中,中间体化合物(4)与季铵化试剂(5)的摩尔比为1:1~1.5;溶剂选自乙腈、乙酸乙酯、丙酮、甲醇、乙醇中的任意一种或多种。

本发明的第三方面,提供了上述氨基吡啶型季铵盐阳离子表面活性剂在制备缓蚀剂、铜管清洗剂或抗菌剂中的应用。根据实施例中的测试结果,相同质量浓度下,化合物A~I的缓蚀效果优于市售咪唑啉季铵盐缓蚀剂;部分化合物的腐蚀抑制作用优于市售咪唑啉季铵盐缓蚀剂。

本发明的第四方面,提供了一种缓蚀剂、铜管清洗剂或抗菌剂,其活性组分为上述的氨基吡啶型季铵盐阳离子表面活性剂。

本发明的有益效果如下:

首先,制备工艺方面,本发明工艺制备路线简单,反应原料易得,反应条件温和,易于进行扩大化试产或推广;

其次,本发明的氨基吡啶型季铵盐阳离子表面活性剂产物结构中含有四级铵结构,产物水溶性好,且所制备的季铵盐阳离子表面活性剂临界胶束浓度低,最低表面张力低,表面活性好。

根据测试结果,本发明的氨基吡啶型季铵盐阳离子表面活性剂中,化合物A~J中临界胶束浓度CMC值最小的化合物F可达到1.60×10-5mol/L,最低表面张力最小的化合物I,其最低表面张力γCMC可达到21.67mN/m,表面活性好。

性能方面,全系化合物A~I在0.5M H2SO4溶液中,对铜的腐蚀抑制作用优于市售咪唑啉季铵盐化合物。其中,化合物C在低浓度140ppm下,缓蚀效果最佳,在低浓度下即可达到较高的缓蚀效果。

附图说明

图1~9分别为化合物A~I的水溶液的表面张力(γ)与浓度(c)的关系示意图;

图10~16分别为化合物A~E、G、H于0.5M H2SO4溶液中,加入不同质量浓度梯度的极化测试图,以铜片作为工作电极,铂片作为对电极和饱和甘汞电极作为参比电极,测得的极化曲线图。

图17为市售咪唑啉季铵盐于相同条件下,测得的极化曲线图。

具体实施方式

下面结合本发明的附图和实施例对本发明的实施作详细说明,以下实施例是在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体操作过程,但本发明的保护范围不限于下述的实施例。

实施例1化合物A

(1)中间体A-1的制备

在250mL圆底烧瓶中加入氨基吡啶(1~1.5eq)和定量溶剂二氯甲烷,置于冰浴上。另取三乙胺溶液(1~1.5eq),逐滴加入圆底烧瓶中,搅拌一段时间后,加入辛酰氯(1~1.5eq),并保持冰浴1h后,控制反应温度在0℃~50℃,磁力搅拌,反应时间为1h~48h。反应结束后,用水3次萃取洗去多余酰氯及三乙胺溶液,有机层旋除溶剂后,得到白色固体为中间体A-1。

(2)化合物A的制备

在耐压管中加入中间体A-1(1eq)、季铵化试剂1-溴丁烷(1~1.5eq)和定量溶剂DMF,控制反应温度为10℃~100℃,反应时间为1h~48h。反应结束后,旋除反应液中溶剂,并用乙醚洗涤产物,最终得到白色固体化合物A。

化合物A的1H NMR如下:

1H NMR(400MHz,CDCl3)δ11.87(s,1H),8.76(d,J=6.3Hz,2H),8.61(d,J=6.6Hz,2H),4.58(t,J=7.2Hz,2H),2.70(t,J=7.3Hz,2H),1.97–1.83(m,2H),1.75–1.57(m,2H),1.40–1.12(m,10H),0.92(t,J=7.3Hz,3H),0.81(t,J=6.2Hz,3H).

化合物A的13C NMR如下:

13C NMR(101MHz,CDCl3)δ175.29,153.29,143.85,115.50,59.86,37.71,33.43,31.68,29.11,29.01,24.85,22.61,19.33,14.11,13.53.

化合物A的HRMS如下:

HRMS(ESI-TOF):m/z[M-Br]+calculated for C17H29N2O+:277.2274,Found:277.2.

实施例2化合物B

中间体B-1的合成步骤参照实施例1。

化合物B的1H NMR如下:

1H NMR(400MHz,CDCl3)δ11.97(s,1H),8.74(d,J=5.3Hz,2H),8.64(d,J=6.6Hz,2H),4.57(t,J=7.1Hz,2H),2.73(t,J=7.3Hz,2H),1.93(dd,J=16.1,9.3Hz,2H),1.74–1.62(m,2H),1.26(d,J=23.0Hz,14H),0.83(d,J=6.7Hz,6H).

化合物B的13C NMR如下:

13C NMR(101MHz,CDCl3)δ175.44,153.42,143.79,115.57,60.20,37.76,31.73,31.52,31.16,29.17,29.07,25.75,24.89,22.67,22.42,14.16,13.97.

化合物B的HRMS如下:

HRMS(ESI-TOF):m/z[M-Br]+calculated for C19H33N2O+:305.2587,Found:305.3.

实施例3化合物C

中间体C-1的合成步骤参照实施例1。

化合物C的1H NMR如下:

1H NMR(400MHz,CDCl3)δ11.86(s,1H),8.74(d,J=7.3Hz,2H),8.59(d,J=7.2Hz,2H),4.56(t,J=7.2Hz,2H),2.69(t,J=7.4Hz,2H),1.98–1.84(m,2H),1.70–1.59(m,2H),1.34–1.13(m,18H),0.85–0.75(m,6H).

化合物C的13C NMR如下:

13C NMR(101MHz,CDCl3)δ175.21,153.22,143.81,115.43,60.09,37.66,31.63,31.60,31.49,29.07,28.96,26.00,24.81,22.56,22.52,14.06,14.00.

化合物C的HRMS如下:

HRMS(ESI-TOF):m/z[M-Br]+calculated for C21H37N2O+:333.2900,Found:333.3.

实施例4化合物D

中间体D-1的合成步骤参照实施例1。

化合物D的1H NMR如下:

1H NMR(400MHz,CDCl3)δ12.55(s,1H),8.78(d,J=6.3Hz,2H),8.57(d,J=7.1Hz,2H),4.55(t,J=7.2Hz,2H),2.68(t,J=7.4Hz,2H),1.94–1.84(m,2H),1.69–1.57(m,2H),1.37–1.13(m,14H),0.90(t,J=7.3Hz,3H),0.79(t,J=6.8Hz,3H).

化合物D的13C NMR如下:

13C NMR(101MHz,CDCl3)δ175.50,153.51,143.84,115.54,77.16,59.75,37.59,33.38,31.84,29.44,29.43,29.24,29.05,24.80,22.63,19.31,14.10,13.48.

化合物D的HRMS如下:

HRMS(ESI-TOF):m/z[M-Br]+calculated for C19H33N2O+:305.2587,Found:305.3.

实施例5化合物E

中间体E-1的合成步骤参照实施例1。

化合物E的1H NMR如下:

1H NMR(400MHz,CDCl3)δ12.52(s,1H),8.75(d,J=6.8Hz,2H),8.52(d,J=5.5Hz,2H),4.51(t,J=7.1Hz,2H),2.64(dd,J=10.1,4.5Hz,2H),1.85(d,J=6.4Hz,2H),1.64–1.53(m,2H),1.18(dd,J=18.3,9.0Hz,18H),0.75(dd,J=5.9,4.8Hz,6H).

化合物E的13C NMR如下:

13C NMR(101MHz,CDCl3)δ175.41,153.41,143.80,115.46,77.16,59.93,37.51,31.77,31.37,31.02,29.38,29.36,29.18,28.99,25.61,24.74,22.56,22.27,14.02,13.82.

化合物E的HRMS如下:

HRMS(ESI-TOF):m/z[M-Br]+calculated for C21H37N2O+:333.2900,Found:333.3.

实施例6化合物F

中间体F-1的合成步骤参照实施例1。

化合物F的1H NMR如下:

1H NMR(400MHz,CDCl3)δ12.48(s,1H),8.75(d,J=6.6Hz,2H),8.55(d,J=6.3Hz,2H),4.53(t,J=7.1Hz,2H),2.66(t,J=7.3Hz,2H),1.88(s,2H),1.61(dd,J=14.0,6.9Hz,2H),1.20(d,J=31.7Hz,22H),0.77(dd,J=6.8,2.2Hz,6H).

化合物F的13C NMR如下:

13C NMR(101MHz,CDCl3)δ175.48,153.47,143.80,115.50,77.16,60.01,37.58,31.83,31.59,31.47,29.44,29.42,29.23,29.04,28.96,26.02,24.79,22.62,22.51,14.08,14.00.

化合物F的HRMS如下:

HRMS(ESI-TOF):m/z[M-Br]+calculated for C23H41N2O+:361.3213,Found:361.3.

实施例7化合物G

中间体G-1的合成步骤参照实施例1。

化合物H的1H NMR如下:

1H NMR(400MHz,CDCl3)δ12.53(s,1H),8.76(s,2H),8.60(d,J=6.6Hz,2H),4.56(t,J=7.1Hz,2H),2.71(t,J=7.3Hz,2H),1.97–1.87(m,2H),1.70–1.61(m,2H),1.37–1.14(m,18H),0.93(t,J=7.2Hz,3H),0.83(t,J=6.3Hz,3H).

化合物H的13C NMR如下:

13C NMR(101MHz,CDCl3)δ175.64,153.62,143.81,115.65,77.16,59.86,37.69,33.44,31.96,29.68,29.55,29.39,29.14,24.87,22.74,19.39,14.19,13.56.

化合物G的HRMS如下:

HRMS(ESI-TOF):m/z[M-Br]+calculated for C21H37N2O+:333.2900,Found:333.3.

实施例8化合物H

中间体H-1的合成步骤参照实施例1。

化合物H的1H NMR如下:

1H NMR(400MHz,CDCl3)δ12.56(s,1H),8.74(s,2H),8.58(d,J=6.4Hz,2H),4.54(t,J=6.9Hz,2H),2.69(t,J=7.1Hz,2H),1.90(d,J=6.5Hz,2H),1.64(dd,J=14.0,6.9Hz,2H),1.22(d,J=29.6Hz,22H),0.81(t,J=5.6Hz,6H).

化合物H的13C NMR如下:

13C NMR(101MHz,CDCl3)δ175.60,153.58,143.79,115.60,77.16,60.08,37.64,31.92,31.46,31.13,29.64,29.52,29.35,29.11,25.73,24.84,22.70,22.39,14.15,13.93.

化合物H的HRMS如下:

HRMS(ESI-TOF):m/z[M-Br]+calculated for C23H41N2O+:361.3526,Found:389.4.

实施例9化合物I

中间体I-1的合成步骤参照实施例1。

化合物I的1H NMR如下:

1H NMR(400MHz,CDCl3)δ12.54(s,1H),8.72(s,2H),8.59(d,J=6.5Hz,2H),4.53(t,J=7.0Hz,2H),2.70(t,J=7.2Hz,2H),1.92(s,2H),1.71–1.61(m,2H),1.24(d,J=33.9Hz,28H),0.82(s,6H).

化合物I的13C NMR如下:

13C NMR(101MHz,CDCl3)δ175.64,153.60,143.78,115.66,77.16,60.14,37.67,31.95,31.68,31.52,29.67,29.55,29.38,29.14,29.03,26.11,24.86,22.73,22.60,14.17,14.08.

化合物I的HRMS如下:

HRMS(ESI-TOF):m/z[M-Br]+calculated for C25H45N2O+:389.3526,Found:389.4.

实施例10化合物J

化合物J的1H NMR如下:

1H NMR(400MHz,CDCl3)δ10.76(s,1H),9.05(d,J=6.6Hz,2H),8.99(d,J=6.6Hz,2H),4.74(t,J=7.0Hz,2H),1.98(s,2H),1.24(d,J=19.5Hz,10H),0.83(t,J=5.0Hz,3H).

化合物J的13C NMR如下:

13C NMR(101MHz,CDCl3)δ159.13,158.63,151.47,145.08,141.49,138.64,118.26,110.75,77.48,77.16,76.84,61.17,46.31,31.69,29.03,26.10,22.60,14.05,8.77.

化合物I的HRMS如下:

HRMS(ESI-TOF):m/z[M-Br]+calculated for C21H22F15N2O+:603.1487,Found:603.1.

实施例11化合物A~I的表面活性的性能测试

配置1mmol/L的化合物A~I的水溶液,利用吊片法在20℃下通过JK99C全自动张力仪测定化合物A~I水溶液的表面张力。绘制γ-lgc的曲线,从溶液浓度继续增大而表面张力不变化的突变点读取CMC值。

具体结果如图1~9所示:图1为化合物A的水溶液的表面张力(γ)与浓度(c)的关系示意图,从图1可得到化合物A的临界胶束浓度CMC=7.06×10-5mol/L,最低表面张力γCMC=52.19mN/m;图2为化合物B的水溶液的表面张力(γ)与浓度(c)的关系示意图,从图2可得到化合物B的临界胶束浓度CMC=9.68×10-5mol/L,最低表面张力γCMC=46.12mN/m;图3为化合物C的水溶液的表面张力(γ)与浓度(c)的关系示意图,从图3可得到化合物C的临界胶束浓度CMC=7.49×10-5mol/L,最低表面张力γCMC=30.19mN/m;图4为化合物D的水溶液的表面张力(γ)与浓度(c)的关系示意图,从图4可得到化合物D的临界胶束浓度CMC=3.44×10-4mol/L,最低表面张力γCMC=35.98mN/m;图5为化合物E的水溶液的表面张力(γ)与浓度(c)的关系示意图,从图5可得到化合物E的临界胶束浓度CMC=6.60×10-5mol/L,最低表面张力γCMC=28.36mN/m;图6为化合物F的水溶液的表面张力(γ)与浓度(c)的关系示意图,从图6可得到化合物F的临界胶束浓度CMC=1.60×10-5mol/L,最低表面张力γCMC=27.58mN/m;图7为化合物G的水溶液的表面张力(γ)与浓度(c)的关系示意图,从图7可得到化合物G的临界胶束浓度CMC=5.89×10-5mol/L,最低表面张力γCMC=29.83mN/m;图8可得到化合物H的临界胶束浓度CMC=6.92×10-5mol/L,最低表面张力γCMC=22.78mN/m;图9可得到化合物I的临界胶束浓度CMC=2.12×10-5mol/L,最低表面张力γCMC=21.67mN/m。

由图1~9可知,化合物A~I,当酰胺基团上的链长逐渐增加时,化合物的最低表面张力值逐渐降低,同时,吡啶N上所连接的烷基链长的增加也使得表面张力值逐渐降低,CMC值也随碳链长度的增加而逐渐降低,表明其降低水的表面张力的能力越好。由此可以看出,长碳链的存在能明显降低表面张力。但是,随着疏水链长度的逐渐增加,最低表面张力值降低的趋势趋于平稳,意味着表面张力值并不是随着碳链长度的增加而一直降低的,当下降到一定程度时最低表面张力值不再继续下降。因此,该类化合物在用量很少的情况下就能降低溶液的表面张力,应用价值显著。其中,由于含氟化合物J的强疏水性,导致其在水溶液中溶解性极差,因此,表面张力不予测试。

实施例12化合物A~J的极化曲线测试

配制0.5M的H2SO4溶液,以10*10*0.1mm3的铜片作为工作电极,铂片作为对电极,饱和甘汞电极为参比电极,在进行电化学实验之前,先在400、800、1200和2000目砂纸上对铜的工作面进行打磨。当整个铜表面光滑后,将其依次置于蒸馏水和无水乙醇中,最后在室温下干燥,在0.5M H2SO4(100mL)溶液中分别加入不同质量浓度的化合物A~J,测试其极化曲线。化合物F、I、J在0.5M硫酸溶液中溶解性较差,不予测试,化合物A~E、G、H的具体结果分别如图10~16所示,对应的缓蚀速率结果如表1~表7所示。

图10~16为化合物分子与空白组0.5M硫酸溶液的极化曲线对比图,通过测试不同化合物梯度浓度的极化曲线,以此得出最佳缓蚀浓度。根据极化曲线图得出的缓蚀速率,发现化合物G在用量很少的情况下就能达到很好的腐蚀抑制效果,应用价值显著。

表1化合物A的缓蚀速率结果

表2化合物B的缓释速率结果

表3化合物C的缓释速率结果

表4化合物D的缓释速率结果

表5化合物E的缓蚀速率结果

表6化合物G的缓释速率结果

表7化合物H的缓释速率结果

对比例

以现有商品化的咪唑啉季铵盐缓蚀剂重复实施例12的测试,具体结果如表8所示:

表8咪唑啉季铵盐的缓释速率结果

市售咪唑啉季铵盐缓蚀剂的极化曲线图如图17所示,从中可得到市售咪唑啉季铵盐缓蚀剂在70PPM时达到最佳抑制浓度,但是缓蚀速率较低,同时随着缓蚀剂浓度的增加,缓蚀效果逐渐下降。对比图10~图16与图17,市售咪唑啉季铵盐缓蚀剂具有缓蚀效果,但相同质量浓度下,缓蚀效果差于化合物A~I。

极化曲线结果是考察了相同浓度下,腐蚀电流密度的大小,一般来说,腐蚀电流密度越小,对应的腐蚀抑制作用就越强。本发明中,化合物B和C的效果优于其他化合物及市售咪唑啉季铵盐缓蚀剂。

由上述结果可知,本发明所提供的氨基吡啶型季铵盐表面活性剂的腐蚀抑制效果均优于市售咪唑啉季铵盐缓蚀剂,有望被开发为一种性能优异的缓蚀剂。

以上已对本发明创造的较佳实施例进行了具体说明,但本发明创造并不限于所述实施例,熟悉本领域的技术人员在不违背本发明创造精神的前提下还可作出种种的等同的变型或替换,这些等同的变型或替换均包含在本申请权利要求所限定的范围内。

25页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一类聚醚酰胺离子液体催化剂及其制备方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!