层叠膜结构及层叠膜结构的制造方法

文档序号:453230 发布日期:2021-12-28 浏览:54次 >En<

阅读说明:本技术 层叠膜结构及层叠膜结构的制造方法 (Laminated film structure and method for manufacturing laminated film structure ) 是由 岛田和哉 速水雅仁 坂田俊彦 着能真 于 2020-12-24 设计创作,主要内容包括:对于像以往那样进行的在被处理物上形成氧化物层、并通过镀覆在其上形成金属膜的方法而言,金属膜的密合性低,且可以得到平坦的被处理面,但不易于在通孔的内壁面形成金属膜。用金属膜的形成方法制作的金属膜的密合性高,且也能形成于通孔的内壁上,所述金属膜的形成方法的特征在于,具有如下工序:第一成膜工序,使被处理物的被处理面与包含氟和氧化物前体的反应溶液接触,从而在前述被处理面上形成氧化物层;氟去除工序,将前述氧化物层的氟去除;催化剂负载工序,使催化剂溶液与前述氧化物层接触,从而使前述氧化物层负载催化剂;及,第二成膜工序,使化学镀液与前述氧化物层接触,从而在前述氧化物层上使金属膜析出。(In the conventional method of forming an oxide layer on a workpiece and forming a metal film thereon by plating, the metal film has low adhesion and a flat surface to be processed can be obtained, but it is not easy to form a metal film on the inner wall surface of a through hole. A method for forming a metal film, which is capable of forming a metal film having high adhesion even on the inner wall of a through-hole, comprising the steps of: a first film formation step of bringing a surface to be treated of a treatment object into contact with a reaction solution containing fluorine and an oxide precursor to form an oxide layer on the surface to be treated; a fluorine removal step of removing fluorine in the oxide layer; a catalyst supporting step of bringing a catalyst solution into contact with the oxide layer to support a catalyst on the oxide layer; and a second film forming step of bringing an electroless plating solution into contact with the oxide layer to deposit a metal film on the oxide layer.)

层叠膜结构及层叠膜结构的制造方法

技术领域

本发明涉及在树脂基板、陶瓷基板、玻璃基板、石英基板、硅基板等绝缘基板、或铜、铝、银等金属上形成有金属膜的层叠膜结构及层叠膜结构的制造方法和其形成装置、以及利用该层叠膜结构的电子产品。

背景技术

以往,金属膜在被处理物上的形成采用了镀覆法。该方法首先利用化学镀在被处理物的表面形成金属膜,之后,利用电解镀使金属膜厚增大。

为了确保金属膜的密合性,在进行化学镀时,在预先利用湿式蚀刻等手段对被处理物表面赋予微细凹凸的粗化处理后,需要使被处理物表面负载例如钯等催化剂金属。之后,利用化学镀,负载于被处理物表面的催化剂金属成为核,在其上形成金属膜。

另一方面,作为不进行被处理物的粗化处理而形成金属膜的技术,已知有在被处理物表面形成氧化物层,并利用镀覆等在其上形成金属膜的方法。

氧化物层的制作已知有以下方法:用硅烷偶联剂将被处理物的表面改性,之后,涂布或浸渍氧化物胶体溶液的方法(专利文献1);使用溅射法的方法(非专利文献1);与包含金属离子的水溶液接触,从而使氧化物层沉积于被处理面上的方法(专利文献2)。

使氧化物沉积于被处理面上的方法中,在玻璃、树脂、陶瓷、石英、硅等的表面形成金属膜的方法备受注目。另外,作为优点可举出无需为了与被处理面的密合性而进行粗糙化等。

然而,如专利文献1、非专利文献1,对于基于胶体溶液、溅射等方法的氧化物层在被处理面的形成而言,在平坦的被处理面上是可行的,但在通孔的内壁面的形成并不容易,结果有产生金属膜的形成不均的问题。另外,如专利文献2,对于与包含金属离子的水溶液接触,从而使氧化物层沉积于被处理面上的方法而言,有水溶液中包含有机溶剂、沉积操作烦杂、且难以均匀地沉积等问题。

已知包含氟的液相析出法(Liquid Phase Deposition;以下也称作“LPD法”。)能够形成稳定的氧化物层。通过在利用LPD法形成的氧化物层上负载催化剂后,利用化学镀法进行金属膜形成,由此可以解决专利文献1、2、非专利文献1等方法中存在的上述问题。

现有技术文献

专利文献

专利文献1:日本专利第4508680号公报

专利文献2:日本特表2016-533429公报

非专利文献

非专利文献1:富山县工业技术中心研究报告N0.25(2011)

发明内容

发明要解决的问题

然而,发现:通过LPD法在被处理面上形成氧化物层,之后用镀覆法形成金属膜时,在某些条件下,最终的金属膜会产生不均、微小膨胀部分等。

用于解决问题的方案

本发明人等进行了深入研究,结果发现:用LPD法形成氧化物层,并使催化剂负载于氧化物层后,利用化学镀法形成金属膜时发生不均、微小膨胀、裂纹或剥离的原因在于被处理面上残留的氟,从而想到了本发明。即,本发明提供解决这样的问题的层叠膜结构及层叠膜结构的制造方法。

具体而言本发明的层叠膜结构的特征在于,具有:

包含绝缘体或预先在表面形成有导电层的绝缘体的被处理物、

形成于前述被处理物表面上的氧化物层、

形成于前述氧化物层上的催化剂层、及

形成于前述催化剂层上的金属膜层,

前述氧化物层的氟含量为0.01质量%以上且0.1质量%以下。

另外,本发明的层叠膜结构的制造方法的特征在于,具有如下工序:

第1成膜工序,使包含绝缘体或预先在表面形成有导电层的绝缘体的被处理物的被处理表面与包含氟和氧化物前体的反应液接触,从而在前述被处理面上形成氧化物层;

氟去除工序,将前述氧化物层的氟去除;

催化剂负载工序,使催化剂溶液与前述氧化物层接触,从而使前述氧化物层负载催化剂;及

第二成膜工序,使化学镀液与前述氧化物层接触,从而在前述氧化物层上使金属膜析出。

需要说明的是,关于本发明的层叠膜结构,还包括将形成金属膜前的氟去除而成的氧化物层。具体而言,本发明的层叠膜结构的特征在于,具有:

包含绝缘体或预先在表面形成有导电层的绝缘体的被处理物;及

前述绝缘体表面上形成的氧化物层,

前述氧化物层的氟含量为0.01质量%以上且0.1质量%以下。

另外,关于同样的制造方法,还包括将氟去除而成的氧化物层。具体而言,本发明的层叠膜结构的制造方法的特征在于,包括如下工序:

第1成膜工序,使包含绝缘体或预先在表面形成有导电层的绝缘体的被处理物的被处理面与包含氟和氧化物前体的反应液接触,从而在前述被处理面上形成氧化物层;及

氟去除工序,将前述氧化物层的氟去除。

发明的效果

本发明中,使包含氟和氧化物前体的反应溶液与被处理物接触,从而在被处理面形成氧化物层,因此得到的氧化物层通过化学键合在被处理物的被处理面上形成,即使没有烧结工序也难以剥离。

另外,本发明中,在形成氧化物层后,追加将氧化物层中残留的氟去除的工序,因此对于之后的工序中沉积的金属膜等而言,能够避免氧化物层中残留的氟脱离导致的缺陷,从而能够稳定地形成金属膜。

另外,氧化物层比被处理面本身的催化剂的负载性高,结果利用化学镀得到的金属膜也同样地难以从被处理面剥离。

另外,通过在反应溶液中包含氟,从而氧化物前体以完全被离子化的状态与被处理面接触,因此即使在如通孔那样的狭窄部也可使这些离子扩散。其结果,可以在包括通孔在内的被处理物的被处理面上均匀地形成氧化物层,因此与化学镀相比,更能均匀地制作金属膜。

另外,本发明中形成的氧化物层与被处理面本身相比,催化剂的吸附、扩散特性高,因此可以以更高密度负载催化剂,结果金属膜与氧化物层的密合性也高。

另外,本发明中形成的氧化物层在不借助偶联剂等的情况下直接形成于被处理物的被处理面上。因此,在不考虑偶联剂的分解的情况下,能够实施用于金属膜的应力去除、密合提高的退火工序。

另外,本发明中形成的金属膜借助氧化物层与被处理物密合,即使不对被处理物的被处理面进行粗糙化,也不会剥离。因此,可以得到平滑性高的金属膜,这样的金属膜在趋肤效应下的损耗小,即使在第5代移动通信系统(5G)、车载毫米波雷达天线、高速传输中使用的MHL3.0、Thunderbolt等接口等中使用的高频段下使用,也不会影响到传输损耗。

另外,无需预先用硅烷偶联剂对被处理物的被处理面进行改性的工艺,能够更简单地形成氧化物层。

附图说明

图1为说明本发明的金属膜的形成方法的原理的图。

图2为说明本发明的金属膜的形成工序的图。被处理物仅为绝缘基板的情况。

图3为说明本发明的金属膜的形成工序的图。被处理物在绝缘基板上预先形成有金属层的情况。

图4为说明本发明的金属膜的形成装置的构成的图。

图5为示出测定氧化物层中的含氟率的位置的照片。

具体实施方式

以下示出实施例,对本发明的层叠膜结构的形成方法进行说明。需要说明的是,以下的说明中例示出本发明的一个实施方式,但本发明并不限定于以下的说明。以下的说明在不脱离本发明的主旨的范围内可以进行改变。需要说明的是,以下的说明中,“上”是指远离作为基准的被处理面的方向,“下”是指接近被处理面的方向。另外,“正上方”及“正下方”是指之间不包含其他层的构成。另外,本发明的层叠膜结构中还包括在具有被处理面的被处理物上仅形成有1层氧化物层的结构。即,被处理面上层叠的层可以为1层。

本发明的层叠膜结构的形成方法的特征在于,具有如下工序:

第一成膜工序,使被处理物的被处理面与包含氟和氧化物前体的反应溶液接触,从而在前述被处理面上形成氧化物层、

氟去除工序,将前述氧化物层的氟去除;

催化剂负载工序,使催化剂溶液与前述氧化物层接触,从而使前述氧化物层上负载催化剂;及

第二成膜工序,使化学镀液与前述氧化物层接触,从而在前述氧化物层上使金属膜析出。以下对本发明的金属膜的形成方法的原理进行概述。

图1示出本发明的层叠膜结构的形成方法。参照图1(a),第一成膜工序中,被处理物10的被处理面12与包含氟和氧化物前体离子的反应溶液接触。需要说明的是,被处理面12在处理前通过化学溶液清洗、UV、等离子体照射等方法进行净化。

其结果,通过后述的反应,氧化物前体离子的氧化物析出,被处理面12上形成氧化物层114(图1(a))。之后,停止与反应溶液的接触,用水进行清洗,由此将反应溶液去除。即使用水进行清洗,氧化物层114也不会被损伤。

接着,进行将氧化物层114中残留的氟去除的氟去除工序(图1(b))。如上所述,本发明中,氧化物层114是使用包含氟的反应溶液,并在液相中形成。因此,生成的氧化物层114中含有氟。通过去除该氟,从而能够避免之后层叠的金属膜20中产生损坏。作为氟去除的方法,可以利用退火处理及基于碱溶液的化学处理。这些可以根据氧化物层114的膜种和膜厚适宜地利用。

接着,对催化剂负载工序进行说明。使氟被去除的氧化物层114形成于被处理面12上的被处理物10与催化剂溶液30接触(图1(c))。催化剂溶液30中的催化剂30a负载于氧化物层114表面,或扩散在氧化物层114的内部,由此负载于氧化物层114。之后,停止与催化剂溶液30的接触,用水进行清洗,由此将催化剂溶液30去除。即使用水进行清洗,氧化物层114上的催化剂30a也不会被损伤(图1(d))。

接着,对第二成膜工序进行说明。通过使负载有催化剂30a的氧化物层114与化学镀液118接触(图1(e)),在氧化物层114上形成金属膜20(图1(f))。

如此,通过在氧化物层114的形成中使用包含氟和氧化物前体离子的反应溶液,被处理物10的被处理面12的氧化物层114以伴随化学键合的状态结合。因此,即使在不进行烧结时,也能形成非常牢固的层,其上形成的金属膜20与被处理物10的密合性也非常高。

需要说明的是,在形成金属膜20后,还可以利用电解镀进行增膜。此时,已形成有金属膜20,因此被处理物10的表面被导电化,能够容易地进行电解镀。

此处,在第一成膜工序、氟去除工序、催化剂负载工序、第二成膜工序、电解镀的前后适当包括加热处理也没有问题。本发明中,由于使氧化物层114中残留的氟含量减少至一定量以下,因此即使进行热处理,残留氟也不会将最上面的金属膜20等向上推,从而不会使金属膜20上产生不均、微小膨胀、剥离及裂纹等损坏。

需要说明的是,将使用本发明的层叠膜结构的形成方法制作的产品称作电子产品1。电子产品1不仅包括电路板、半导体电路、电子部件等电子关联产品,还包括使用本发明的金属膜20作为保护膜、装饰用的精加工膜的产品。以下对本发明的内容进行详细说明。

<被处理物>

作为被处理物10,可举出绝缘基板或表面预先形成有导电层的绝缘基板。绝缘基板有树脂基板、陶瓷基板、玻璃基板、硅基板等,这些可以用作各种电子装置的电路基板。

树脂基板可以适宜地利用以聚酰亚胺树脂、甲基丙烯酸类树脂、环氧树脂、液晶聚合物、聚碳酸酯树脂、PFA、PTFE、ETFE等氟系树脂为原料的树脂基板。另外,为了提高机械强度,树脂基板也可包含玻璃纤维。

陶瓷基板可以适宜地利用以铝矾、蓝宝石等氧化铝、氮化铝、氮化硅、碳化硅、氧化锆、氧化钇、氮化钛、钛酸钡等为原料的陶瓷基板。

玻璃基板为二氧化硅网络构成的非晶质基板,也可包含铝、硼、磷等网络形成剂(网络形成氧化物)、碱金属、碱土金属、镁等网络改性剂(网络改性氧化物)。

石英基板是由合成石英制成的晶圆。硅基板是由单晶硅或多晶硅制成的晶圆。

绝缘基板上预先形成的导电层主要被用作电路图案,导电层不仅可以为在绝缘基板上通过湿式蚀刻、干式蚀刻等形成的铝、铜、银等导电性高的金属,还可以为ITO(氧化铟钛)、FTO(含氟氧化锡)、ATO(含锑氧化物)等导电性透明材料。作为被处理物的形状,可举出晶圆、面板、薄膜等,其面内也能形成有通孔(贯通孔)、盲通孔(非贯通孔)、沟槽(槽)等异形面。

图2及图3以被处理物10为绝缘基板的形式,示意性地示出本发明的金属膜形成的过程。图2是被处理物10仅为绝缘基板10a的情况,图3是被处理物10为在绝缘基板10a上具有预先形成的导电层10b的情况。分别示出包括通孔10h的截面。

参照图2(a)及图3(a)。对于这些被处理物10而言,作为形成氧化物层114的第一成膜工序的预处理,优选对被处理面12进行净化操作。例如,优选实施酸处理、碱处理、紫外线照射处理、电子束(离子束)照射处理、等离子处理等。

被处理物10的被处理面12是指最终形成金属膜20的面。被处理面12不仅为被处理物10的表面,在被处理物10具有通孔10h时,还包括通孔10h的内壁10hi。本发明中,氧化物层114由液相形成,因此在通孔10h的内壁10hi也可以形成氧化物层114。

需要说明的是,即使不形成金属膜20的部分为被处理物10的表面,其也不是被处理面12。图1中,被处理物10的背面(附图的下侧)不是被处理面12。通过预先遮蔽这样的表面,可以防止形成氧化物层114。

另外,被处理物10在绝缘基板10a的表面形成有导电层10b时(图3(a)),被处理面12为其导电层10b的表面。另外,表面形成有导电层10的绝缘基板10a中形成有通孔10h时,其通孔10h的内壁10hi也成为被处理面12。此时,通孔10h的内壁10hi包括表面的导电层10b的截面部分12b、及与其连接的绝缘基板10a的截面部分12a。因此,被处理面12有为绝缘物的表面的情况,也有为导电物的表面的情况。

<第一成膜工序>

形成氧化物层114的第一成膜工序为使包含氟和氧化物前体离子的反应溶液与被处理物10的被处理面12接触的工序。更具体而言,将被处理物10浸渍在充满包含选自由钛、硅、锡、锆、锌、镍、铟、钒、铬、锰、铁、钴、铜组成的组中的至少一种以上的离子和氟的反应溶液的水槽中,或可以适宜地利用喷雾、涂布等方法。

氧化物层114在被处理面的正上方形成,也可以说形成于绝缘体的表面上。即,在绝缘体的表面与氧化物层114之间也可包含导电层10b。换言之,被处理面也可以为绝缘体或导电层。

图2(b)及图3(b)示出形成有氧化物层114的状态。氧化物层114由液相形成,因此在通孔10h的内壁10hi也可形成氧化物层114。图2(b)及图3(b)中,将通孔10h的内壁10hi上形成的氧化物层114用符号“14i”表示。氧化物层114由液相形成,因此形成致密的连续膜。此处,连续膜是指:在被处理面12之间未形成间隙、且在被处理面12整体没有未形成部分(所谓“膜损失”)的状态。

由于氧化物层114由液相形成,因此在通孔、盲通孔的内壁也均匀地形成氧化物层114。

反应溶液可以由包含氟和钛、硅、锡、锆、锌、镍、铟、钒、铬、锰、铁、钴、铜等氧化物前体离子的水溶液构成。

氧化物前体离子可以以Mn+(M:前体元素、n:离子的价数)的方式存在,可以使前体元素的氟化物或氧化物溶解在氢氟酸中而得到。另外,氟化物也可另行添加。作为氟化物,可举出钠盐、钾盐、镁盐、钙盐、铵盐。

另外,氧化物前体离子可以以氟络合物(例如,MF6 2-※M:前体元素)的方式存在,也可以为H2MF6或钠盐、钾盐、镁盐、钙盐、铵盐的方式。需要说明的是,反应溶液包含氟,因此有可能溶解(蚀刻)陶瓷基板、玻璃基板等被处理物的被处理面,因此可以控制pH并防止蚀刻。

被处理物10与反应溶液的接触温度高为宜,优选为20~80℃,更优选为30~70℃。反应时间根据所需的氧化物层114的膜厚来确定。反应时间与膜厚具有大致的直线关系,通过调节反应时间,可以得到数nm至数十μm的膜厚。

对于反应液溶液的组成,前体元素为1mmol/L以上,且包含使其完全溶解的氟即可。

另外,反应溶液通过包含硼酸盐、铝盐、过氧化氢等添加剂,可以使氧化物层114的成膜速度提高。因此,氧化物层114中也可包含硼或铝的元素。以将六氟钛酸离子(TiF6 2-)用作氧化物前体的情况为例,对该机制进行说明。

使用六氟钛酸离子(TiF6 2-)时,可以利用下述的反应将作为氧化物层114的TiO2成膜于被处理面。

TiF6 2-+2H2O=TiO2+6F-+4H+ …(1)该反应为TiF6 2-的水解反应,通过添加硼酸盐、铝盐、过氧化氢等添加剂来加速。

例如,添加硼酸时,(1)式的右边的F-通过(2)式的反应变为BF4 -。结果,(1)式的反应向右进行,可以使对被处理物的被处理面的氧化钛的形成加速。反应引发剂不限定于硼酸,也可以为硼酸钠、硼酸铵、硼酸钾等盐。

H3BO3+4H++4F-=H+BF4 -+3H2O…(2)

同样,添加铝离子源作为反应引发剂时,通过(3)式的反应,生成AlF6 3-,由此(1)式的反应向右进行。结果,可以加速对被处理物的被处理面的氧化钛的形成。铝离子源除金属铝外,还可以适宜地利用氯化铝、硝酸铝、硫酸铝等无机酸盐、柠檬酸铝、乳酸铝、乙酸铝等有机酸盐。

Al3++6F-=AlF6 3- …(3)

另外,虽然不具有与氟离子的络合能力,但过氧化氢也可作为反应引发剂适宜地利用。过氧化氢具有将氟钛酸离子水解的特性。结果,生成过氧化钛络合物。其为氧化钛的前体,通过使其以该状态与被处理物的被处理面接触,能使氧化钛在被处理物的被处理面上析出,促进氧化物层的形成。

反应中,在被处理物10的被处理面12形成氧化物层114,并且有时在反应溶液中以颗粒的形式产生。此时,为了去除反应溶液中的颗粒,可以进行抽取一部分反应溶液用过滤器过滤后并返送的工序。将其称作过滤工序。

<氟去除工序>

图2(c)及图3(c)中形成的氧化物层114中残留氟。该残留氟不会通过基于水的清洗、放置而消失、挥发。另一方面,在之后的工序中,将金属膜20层叠于氧化物层114上时,残留氟会因层叠时的化学处理、层叠后的热处理等而从氧化物层114脱离,给金属膜20造成障碍。因此,在形成氧化物层114后,进行氟去除工序。

利用本发明的层叠膜结构的形成方法得到的层叠膜结构中,氧化物层114中的氟含量为0.01质量%以上且1.0质量%以下。氧化物层114中的残留氟量越少越好,可以为0质量%。然而,使用包含氟的反应液,难以使液中处理形成的氧化物层114中的残留氟成为0。因此,氟的含量可以为检测装置的检测限以下。例如为0.01质量%。

另一方面,若氧化物层114中的氟大于1.0质量%,则对金属膜20进行层叠时,或之后的经时变化而使氟从氧化物层114脱离,将金属膜20向上推,由此会发生不均、微小膨胀、裂纹及剥离等障碍。另外,用于化学镀的催化剂的负载量减少,化学镀中的金属膜变得难以生长。

具体的氟去除工序中,通过后述实施例可知,根据氧化物层114的膜厚和氧化物层中使用的金属种,理想的氟去除工序会不同。若氧化物层114的膜厚为200nm以上,则无论金属种如何,均可以通过组合使用100℃~150℃的退火处理和基于pH10.5以上的溶液的碱溶液处理将氧化物层114中的氟去除。

另外,对于膜厚小于200nm且氧化物层114的金属种为Sn(锡)、Al(铝)、Zn(锌)、Be(铍)、Ga(镓)、Ge(锗)、Pb(铅)、Sb(锑)、Bi(铋)、Cd(镉)等两性氧化物而言,可以通过组合使用100℃~150℃的退火处理和基于pH10.5以上的溶液的碱溶液处理、或者通过150℃以上的退火处理,将氧化物层114的氟去除。

另外,膜厚小于200nm的情况下,在氧化物层114的金属种不为两性氧化物时,可以通过150℃以上的退火处理或pH10.5以上的碱溶液处理,将氧化物层114的氟去除。

<催化剂负载工序>

催化剂负载工序中,优选赋予后段的化学镀被激活的催化剂30a、进行负载。即,催化剂溶液30为包含金、钯、银等的离子的溶液,通过使这些与形成有氧化物层114的被处理物10接触来实现。可以适宜地利用将具有氧化物层114的被处理物10浸渍在装满催化剂溶液30的水槽中,或进行喷雾、涂布等方法。图2(d)及图3(d)示出在氧化物层114上负载有催化剂30a的状态。负载的催化剂30a也称作催化剂层。即,在氧化物层114的正上方形成催化剂层。

催化剂30a在氧化物层114上的负载基于表面吸附、在氧化物层114内的扩散,通常以离子的状态负载。其在后段的化学镀工序中,通过镀液中包含的还原剂被还原为金属,并作为催化核起作用,因此镀覆被激活。

在化学镀工序前需要预先将催化剂30a金属化时,在催化剂负载工序前,暴露于包含二价锡离子(Sn2+)的溶液中,负载Sn2+,由此进行敏化后,通过暴露于催化剂溶液30中来实现。或,也可通过暴露于催化剂溶液30后,在化学镀前暴露于还原剂中来实现。

此处,作为氧化物层114对SnO进行成膜时,层内包含大量Sn2+,其作为还原剂起作用,因此在催化剂负载工序中,可以以金属状态负载催化剂30a。

<第二成膜工序>

第二成膜工序中,使用市售的化学镀液118来形成金属膜20。图2(e)及图3(e)示出在催化剂30a的正上方形成有金属膜20的状态。此时,化学镀法以催化剂负载工序中负载的催化剂30a作为核激活。例如,选择铜作为金属膜20时,除硫酸铜外,还使用以甲醛为还原剂的镀液。另外,选择含磷镍作为金属膜20时,除硫酸镍外,还使用以次膦酸为还原剂的镀液。化学镀液118根据期望的金属种、内部应力、进而根据成膜率来选择,进行考虑了镀液的pH值和氧化物层114的溶解性的制备。

<基于电解镀的增膜工序>

也可通过对第二成膜工序中得到的金属膜20进行电解镀来增膜。此时,可以对与第二成膜工序中得到的金属膜20相同种类的金属进行增膜,也可以为不同种类金属。电解镀液使用市售的化学溶液即可,但考虑期望的金属种、内部应力、进而考虑成膜率来选择,并设定适当的电流密度(ASD值)。

<制造装置>

接着,参照图4,对本实施的方式的层叠膜结构的形成装置70进行说明。层叠膜结构的形成装置70由第一成膜部72、氟去除部78、催化剂负载部74和第二成膜部76构成。另外,虽未图示,但也可附属有对完成的电子产品1进一步进行镀覆的镀覆装置。

第一成膜部72为在被处理物10的被处理面12上以液相形成氧化物层114的部分。此处,作为将被处理物10浸渍在包含氟和氧化物前体离子的反应溶液80中的类型进行说明。

第一成膜部72具有贮存包含氟和氧化物前体离子的反应溶液80的第一浴槽72a。第一浴槽72a上可以设置借由过滤器72b的循环配管72d、及循环配管72d中配置的泵72c。另外,第一浴槽72a内也可设置加热器72j。

另外,也可设置贮存有反应引发剂的反应引发剂罐72e、将反应引发剂引导至第一浴槽72a的配管72f、控制反应引发剂向第一浴槽72a的投入的阀72g。

如上所述,对于氟去除部78而言,根据氧化物层114的厚度和金属种,适当选择退火炉及碱溶液处理槽等。

催化剂负载部74使设置有氧化物层114的被处理物10浸渍在包含可以用作化学镀的催化剂的钯、银等的离子的催化剂溶液30中。催化剂溶液30贮存在催化剂溶液槽74a中。另外,化学镀部76的镀槽76a中贮存有化学镀液118。

接着,沿着被处理物10的处理流程,对金属膜的形成装置70的工作进行说明。将被处理物10制成具有通孔10h的绝缘基板。此处,制成形成有2个通孔10h。对其安装掩模64。掩模64为用于仅使被处理物10的被处理面12露出的掩模。此处,将通孔10h的内壁及周围、及连接通孔10h彼此的连接线设为被处理面12。图7中,仅示出被处理物10的表面侧的掩模,但也可对背面进行掩蔽。

使实施了掩模64的被处理物10浸渍于贮存有包含氟和氧化物前体离子的反应溶液80的第一浴槽72a。之后,使反应引发剂从反应引发剂罐72e借由配管72f导入第一浴槽72a。由此,在被处理面12上形成氧化物层114。需要说明的是,用加热器72j加热第一浴槽72a,将包含氟和氧化物前体离子的反应溶液80的温度升高,由此即使不利用反应引发剂也能形成氧化物层114。

另外,在第一浴槽72a中的包含氟和氧化物前体离子的反应溶液80中析出并悬浮氧化物的微粒时,使泵72c工作,用借由过滤器72b的循环配管72d,边过滤包含氟和氧化物前体离子的反应溶液80边使其循环。通过该循环将氧化物的微粒去除。

形成有氧化物层114的被处理物10被从第一浴槽72a拉起,移除掩模64,在氟去除部78进行氟去除处理。例如100℃~150℃的热处理。由此,将氧化物层114中的氟去除至1.0质量%以下。之后,被处理物10被投入催化剂负载部74,从而催化剂30a附着于氧化物114的表面。

将氧化物层114上负载有催化剂30a的被处理物10投入第二成膜部76的镀槽76a中。镀槽76a中贮存有化学镀液118。化学镀中,化学镀液中的氧化剂以催化剂30a为起点形成金属膜20,金属膜20本身成为催化剂,从而形成金属膜20。如上,得到被处理物10的被处理面12上形成有金属膜20的电子产品1。

实施例

<未处理LPD膜上的镀膜>

不进行氟去除工序时,在用LPD法形成的氧化物层上进行镀覆,并确认金属膜的状态。基板使用无碱玻璃、碱玻璃、合成石英、氧化铝。作为前清洗,使其浸渍于超声波照射下的1M的氢氧化钠中10分钟,进而使其浸渍于超声波照射下的0.1M的氢氟酸(HF)中10分钟,之后用纯水清洗。氧化物层的膜种使用氧化锡(SnO2)和氧化钛(TiO2)。

氧化物层的膜种为氧化锡(SnO2)时,作为包含氟和氧化物前体离子的反应溶液,使用0.01M的氟化亚锡(SnF2:CAS号7783-47-3),添加剂使用0.1M的硼酸(H3BO3:CAS号10043-35-3)和0.3M的过氧化氢(H2O2)。

氧化物层的膜种为氧化钛(TiO2)时,作为包含氟和氧化物前体离子的反应溶液,使用0.3M的六氟钛酸铵((NH4)2TiF6:CAS号16962-40-2),添加剂使用0.1M的硼酸(H3BO3)。两种情况均通过改变反应时间来调节膜厚。

用纯水清洗形成有规定的厚度的氧化物层的基板后,使其浸渍于0.1M的氯化亚锡(SnCl2)中2分钟后,用纯水清洗,在氮吹扫下进行干燥。然后,使其浸渍于100ppm的氯化钯(PdCl2:CAS号7647-10-1)中1分钟,使催化剂负载。之后,用纯水清洗基板,在氮吹扫下进行干燥。

使催化剂负载后,进行化学镀NiP或化学镀Cu。两种情况的金属膜的膜厚均设为0.8~1.0μm。形成金属膜后,再次用纯水清洗,在氮吹扫下进行干燥,根据需要,在200℃下进行1小时的退火处理。

形成金属膜后,或进行退火处理后,通过目视观察金属膜面,膜厚用SEM测定、氟含量用荧光X射线装置测定。将结果示于表1。

需要说明的是,目视检查中,确认有无“膨胀”和“不均”。“不均”的起因为由金属膜的厚度的偏差导致的金属膜的凹凸,因此表现为金属膜的光泽的偏差。更具体而言,光的反射率变化、呈无光泽的状态。其原因为催化剂层的厚度的不均匀性。被处理面12上残留氟时,催化剂的密度降低,该部分的催化剂层的厚度变薄。因此认为催化剂层中可形成厚度不均。

对于检査的判断,若层叠的金属面整面在荧光灯下的光泽均匀,则判断为“无不均”,若即使有一部分为无光泽部分,则也判断为“有不均”。

“膨胀”是由于存在金属膜与基底表面的结合不充分的部分而发生的,金属膜局部地浮起,产生半球状的突起。其原因为:氧化物层上残留氟,催化剂被完全排斥时,该部分会无催化剂,基底的氧化物层与金属膜变得不密合,成为浮起的状态。另外,施加热处理时,残留的氟会挥发,因此膨胀变得进一步显著。

对于检査的判断,若层叠的金属面整面上在荧光灯下,即使通过目视确认到1个半球状的突起,则也判断为“有膨胀”,若未确认到则判断为“无膨胀”。

[表1]

参照表1,预备样品1-3是氧化物层的膜种为Ti的情况,预备样品4-11是氧化物层的膜种为Sn的情况。预备样品8-10为基板使用除无碱玻璃以外的材料的情况,预备样品11为进行化学镀Cu的情况。

全部金属膜的表面都存在可以判断为不均的障碍。另外,预备样品1-8及11在刚镀覆后就发生膨胀。未对这些样品进行退火处理。

仅基板为合成石英及氧化铝的情况(预备样品9、10)下,在刚镀后未膨胀。然而,在退火处理之后发生膨胀。氟含量与氧化物层的膜厚并不成比例。然而,全部预备样品的氟含量均大于1质量%。由此可以预测镀后的金属膜中产生的膨胀、不均的原因为氧化物层中的氟。

<氟的存在位置>

接着,使用TEM-EDX(Transmission Electron Microscope-Energy DispersiveX-ray Spectroscopy:透射式电子显微镜-能量色散X射线分析法),观察预备样品5的截面的氧化物层,并测量膜厚方向上的点中的氟量。图5示出截面照片。

参照图5。白色带部分为氧化物层(厚度33nm)。其上下为金属膜和基板。在氧化物层与金属膜之间观测到凸凹。认为该部分是不均的原因。在从氧化物层的表面到深度方向上确定几乎等距离的4个点,并测定该点的氟。将测定结果示于表2。

[表2]

分析点 F含量
[-] [atom%]
1 1.42
2 0.62
3 0.44
4 0.45

参照表2,靠近表面的点1中为1.42atom%,膜厚方向更深的点2中为0.62atom%,进一步深的点3、4中为0.44atom%、0.45atom%,可知氟几乎局部存在于氧化物层的表面。

<基于放置的氟的去除>

将预备样品5放置在空气中,研究氟含量会如何变化,将结果示于表3。

[表3]

尝试将放置天数变更为0、2、6、9、15,但氧化物层中的氟的含量为2.5质量%左右,几乎没有变化。

<氟去除处理的效果>

根据以上可以推测,在基于LPD法的氧化物膜上形成金属膜时,氟元素残留在膜表面及膜内,对金属膜造成不均、膨胀等损坏。因此,在通过镀覆形成金属膜前,添加从氧化物层中去除氟的处理。对于样品而言,在基板上形成氧化物层后,进行氟去除处理,之后负载催化剂,接着进行化学镀、电解镀,从而形成金属膜。

对于氟去除后的氧化物层形成样品,通过荧光X射线定量测定氟含量,进而,用光学显微镜观察氟去除引起的膜损坏。此处,对于损坏而言,将氧化物层上发生裂纹者、溶解消失者定义为“有损坏”。另外,对于催化剂负载后的样品,使用荧光X射线分析装置对负载催化剂量进行定量。对于完成至金属膜形成的样品,用电子显微镜观察膜厚,通过目视判断有无不均、膨胀。氧化物层及催化剂层的形成方法使用与预备样品的情况相同的步骤。

<基于退火的氟去除处理>

作为氟去除处理,将进行退火的结果示于表4。

[表4]

参照表4。从以规定的温度进行120分钟退火后的LPD膜的氟含量的方面来看,大于150℃时,氟含量减少至低于1质量%(样品3-6、9-20)。氟含量大于1质量%的样品(1、2、7、8)的催化剂的负载量与其他样品相比也低。对这些样品进行化学镀时,确认到膜的膨胀、不均,因此未进行电解镀。

氟含量低于1质量%时,最终的金属膜未发生膨胀、不均。另外,即使对金属膜进行退火,也未发生膨胀。

根据以上可知,若氧化物层的氟含量为1质量%以下,则氧化物层上形成的金属膜不会发生损坏,可以形成均匀的金属膜。并且不会被氧化物层的膜种、化学镀的膜种所影响。

<基于化学处理的氟去除处理>

作为氟去除处理,进行化学处理。将结果示于表5。

[表5]

参照表5。样品21-29是氧化物层的膜种为Ti氧化物的情况,样品30-36是膜种为Sn氧化物的情况,样品37是膜种为Si氧化物的情况。作为化学处理,进行浸渍于硫酸、盐酸、超纯水、氢氧化钠、氢氧化钾等各溶液中30分钟的处理。各溶液的pH如表5。测定处理后的氧化物层的氟含量,结果通过碱溶液下的处理,氟减少。但是,在氧化物层的膜种为Sn氧化物的情况下,氧化物层本身在碱溶液中溶解消失。认为这是由于Sn为两性氧化物。

氟含量为1质量%以下的样品(24-29、36、37)顺利通过之后的镀覆工序,在仅实施化学镀的情况下、及在之后实施电解镀的情况下,均无膨胀、不均。另外,即使对该膜进行退火,也未发生膨胀。

另一方面,氧化物层的氟含量为1质量%以上的样品(21-23、30-35)在基于化学镀的金属膜的状态下确认到膨胀。

如上,作为化学处理,pH10.5以上的碱处理是理想的。但是,发现氧化物层的膜种为两性氧化物时,膜本身会溶解。因此,氧化物层的膜种为两性氧化物时,基于退火处理的氟去除处理是理想的。

<膜厚厚时的氟去除处理>

以上的样品为200nm以下的较薄的氧化物层。然而,因各种理由氧化物层有时会需求各种膜厚。因此,确认了200nm以上的厚氧化物层的氟去除处理的效果。将结果示于表6。

[表6]

参照表6,氧化物层的膜种为Sn氧化物且膜厚为200nm以上的样品(38、39)在200℃及150℃的退火处理(120分钟)下产生裂纹。若退火温度为100℃或50℃,则不产生裂纹(样品40-43)。然而,如表4的样品(7、8)所示,退火温度为100℃下,则氟未被去除。

因此,进一步进行基于pH10.5的碱的化学处理。如表5的样品33所示,膜厚薄时,是膜会溶解消失的条件。然而,进行了100℃120分钟下的退火处理的样品(40-43)的膜未溶解,进行了氟去除。然而,退火温度为50℃的样品44溶解消失。由此可以认为适度的退火处理可以对氧化物层进行烧固,并赋予对碱处理的耐性。需要说明的是,此时的碱处理即使在pH12下,氧化物膜也无损坏。另外,对产生裂纹的样品38、39同样地进行碱处理时,膜从基板上剥离。

通过100℃的退火处理和基于pH10.5的化学处理,在氟被去除至1质量%以下的氧化物层上形成均匀的金属膜,仅进行化学镀的情况、以及之后进行电解镀的情况,均无膨胀、不均等膜损坏。另外,即使对该膜进行退火处理,也未发生膜的膨胀。需要说明的是,确认了该样品38-44以氧化物层的膜种为两性氧化物的Sn来进行,酸性氧化物的Ti的情况也可以以同样的处理将氟去除。

根据以上可知,若为膜厚200nm以上的情况,则不论金属种,均可通过组合使用100℃~150℃的退火处理和基于pH10.5以上的溶液的碱溶液处理来去除氧化物层114中的氟。

另外,膜厚小于200nm时,对于氧化物层114的金属种为Sn(锡)、Al(铝)、Zn(锌)、Be(铍)、Ga(镓)、Ge(锗)、Pb(铅)、Sb(锑)、Bi(铋)、Cd(镉)等两性氧化物而言,可以通过组合使用100℃~150℃的退火处理和基于pH10.5以上的溶液的碱溶液处理、或通过150℃以上的退火处理来去除氧化物层114的氟。

另外,膜厚小于200nm、且氧化物层114的金属种不为两性氧化物时,可以利用150℃以上的退火处理或pH10.5以上的碱溶液处理来去除氧化物层114的氟。

产业上的可利用性

本发明的层叠膜结构及层叠膜结构的制造方法不仅可用于电路基板、半导体电路、电子部件等电子相关产品,还可用于保护膜、装饰用的精加工膜。

附图标记说明

1 电子产品

10 被处理物

10a 绝缘基板

10b 导电层

10h 通孔

10hi 内壁

12 被处理面

12a 截面部分

12b 截面部分

16 紫外线

118 化学镀液

20 金属膜

20i 通孔中的金属膜

30 催化剂溶液

30a 催化剂

64 掩模

70 金属膜的形成装置

72 第一成膜部

72a 第一浴槽

72b 过滤器

72d 循环配管

72c 泵

72e 反应引发剂罐

72f 配管

72j 加热器

72g 阀

74 催化剂负载部

74a 催化剂溶液槽

76 第二成膜部

76a 第二浴槽

78 氟去除部

80 包含氟和氧化物前体离子的反应溶液

114 氧化物层

114i 通孔的内壁上形成的含氧化钛层

118 化学镀液

28页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:可透光的金属涂层及其制造方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!