一种tft阵列基板及其制备方法、显示装置

文档序号:513953 发布日期:2021-05-28 浏览:1次 >En<

阅读说明:本技术 一种tft阵列基板及其制备方法、显示装置 (TFT array substrate, preparation method thereof and display device ) 是由 宋泳锡 刘威 孙宏达 于 2021-01-12 设计创作,主要内容包括:本申请公开了一种TFT阵列基板及其制备方法、显示装置,其中TFT阵列基板,包括源极和漏极,所述源极和漏极之间形成凸起型结构,所述凸起型结构内部设置有第一栅极,所述源极和所述漏极在所述第一栅极平面的投影与所述第一栅极未交叠或接近未交叠。本申请实施例提供的TFT阵列基板,通过在漏极和源极之间形成向上的凸起型结构,将顶栅设置于凸起型结构内,控制顶栅与源漏极之间的覆盖面积,控制寄生电容、寄生电压的产生。此设计可以适用于窄通道或者宽通道的情形;同时,此设计还适用双栅结构,通过适用双栅来增大关态电流或者通过最大限度减小寄生电容或者寄生电压的产生从而增加通态电流。(The application discloses TFT array substrate and preparation method, display device thereof, wherein TFT array substrate, including source electrode and drain electrode, form protruding type structure between source electrode and the drain electrode, protruding type structure inside is provided with first grid, the source electrode with the projection of drain electrode in first grid plane with first grid is not overlapped or is close not overlapped. According to the TFT array substrate provided by the embodiment of the application, the upward convex structure is formed between the drain electrode and the source electrode, the top gate is arranged in the convex structure, the coverage area between the top gate and the source electrode and the drain electrode are controlled, and the generation of parasitic capacitance and parasitic voltage is controlled. This design can be adapted to either narrow or wide channel cases; meanwhile, the design is also applicable to a double-gate structure, and the on-state current is increased by applying the double-gate structure or by reducing the generation of parasitic capacitance or parasitic voltage to the maximum extent.)

一种TFT阵列基板及其制备方法、显示装置

技术领域

本申请一般涉及半导体制造技术领域,具体涉及一种TFT阵列基板及其制备方法、显示装置。

背景技术

基于薄膜晶体管(TFT)阵列基板的液晶显示器(TFT-LCD)具有其它任何一种平板显示和阴极射线管(CRT)所无法企及的优点,如体积薄、重量轻、画面品质优异、功耗低、寿命长、数字化等。这使其在各种大、中、小尺寸的产品上都得到广泛应用,逐步取代了传统的CRT显示器,快速进入了人们的日常生活中,几乎涵盖了当今信息社会的主要电子产品。如电视、监视器、便携式电脑、手机、PDA、GPS、车载显示、仪器仪表、公共显示和医用显示等。

然而,由于液晶显示器是一种靠电场来调节液晶分子的排列状态,从而实现光通量调制的被动型显示器件,需要精细的有源驱动矩阵(Array)配合各像素区液晶的偏转状况。

在现有技术中,要提高有源层的导电沟道的导电能力,可通过增大TFT的栅极面积或使用双栅薄膜晶体管实现。其中,双栅薄膜晶体管以其不会减小阵列基板的开口率、同时又能提高有源层的导电沟道的导电能力等优势而得到广泛使用。

但是,无论是增大栅极面积或者使用双栅结构,都可能产生寄生电容和寄生电压,例如栅极和源漏极之间的寄生电容,再如双栅结构中底栅和有源层之间的寄生电容。对于顶栅的情况,可以通过顶栅自对准设计控制顶栅与源漏极之间的寄生电容和寄生电压;但对于底栅的情况,此设计并不适用,现有中通过底栅上的缓冲层无法阻止底栅和有源层的覆盖区域产生寄生电压或寄生电容。

发明内容

鉴于现有技术中的上述缺陷或不足,期望提供一种TFT阵列基板及其制备方法、显示装置,可以有效减小薄膜晶体管阵列基板上的寄生电容和寄生电压。

进一步地,一种TFT阵列基板,包括源极和漏极,其特征在于,所述源极和漏极之间形成凸起型结构,所述凸起型结构内部设置有第一栅极,所述源极和所述漏极在所述第一栅极平面的投影与所述第一栅极未交叠或接近未交叠。

进一步地,所述源极和所述漏极上均设置有主体、纵向延伸部和横向延伸部,所述纵向延伸部设置在所述源极和所述漏极主体的相对侧,所述横向延伸部设置在所述纵向延伸部的顶部。

进一步地,所述源极上的横向延伸部为第一横向延伸部,所述漏极上的横向延伸部为第二横向延伸部,所述第一横向延伸部的内侧边缘和所述第二横向延伸部的内侧边缘分别与所述第一栅极的两侧边缘对齐或者接近对齐。

进一步地,还包括有源层,所述漏极和所述源极通过设置在第一层间介电层上的过孔与所述有源层接触。

进一步地,所述第一栅极和所述有源层之间设置有第一栅极绝缘层,所述凸起型结构内围绕所述第一栅极和所述第一栅极绝缘层填充有第二层间介电层。

进一步地,还包括衬底,所述衬底上设置有遮光层和第一平坦层,所述第一平坦层覆盖所述遮光层。

进一步地,所述第一平坦层与所述有源层之间设置有第一缓冲层。

第二方面,本申请提供了一种TFT阵列基板制备方法,用于制备如以上所述的TFT阵列基板,其特征在于,所述方法包括:

在衬底上形成遮光层;

在所述衬底和所述遮光层上涂覆旋涂硅玻璃作为第一平坦层;

在所述第一平坦层上形成第一缓冲层;

在所述第一缓冲层上形成有源层;

在所述有源层上形成第一栅极绝缘层;

在所述第一栅极绝缘层上制作一个金属电极作为第一栅极;

在所述缓冲层或者第二栅极绝缘层上方形成层间介电层,在形成层间介电层的同时,形成漏极和源极与所述缓冲层接触的过孔,所述层间介电层覆盖所述第一栅极和所述第一栅极绝缘层;

形成源漏金属层并进行图案化,所述源漏金属层的图形包括源极和漏极,所述源极和漏极通过所述层间介电层上的过孔形成的主体、位于所述源极和所述漏极主体的相对侧上的纵向延伸部、位于所述纵向延伸部的顶部的横向延伸部。

可选地,一种TFT阵列基板还包括设置在衬底上的第二栅极,所述衬底上设置有与所述第二栅极配合的凸台。

进一步地,所述第二栅极设置在所述凸起型结构下方对应位置,所述第二栅极的宽度小于所述源极和所述栅极在所述有源层上形成的沟道宽度。

进一步地,所述第二栅极与所述有源层之间设置有第二缓冲层或者第二栅极绝缘层。

进一步地,所述第二缓冲层或者第二栅极绝缘层与所述衬底之间设置有第二平坦层,所述第二平坦层未覆盖所述第二栅极的上表面。

进一步地,所述第二栅极覆盖在所述凸台的侧表面并在所述衬底上向所述凸台的外侧延伸。

第三方面,本申请提供了一种TFT阵列基板制备方法,用于制备如以上所述的TFT阵列基板,所述方法包括:

在衬底上形成凸台;

在所述凸台上形成第二栅极;

在所述衬底上涂覆旋涂硅玻璃作为第二平坦层,所述第二平坦层未覆盖所述第二栅极上表面;

在所述第二平坦层上表面和所述第二栅极上表面上形成第二缓冲层或者第二栅极绝缘层;

在所述第二缓冲层或者第二栅极绝缘层上形成有源层;

在所述有源层上形成第一栅极绝缘层,并在所述第一栅极绝缘层上制作一个金属电极作为第一栅极;

在所述缓冲层或者第二栅极绝缘层上方形成层间介电层,在形成层间介电层的同时,形成漏极和源极与所述缓冲层接触的过孔,所述层间介电层覆盖所述第一栅极和所述第一栅极绝缘层;

形成源漏金属层并进行图案化,所述源漏金属层的图形包括源极和漏极,所述源极和漏极通过所述层间介电层上的过孔形成的主体、位于所述源极和所述漏极主体的相对侧上的纵向延伸部、位于所述纵向延伸部的顶部的横向延伸部。

可选地,所述衬底为玻璃基板,在所述衬底上形成凸台的方法包括:

通过刻蚀形成所述凸台;

或者利用高耐热胶材进行光刻形成所述凸台。

可选地,所述衬底为塑料基板,在在所述衬底上形成凸台的方法包括:

通过使用感光型的PI材料进行半调曝光形成所述凸台;

或者使用光掩模进行干刻去除所述凸台外的其他衬底部分;

或者使用纳米压印的方法形成所述凸台。

第四方面,本申请提供了一种显示装置,包括以上所述的TFT阵列基板。

本申请的实施例提供的技术方案可以包括以下有益效果:

本申请实施例提供的TFT阵列基板,通过在漏极和源极之间形成向上的凸起型结构,将顶栅设置于凸起型结构内,控制顶栅与源漏极之间的覆盖面积,控制寄生电容、寄生电压的产生。此设计可以适用于窄通道或者宽通道的情形;同时,此设计还适用双栅结构,通过适用双栅来增大关态电流或者通过最大限度减小寄生电容或者寄生电压的产生从而增加通态电流。

附图说明

通过阅读参照以下附图所作的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更明显:

图1为本申请的实施例提供的一种TFT阵列基板的结构示意图;

图2为本申请的实施例提供的另一种TFT阵列基板的结构示意图;

图3为本申请的实施例提供的一种TFT阵列基板制备方法步骤SP1的示意图;

图4为本申请的实施例提供的一种TFT阵列基板制备方法步骤SP2的示意图;

图5为本申请的实施例提供的一种TFT阵列基板制备方法步骤SP3的示意图;

图6为本申请的实施例提供的一种TFT阵列基板制备方法步骤SP4的示意图;

图7为本申请的实施例提供的一种TFT阵列基板制备方法步骤SP5的示意图;

图8为本申请的实施例提供的一种TFT阵列基板制备方法步骤SP6、7的示意图;

图9为本申请的实施例提供的一种TFT阵列基板制备方法步骤SP8的示意图;

图10为本申请的实施例提供的一种TFT阵列基板制备方法步骤SP9的示意图;

图11为本申请的实施例提供的一种TFT阵列基板制备方法步骤SP9的示意图。

具体实施方式

下面结合附图和实施例对本申请作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释相关发明,而非对该发明的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与发明相关的部分。

需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。

请详见图1,本申请提供了一种TFT阵列基板,包括源极2和漏极1,所述源极2和漏极1之间形成凸起型结构,所述凸起型结构内部设置有第一栅极4,所述源极2和所述漏极1在所述第一栅极4平面的投影与所述第一栅极4未交叠或接近未交叠。

其中,所述源极2和所述漏极1上均设置有主体101、纵向延伸部102和横向延伸部103,所述纵向延伸部102设置在所述源极2和所述漏极1主体101的相对侧,所述横向延伸部103设置在所述纵向延伸部102的顶部。

所述源极2上的第一横向延伸部103和所述漏极1上第一横向延伸部103的内侧边缘与所述第一栅极4极的两侧边缘对齐或者接近对齐。

需要说明的是,为了提高薄膜晶体管的导电能力,可以通过增大栅极的面积,但是增大栅极面积的同时,可能在源极2S和漏极1D与栅极G之间会形成叠置部分,在该叠置部分中会出现晶体管的寄生电容,从而导致耦合。

本申请通过在源极2和漏极1之间形成凸起型结构,可以控制栅极与漏极1和源极2的重叠面积,来减少栅极和源极2或者漏极1之间的寄生电容、寄生电压的发生。

寄生的含义就是本来没有在那个地方设计电容,但由于元件布线构图之间总是有互容,就好像是寄生在布线之间的一样。当寄生电容或者寄生电压超过一定大小时,对元件的影响就非常大。在本申请实施例中,源漏极和顶栅平面的投影与第一栅极4极未交叠,则不会产生寄生电容和寄生电压,源漏极和顶栅平面的投影与第一栅极4极接近未交叠时,可能会产生寄生电容或者寄生电压,但是有可能对于晶体管的影响很小,可以无需考虑寄生电容或者寄生电压。在一些实施例中,可以约束“接近未交叠”为第一栅极和源漏极金属的交叠总面积为0~20%,优选设置为0~10%;在应用时,可以根据元件的频率赫兹等具体设置。

电容可以被表达为

其中εr和εo分别表示介电常数和电气常数,A表示形成电容性元件的两个元件(例如,平板)之间的重叠面积,而d表示两个元件之间的距离。正如可以意识到的,变量εr和εo通常取决于所选材料而恒定,并且通常可能不希望增加d,因为那样将增加LCD面板的厚度。

另外还需要说明的是,在本申请实施例中,对于源漏极和顶栅的交叠面积的考虑是为了提高阵列基板的导电性能,在一些实施例中,在TFT阵列基板满足导电性能的同时,可以考虑限制顶栅的面积,使得第一栅极4的面积较小,在漏极1和源极2相对位置的横向延伸部103之间的空白位置下方形成栅极。无论栅极的面积如何调整,在不违背本申请原理的基础上,均属于本申请的保护范围内。

实施例一

一种TFT阵列基板,为单栅结构,包括衬底100,衬底100上依次设置有第一平坦层300、第一缓冲层400、第一层间介电层500、第三平坦层600。其中,衬底100和第一平坦层300之间还设置有遮光层200,所述第一平坦层300覆盖所述遮光层200;第一缓冲层400和第一层间介电层500之间还设置有源层3;第一栅极4和有源层3之间设置有第一栅极绝缘层5,所述凸起型结构内围绕所述第一栅极4和所述第一栅极绝缘层5填充有第二层间介电层501。

需要说明的是,所述漏极1和所述源极2分部通过设置在第一层间介电层500上的第一过孔和第二过孔与所述有源层3接触。所述第一过孔、第二过孔之间的间隔距离定义出沟道长度。本申请实施例的凸起型结构可以适用不同的沟道长度W,通过调整源漏极主体101之间的位置可以调整不同的沟道长度W,通过调整纵向延伸部102的高度,可以调整第一栅极4与有源层3之间的高度,通过调整横向延伸部103之间的间距,可以调整第一栅极4的宽度面积。

在本申请实施例中,TFT阵列基板还包括在漏极1或源极2上设置阳极6,在衬底100上设置阴极7。在本实施例中,阳极6设置在第三平坦层600的上方,并通过设置在第三平坦层600上的阳极6过孔与所述源极2连接;所述阴极7设置在第三平坦上方,并通过设置在第三平坦层600上的阴极7过孔、第一层间介电层500上的阴极7过孔、缓冲层上的阴极7连同至衬底100上。

衬底100上还设置有凸起,阴极7设置在该凸起上,并从凸起上表面经凸台8的侧表面向衬底100表面向凸台8的外侧延伸。阴极7可以延伸至源漏极及源漏极形成的凸台8形凸起型结构的下方,此时,阴极7可以作为遮光层200使用。遮光层200可以防止有源层3受到外部光线而发生光电流的现象。

阳极6和/或阴极7是透明电极时,阳极6和/或阴极7可以由例如ITO、IZO、ZnO或In2O3形成。当阳极6和/或阴极7是反射电极时,阳极6和/或阴极7可以包括例如由Ag、Mg、Al、Pt、Pd、Au、Ni、Nd、Ir、Cr或其混合物形成的反射膜和由ITO、IZO、ZnO或In2O3形成的透明膜。在示例性实施例中,阳极6和/或阴极7可以具有ITO/Ag/ITO的结构。

本申请提供了一种TFT阵列基板制备方法,用于制备如以上所述的TFT阵列基板,其特征在于,所述方法包括:

ST1在衬底100上沉积形成遮光层200(Light Shielding,LS),然后刻蚀出所述遮光层200的图案;遮光层200可以防止有源层3受到外部光线而发生光电流的现象。遮光层200可以选择金属材质,也可以选择非晶硅(a-Si);非晶硅(a-Si)可以吸收整个波段的光线,不仅可以实现对TFT有源层3的遮光效果,且无金属反光、加热等问题。

ST2在所述衬底100和所述遮光层200上涂覆旋涂硅玻璃作为第一平坦层300;通过固化SOG层,将SOG层变为具有平坦表面的氧化硅层,其中,SOG(spin on glass coating,旋转涂布玻璃或旋涂硅玻璃),SOG是将含有介电材料的液态溶剂以旋转涂布(spin Coating)方式,均匀地涂布在晶圆表面,以填补沉积介电层凹陷的孔洞。之后,再经过热处理,可去除溶剂,在晶圆表片上留下固化(Curing)后近似二氧化硅(SiO2)的介电材料。

ST3在所述第一平坦层300上形成第一缓冲层400;缓冲层的材料包括但不限于氧化硅(SiOx)、氮化硅(SiNx)、氮氧化硅(SiON)等介质材料,或者新型的有机绝缘材料如聚硅氧烷系材料,亚克力系材料,或聚酰亚胺系材料等,或高介电常数材料如氧化铝(AlOx),氧化铪(HfOx),氧化钽(TaOx)等。

ST4在所述第一缓冲层400上形成有源层3;例如,在缓冲层上沉积一层非晶硅层;对非晶硅层进行图案化处理;通过准分子激光退火工艺将所述非晶硅层转化结晶为多晶硅(Poly-Si)层。

有源层3,可以为金属氧化物半导体的材料,例如铟镓锌氧化物(IGZO)、铟锌锡氧化物(IZTO)或铟镓锌锡氧化物(IGZTO)。也可为非晶硅(a-Si)半导体层、多晶硅(p-Si)半导体层或有机半导体层。

ST5在所述有源层3上形成第一栅极绝缘层5;例如利用化学汽相沉积方法,在有源层3上连续沉积栅极绝缘层。栅极绝缘层的材料通常是氮化硅,也可以使用氧化硅和氮氧化硅,也可以是铝的氧化物等。

ST6在所述第一栅极绝缘层5上制作一个金属电极作为第一栅极4;用于制备栅极的栅金属材料通常使用钼、铝钕合金、铝镍合金、钼钨合金、铬或铜等金属。其中利用了栅电极掩模板,通过例如曝光工艺和化学腐蚀工艺,栅极绝缘层一定区域上形成作为栅极图案的栅极。

栅极的材料可以包括从例如钼(Mo)、铝(Al)、铂(Pt)、钯(Pd)、银(Ag)、镁(Mg)、金(Au)、镍(Ni)、钕(Nd)、铱(Ir)、铬(Cr)、锂(Li)、钙(Ca)、钛(Ti)、钨(W)和铜(Cu)中选择的至少一种金属。然而,栅极的材料不限于此。

栅极的制作方法是使用光刻工艺等方法制作掩膜后,利用金属蒸镀或溅射等方法金属,并利用金属剥离工艺完成栅极制作,或者也可以先金属后,制作掩膜,并利用金属刻蚀技术制作栅电极。

ST7在所述缓冲层或者第二栅极绝缘层上方形成层间介电层,在形成层间介电层的同时,形成漏极1和源极2与所述缓冲层接触的过孔,所述层间介电层覆盖所述第一栅极4和所述第一栅极绝缘层5;在具体设置是,可以采用PHO/Dry/STR工艺对其进行图形化处理从而形成其中的过孔图案。

ST8形成源漏金属层并进行图案化,所述源漏金属层的图形包括源极2和漏极1,所述源极2和漏极1通过所述层间介电层上的过孔形成的主体101、位于所述源极2和所述漏极1主体101的相对侧上的纵向延伸部102、位于所述纵向延伸部102的顶部的横向延伸部103。

TFT-LCD像素结构中的薄膜晶体管控制整个像素的工作状态,在像素结构中具有重要的作用。TFT像素电荷的保持率是TFT-LCD的重要显示参数之一。像素电荷的保持率与TFT器件的关态特性有很大关系,薄膜晶体管的关态电阻越大,即关态电流越小,其像素电荷的维持时间越长。

关态电流Ioff的计算公式:

q、n、p、μe、μp、ds:分别为电子电荷量、电子密度、空穴密度、电子迁移率、空穴迁移率、有源层3厚度。

由上述可知,从器件结构看,关态电流Ioff与薄膜晶体管的宽长比W/L,有源层3的厚度ds有关。在不考虑其它因素的情况下,减小宽长比W/L的比值以及有源层3厚度ds是减小关态电流的有效途径。

有效沟道长度仍保持不变,因此不会导致器件短路或者漏电流增加。在保持源漏宽度不变、有效沟道长度不受影响的情况下,增加了源漏的深度,从而降低了源漏电阻,大大降低了源漏的寄生电阻。

实施例二

一种TFT阵列基板,具有双栅结构,一种TFT阵列基板还包括设置在衬底100上的第二栅极10,所述衬底100上设置有与所述第二栅极10配合的凸台8。所述第二栅极10设置在所述凸起型结构下方对应位置,所述第二栅极10的宽度小于所述源极2和所述栅极在所述有源层3上形成的沟道宽度。所述第二栅极10覆盖在所述凸台8的侧表面并在所述衬底100上向所述凸台8的外侧延伸。

包括衬底100,衬底100上依次设置有第二平坦层301、第二缓冲层401或者第二栅极绝缘层、第一层间介电层500、第三平坦层600。所述第二平坦层301未覆盖所述第二栅极10的上表面;所述第二缓冲层401或者第二栅极绝缘层设置在第二栅极10与所述有源层3之间。

在本申请实施例中,TFT阵列基板还包括在漏极1或源极2上设置阳极6,在衬底100上设置阴极7。在本实施例中,阳极6设置在第三平坦层600的上方,并通过设置在第三平坦层600上的阳极6过孔与所述源极2连接;所述阴极7设置在第三平坦上方,并通过设置在第三平坦层600上的阴极7过孔、第一层间介电层500上的阴极7过孔、第二缓冲层401或者第二栅极绝缘层上的阴极7连同至衬底100上。

衬底100上还设置有凸起,阴极7设置在该凸起上,并从凸起上表面经凸台8的侧表面向衬底100表面向凸台8的外侧延伸。阴极7在衬底100上延伸,但并不与第二栅极10接触。此时,阴极7可以作为遮光层200使用。遮光层200可以防止有源层3受到外部光线而发生光电流的现象。

阳极6和/或阴极7是透明电极时,阳极6和/或阴极7可以由例如ITO、IZO、ZnO或In2O3形成。当阳极6和/或阴极7是反射电极时,阳极6和/或阴极7可以包括例如由Ag、Mg、Al、Pt、Pd、Au、Ni、Nd、Ir、Cr或其混合物形成的反射膜和由ITO、IZO、ZnO或In2O3形成的透明膜。在示例性实施例中,阳极6和/或阴极7可以具有ITO/Ag/ITO的结构。

本申请提供了一种TFT阵列基板制备方法,用于制备如以上所述的TFT阵列基板,其特征在于,所述方法包括:

SP1如图3所示,在衬底100上形成凸台8;衬底100可以为玻璃基板或者塑料基板,针对不同类型的衬底100,可以通过不同的方法形成凸台8。

SP001所述衬底100为玻璃基板,在所述衬底100上形成凸台8的方法包括:

通过刻蚀形成所述凸台8;

或者利用高耐热胶材进行光刻形成所述凸台8。

SP002所述衬底100为塑料基板,在在所述衬底100上形成凸台8的方法包括:

通过使用感光型的PI材料进行半调曝光形成所述凸台8;

或者使用光掩模进行干刻去除所述凸台8外的其他衬底100部分;

或者使用纳米压印的方法形成所述凸台8。

SP2如图4所示,在衬底100上形成第二栅极10和阴极7;用于制备栅极的栅金属材料通常使用钼、铝钕合金、铝镍合金、钼钨合金、铬或铜等金属。其中利用了栅电极掩模板,通过例如曝光工艺和化学腐蚀工艺,衬底100一定区域上形成作为栅极图案的栅极。

第二栅极10和阴极7还可以发挥遮光作用,实现对TFT有源层3的遮光效果。

SP3如图5所示,在所述衬底100上涂覆旋涂硅玻璃作为第二平坦层301,所述第二平坦层301未覆盖所述第二栅极10上表面;通过固化SOG层,将SOG层变为具有平坦表面的氧化硅层,其中,SOG(spin on glass coating,旋转涂布玻璃或旋涂硅玻璃),SOG是将含有介电材料的液态溶剂以旋转涂布(spin Coating)方式,均匀地涂布在晶圆表面,以填补沉积介电层凹陷的孔洞。之后,再经过热处理,可去除溶剂,在晶圆表片上留下固化(Curing)后近似二氧化硅(SiO2)的介电材料。

SP4如图6所示,在所述第二平坦层301上表面和所述第二栅极10上表面上形成第二缓冲层401或者第二栅极绝缘层;绝缘层和缓冲层的材料包括但不限于氧化硅(SiOx)、氮化硅(SiNx)、氮氧化硅(SiON)等介质材料,新型的有机绝缘材料如聚硅氧烷系材料,亚克力系材料,或聚酰亚胺系材料等,或高介电常数材料如氧化铝(AlOx),氧化铪(HfOx),氧化钽(TaOx)等。

SP5如图7所示,在所述第二缓冲层401或者第二栅极绝缘层上形成有源层3;例如,在缓冲层上沉积一层非晶硅层;对非晶硅层进行图案化处理;通过准分子激光退火工艺将所述非晶硅层转化结晶为多晶硅(Poly-Si)层。

有源层3,可以为金属氧化物半导体的材料,例如铟镓锌氧化物(IGZO)、铟锌锡氧化物(IZTO)或铟镓锌锡氧化物(IGZTO)。也可为非晶硅(a-Si)半导体层、多晶硅(p-Si)半导体层或有机半导体层。

SP6如图8所示,在所述有源层3上形成第一栅极绝缘层5;例如利用化学汽相沉积方法,在有源层3上连续沉积栅极绝缘层。栅极绝缘层的材料通常是氮化硅,也可以使用氧化硅和氮氧化硅,也可以是铝的氧化物等。

SP7如图8所示,在所述第一栅极绝缘层5上制作一个金属电极作为第一栅极4;用于制备栅极的栅金属材料通常使用钼、铝钕合金、铝镍合金、钼钨合金、铬或铜等金属。其中利用了栅电极掩模板,通过例如曝光工艺和化学腐蚀工艺,栅极绝缘层一定区域上形成作为栅极图案的栅极。

栅极的材料可以包括从例如钼(Mo)、铝(Al)、铂(Pt)、钯(Pd)、银(Ag)、镁(Mg)、金(Au)、镍(Ni)、钕(Nd)、铱(Ir)、铬(Cr)、锂(Li)、钙(Ca)、钛(Ti)、钨(W)和铜(Cu)中选择的至少一种金属。然而,栅极的材料不限于此。

栅极的制作方法是使用光刻工艺等方法制作掩膜后,利用金属蒸镀或溅射等方法金属,并利用金属剥离工艺完成栅极制作,或者也可以先金属后,制作掩膜,并利用金属刻蚀技术制作栅电极。

SP8如图9所示,在所述缓冲层或者第二栅极绝缘层上方形成层间介电层,在形成层间介电层的同时,形成漏极1和源极2与所述缓冲层接触的过孔,所述层间介电层覆盖所述第一栅极4和所述第一栅极绝缘层5;在具体设置是,可以采用PHO/Dry/SPR工艺对其进行图形化处理从而形成其中的过孔图案。

SP9如图10、11所示,形成源漏金属层并进行图案化,所述源漏金属层的图形包括源极2和漏极1,所述源极2和漏极1通过所述层间介电层上的过孔形成的主体101、位于所述源极2和所述漏极1主体101的相对侧上的纵向延伸部102、位于所述纵向延伸部102的顶部的横向延伸部103。

在显示技术领域中,图案化工艺,可只包括光刻工艺,或,包括光刻工艺以及刻蚀步骤,同时还可以包括打印、喷墨等其他用于形成预定图形的工艺;光刻工艺,是指包括成膜、曝光、显影等工艺过程的利用光刻胶、掩模板、曝光机等形成图形的工艺。可根据本发明中所形成的结构选择相应的图案化工艺。

双栅结构在TFT中主要应用于维持稳定的Vth uniformity和增加Ion。在基板上形成玻璃或塑料基板的凸台8,使底栅在凸台8上方进行覆盖,将其与有源层3的距离最小化,从而最大限度降低驱动电压,同时在底栅和上方源漏极之间的凸起型结构区域中,设计时将底栅金属放置于该区域下方,最大限度减少或抑制寄生电压(Cp,Cgs)的产生。尤其,当有源层3和底栅金属的距离达到1.7um以上时将不再发生寄生电容。

双栅TFT不仅可以运用于显示区域提高开口率,也可运用于阵列基板行驱动(GateOn Array,简称GOA)区域,以降低GOA区域的大小,从而缩小显示装置的边缘大小,有利于实现显示装置的窄边框化。

该双栅TFT还可以运用于静电放电(Electro-Static Discharge,简称ESD)电路中,减小ESD电路的尺寸大小、放电所需时间。ESD电路是为了防止产品在制作以及后续使用中产生对显示装置的屏幕造成损伤的静电而制作的一个由TFT组成的导电回路,如果阵列基板上的某一走线上出现瞬间高压,就会通过该ESD电路将电流平均到整个阵列基板上。

另一方面,本申请还提供了一种显示装置,包括以上所述的单栅TFT阵列基板和双栅TFT阵列基板。

在一些需要两倍W(Channel width)(沟道宽)的区域中可以通过使用双栅来增大Ioff或最大限度减小Cp、Cgs从而增加Ion。在一些W差异大的像素结构可以变形应用于需要小W的OLED或需要大W的LED(uLED,QNED等)等,也可应用于R G B各子像素中一两个使用小W的亚像素蒸镀有机EL,剩下的亚像素蒸镀无机EL(LED等)而采用大W TFT的Hybrid LED显示等。

需要理解的是,术语“长度”、“宽度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。

此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。

除非另有定义,本文中所使用的技术和科学术语与本发明的技术领域的技术人员通常理解的含义相同。本文中使用的术语只是为了描述具体的实施目的,不是旨在限制本发明。本文中出现的诸如“设置”等术语既可以表示一个部件直接附接至另一个部件,也可以表示一个部件通过中间件附接至另一个部件。本文中在一个实施方式中描述的特征可以单独地或与其它特征结合地应用于另一个实施方式,除非该特征在该另一个实施方式中不适用或是另有说明。

本发明已经通过上述实施方式进行了说明,但应当理解的是,上述实施方式只是用于举例和说明的目的,而非意在将本发明限制于所描述的实施方式范围内。本领域技术人员可以理解的是,根据本发明的教导还可以做出更多种的变型和修改,这些变型和修改均落在本发明所要求保护的范围以内。

16页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:显示面板及显示屏

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!

技术分类