混合稀土烧结钕铁硼永磁体及其制备方法

文档序号:600365 发布日期:2021-05-04 浏览:43次 >En<

阅读说明:本技术 混合稀土烧结钕铁硼永磁体及其制备方法 (Mixed rare earth sintered neodymium-iron-boron permanent magnet and preparation method thereof ) 是由 任少卿 吕科 孟恒 赵明静 李泉 高岩 付建龙 刘国征 于 2020-12-28 设计创作,主要内容包括:本发明公开了一种混合稀土烧结钕铁硼永磁体及其制备方法,按照(MM-xRE-(1-x))-aFe-(100-a-b-)-cB-bM-c成分配料,采用速凝甩带技术得到厚度为0.2~0.5mm的速凝甩带片,然后经过氢破碎和气流磨制成平均粒度为2~5μm的磁粉;将磁粉在氮气保护下在混料罐中混合,混合均匀后在磁场下取向成型,经冷等静压制成生坯;将生坯放在真空烧结炉中进行烧结,烧结温度为950~1100℃,保温得到烧结态磁体;对烧结态磁体进行回火处理,回火温度为420~650℃,得到混合稀土烧结钕铁硼永磁体。本发明通过调整稀土元素与硼元素的比例,制备工艺采用一级回火处理,从而改善了永磁体磁性能。(The invention discloses a mixed rare earth sintered neodymium-iron-boron permanent magnet and a preparation method thereof, according to (MM) x RE 1‑x ) a Fe 100‑a‑b‑ c B b M c Preparing ingredients, namely obtaining a rapid hardening melt-spun sheet with the thickness of 0.2-0.5 mm by adopting a rapid hardening melt-spun technology, and then preparing magnetic powder with the average particle size of 2-5 mu m by hydrogen crushing and airflow milling; mixing the magnetic powder in a mixing tank under the protection of nitrogen, uniformly mixing, then carrying out orientation forming in a magnetic field, and preparing a green body through cold isostatic pressing; sintering the green body in a vacuum sintering furnace at the sintering temperature of 950-1100 ℃ to obtain a sintered magnet; and tempering the sintered magnet at the tempering temperature of 420-650 ℃ to obtain the mixed rare earth sintered neodymium-iron-boron permanent magnet. The invention adjusts the ratio of rare earth element to boron elementFor example, the preparation process adopts primary tempering treatment, thereby improving the magnetic property of the permanent magnet.)

混合稀土烧结钕铁硼永磁体及其制备方法

技术领域

本发明涉及稀土永磁材料制备领域,具体涉及一种混合稀土烧结钕铁硼永磁体及其制备方法。

背景技术

钕铁硼永磁体是第三代永磁材料,拥有优良的综合磁性能,被广泛地应用于电子行业、航空航天、医疗器械、风力发电、电动汽车、机器人等诸多领域,是目前市场应用最多的永磁材料。稀土永磁制造业主要以镨钕合金作为原料制造钕铁硼永磁体,而我国轻稀土主要产地白云鄂博矿中含有大量的La、Ce稀土元素,难以得到有效利用。混合稀土(Mischmetal,MM)中La、Ce、Pr、Nd各组分比例维持了矿石中的比例。由于减少了稀土元素分离的工艺流程,混合稀土合金不仅更加环保而且具有明显的价格优势。使用混合稀土作为原料制造稀土永磁体,能够显著降低永磁体的成本,同时还有利于稀土资源的平衡利用。

商用磁体一般要求矫顽力达到12KOe以上。由于混合稀土中La和Ce的高含量,若制造纯MMFeB合金,其磁性能下降严重,难以满足应用需求。近年来,MM部分替代PrNd生产低成本钕铁硼磁体的工作取得的成果表明,非均质钕铁硼合金可以保持较高的磁性能,从而为低成本磁体的生产带来了希望。

传统烧结永磁体工艺路线采用二级回火,但是对于(MM,Nd)-Fe-B磁体而言,难以避免化学元素均质化对磁性能的损害,并且制备成本高。

中国专利公开号CN 107146674 A公开了一种免于热处理的富铈稀土永磁体及其生产方法,该技术中磁体包括多个主相。工艺不经后续热处理工序,其磁体性能是通过磁体包含的多个主相来实现的。

发明内容

本发明的目的在于提供一种混合稀土烧结钕铁硼永磁体及其制备方法,通过调整稀土元素与硼元素的比例,制备工艺采用一级回火处理,从而改善了永磁体磁性能,在保持较高磁性能的同时,降低永磁体的原材料成本以及制造能耗。

为达到上述目的,本发明使用的技术解决方案是:

混合稀土烧结钕铁硼永磁体,质量百分数通式为:(MMxRE1-x)aFe100-a-b-cBbMc,MM为混合稀土合金,MM的质量百分比;Ce>48%,La 20~35%,Pr4~7%,Nd 10~20%,Sm≤0.3%,Fe≤1%,Mg≤0.8%,Si≤0.2%,Ca≤0.03%,S≤0.02%,P≤0.01%;RE为Pr、Nd、Sm、Eu、Gd、Ho、Dy、Tb元素中的一种或者多种,B为硼元素,M为Nb、V、Ti、Co、Cr、Mo、Mn、Ni、Ga、Zr、Ta、Ag、Au、Al、Pb、Cu、Si元素中一种或多种,其中29≤a≤35、0.85≤b≤1、0.5≤c≤5、10≤x≤40。

进一步,31≤a≤33,0.9≤b≤0.95,1.2≤c≤2.5,20≤x≤30。

进一步,磁体稀土总量a=32,硼含量b=0.92。

进一步,磁体稀土总量a=33,硼含量b=0.9。

混合稀土烧结钕铁硼永磁体的制备方法,包括:

按照(MMxRE1-x)aFe100-a-b-cBbMc成分配料,采用速凝甩带技术得到厚度为0.2~0.5mm的速凝甩带片,速凝甩带片经过氢破碎和气流磨制成平均粒度为2~5μm的磁粉;

将磁粉在氮气保护下混合,在混料罐中混合1~3h,混合均匀后在1.5T~2T的磁场下取向成型,经冷等静压制成生坯;

将生坯放在真空烧结炉中进行烧结,烧结温度为950~1100℃,保温1~10h得到烧结态磁体;

对烧结态磁体进行回火处理,回火温度为420~650℃,得到混合稀土烧结钕铁硼永磁体。

优选的,在470~530℃之间进行保温2~5h的回火热处理。

优选的,通过控制稀土总量以及硼的含量,使得31≤a≤33,0.9≤b≤0.95。

优选的,制备成平均粉末粒度小于3.5μm的粉末,在氮气保护下将磁粉在2T磁场下取向成型,经冷等静压200MPa制成生坯。

优选的,将生坯放入真空烧结炉中,在1060℃烧结保温5小时,然后在500℃进行回火处理3h。

本发明技术效果包括:

本发明通过调整稀土元素与硼元素的比例,采用一级回火处理,制造矫顽力大于12KOe的混合稀土烧结钕铁硼永磁体((MM,Nd)-Fe-B磁体)。在保持较高磁性能的同时,降低磁体的原材料成本以及制造能耗。

(1)本发明所提供的磁体,利用了混合稀土。

混合稀土中La、Ce、Pr、Nd各组分比例维持了我国轻稀土主要产地白云鄂博矿石中各元素的比例。由于减少了稀土元素分离的工艺流程,混合稀土合金不仅更加环保而且具有明显的价格优势。本发明利用MM部分取代Nd进行稀土永磁体的制备和生产,实现成本控制。

(2)本发明通过控制稀土总量以及硼的含量,保证永磁体液相烧结过程中富稀土相的含量,从而改善了磁性能。

(3)本发明采用一级回火的工艺路线,相较传统永磁体制造的二级回火工艺路线,大幅度降低了生产能耗。

本发明采用一级回火,有利于避免化学元素均质化对磁性能的损害,制造工艺流程更短的(MM,Nd)-Fe-B磁体,不仅减少了原材料成本,还能降低制造过程中的能耗,对低成本磁体的生产具有重大意义。

具体实施方式

以下描述充分地示出本发明的具体实施方案,以使本领域的技术人员能够实践和再现。

混合稀土烧结钕铁硼永磁体的制备方法,步骤如下:

步骤1:按照(MMxRE1-x)aFe100-a-b-cBbMc成分配料,采用速凝甩带技术得到厚度为0.2~0.5mm的速凝甩带片,然后经过氢破碎和气流磨制成平均粒度为2~5μm的磁粉;

步骤2:将磁粉在氮气保护下混合,在混料罐中混合1~3h,混合均匀后在1.5T~2T的磁场下取向成型,经冷等静压制成生坯;

冷等静压的压力为200MPa。

步骤3:将生坯放在真空烧结炉中进行烧结,烧结温度为950~1100℃,保温1~10h得到烧结态磁体;

步骤4:对烧结态磁体进行回火处理,回火温度为420~650℃,得到混合稀土烧结钕铁硼永磁体。

本优选实施例中,采用一级回火的工艺路线,优选的回火处理温度为470~530℃,在470~530℃之间选取一个温度,进行保温2~5h的回火热处理。本发明中涉及的混合稀土烧结钕铁硼永磁体中包含La、Ce、Pr、Nd四种稀土金属。

本发明得到混合稀土烧结钕铁硼永磁体,仅有一个主相,由于调整了稀土总量及硼的含量,可以仅通过一级回火,即可获得良好的磁性能。较高的稀土总量以及较低的硼含量保证了磁体中有较多的富钕相的存在,该富钕相主要由稀土、铁以及一定量的氧及其他小量金属构成,这种成分的富钕相是一级回火既能有效改善磁体的显微结构的原因。一级回火工艺是基于本发明所述磁体化学元素配比,即本发明的两个发明点是互为依托的。

混合稀土烧结钕铁硼永磁体属于(MM,Nd)-Fe-B磁体,质量百分数通式为:(MMxRE1-x)aFe100-a-b-cBbMc,MM为混合稀土合金,MM的质量百分比:Ce>48%,La 20~35%,Pr4~7%,Nd 10~20%,Sm≤0.3%,Fe≤1%,Mg≤0.8%,Si≤0.2%,Ca≤0.03%,S≤0.02%,P≤0.01%;RE为Pr、Nd、Sm、Eu、Gd、Ho、Dy、Tb元素中的一种或者几种,B为硼元素,M为Nb、V、Ti、Co、Cr、Mo、Mn、Ni、Ga、Zr、Ta、Ag、Au、Al、Pb、Cu、Si元素中一种或几种,其中29≤a≤35、0.85≤b≤1、0.5≤c≤5、10≤x≤40。

本优选实施例中,31≤a≤33,0.9≤b≤0.95,1.2≤c≤2.5,20≤x≤30。通过控制稀土总量以及硼的含量,使得31≤a≤33,0.9≤b≤0.95保证永磁体液相烧结过程中富稀土相的含量,从而改善磁性能。

通过控制稀土总量以及硼的含量,保证了速凝甩带的显微结构由良好的柱状晶组成,且柱状晶之间填充富稀土相,这是磁体磁性能的前提保证。之后的一级回火工艺,有效调控了富稀土相的构成,形成了良好的晶界结构,提高了磁体的矫顽力。本发明所述化学成分的混合稀土烧结钕铁硼永磁体,其晶界结构不需要高温阶段的时效处理,仅经过低温阶段的时效处理即可达到矫顽力最优值。

对比例1

将质量百分数为(MM0.25Re0.75)30FebalB1Co0.5Al0.4Ga0.2Cu0.1Zr0.1的化学成分配料,采用速凝甩带、氢破碎和气流磨的工艺流程,制备成平均粉末粒度小于3.5μm的粉末。在磁粉中添加润滑剂与防氧化剂并混合均匀后,在氮气保护下将磁粉在2T磁场下取向成型,并经200MPa冷等静压制成生坯。将生坯放入真空烧结炉中,在1060℃烧结保温5小时;然后在900℃一级回火热处理3h,然后在500℃进行二级回火处理3h,所得磁体磁性能如表1所示。

对比例2

将质量百分数为(MM0.25Re0.75)32FebalB0.92Co0.5Al0.4Ga0.2Cu0.1Zr0.1的化学成分配料,采用速凝甩带、氢破碎和气流磨的工艺流程,制备成平均粉末粒度小于3.5μm的粉末。在磁粉中添加润滑剂与防氧化剂并混合均匀后,在氮气保护下将磁粉在2T磁场下取向成型,并经200MPa冷等静压制成生坯。将生坯放入真空烧结炉中,在1060℃烧结保温5小时;然后在900℃一级回火热处理3h,然后在500℃进行二级回火处理3h,所得磁体磁性能如表1所示。

实施例1

将质量百分数为(MM0.25Re0.75)32FebalB0.92Co0.5Al0.4Ga0.2Cu0.1Zr0.1的化学成分配料,采用速凝甩带、氢破碎和气流磨的工艺流程,制备成平均粉末粒度小于3.5μm的粉末。在磁粉中添加润滑剂与防氧化剂并混合均匀后,在氮气保护下将磁粉在2T磁场下取向成型,并经200MPa冷等静压制成生坯。将生坯放入真空烧结炉中,在1060℃烧结保温5小时;然后在500℃进行回火处理3h,所得磁体磁性能如表1所示

表1

性能参数 Br/kGs Hcj/kOe (BH)max/MGOe 方形度/%
对比例1 13.08 7.698 37.68 76.2
对比例2 13.03 12.19 40.96 96.7
实施例1 12.88 11.89 40.14 95.1

说明:对比例1中磁体稀土总含量a=30,硼含量b=1,其磁性较低。

实施例1中磁体稀土总量优选的为a=32,硼含量b=0.92,其磁性能显著高于对比例1。实施例1中的磁体没有经过900℃回火3h的处理,仍然保持了与对比例2相当的磁性能。上述对比说明合适的稀土总量能够保证永磁体较高的磁性能,本发明不仅缩短了工艺流程,降低了生产能耗,而且磁体也能获得较好的磁性能。

对比例3

将质量百分数为(MM0.25Re0.75)33FebalB0.9Co0.5Al0.4Ga0.2Cu0.1Zr0.1的化学成分配料,采用速凝甩带、氢破碎和气流磨的工艺流程,制备成平均粉末粒度小于3.5μm的粉末。在磁粉中添加润滑剂与防氧化剂并混合均匀后,在氮气保护下将磁粉在2T磁场下取向成型,并经200MPa冷等静压制成生坯。将生坯放入真空烧结炉中,在1060℃烧结保温5小时;然后在900℃一级回火热处理3h,然后在500℃进行二级回火处理3h,所得磁体磁性能如表2所示。

对比例4

将质量百分数为(MM0.25Re0.75)30FebalB1Co0.5Al0.4Ga0.2Cu0.1Zr0.1的化学成分配料,采用速凝甩带、氢破碎和气流磨的工艺流程,制备成平均粉末粒度小于3.5μm的粉末。在磁粉中添加润滑剂与防氧化剂并混合均匀后,在氮气保护下将磁粉在2T磁场下取向成型,并经200MPa冷等静压制成生坯。将生坯放入真空烧结炉中,在1060℃烧结保温5小时,然后在500℃进行一级回火处理3h,所得磁体磁性能如表3所示。

实施例2

将质量百分数为(MM0.25Re0.75)33FebalB0.9Co0.5Al0.4Ga0.2Cu0.1Zr0.1的化学成分配料,采用速凝甩带、氢破碎和气流磨的工艺流程,制备成平均粉末粒度小于3.5μm的粉末。在磁粉中添加润滑剂与防氧化剂并混合均匀后,在氮气保护下将磁粉在2T磁场下取向成型,并经200Mpa冷等静压制成生坯。将生坯放入真空烧结炉中,在1060℃烧结保温5小时,然后在500℃进行一级回火处理3h,所得磁体磁性能如表2所示。

表2

性能参数 Br/kGs Hcj/kOe (BH)max/MGOe 方形度/%
对比例3 12.77 12.07 39.74 97
对比例4 13.05 9.00 38.88 73.1
实施例2 12.88 12.09 40.73 98.5

说明:通过对比例3和实施例2的比较可以发现,实施例2中的磁体没有经过900℃回火3h的处理,仍然保持了与对比例3相当的磁性能,其磁能积甚至明显高于多一段回火处理的对比例3。上述对比说明本发明不仅缩短了工艺流程,降低了生产能耗,而且磁体也能获得较好的磁性能。

对比例4中磁体稀土总含量a=30,硼含量b=1,其磁性较低。

实施例2中磁体稀土总量优选的为a=33,硼含量b=0.9,其磁性能显著高于对比例4。上述对比说明合理的稀土总量以及硼的含量是保证磁体性能的前提条件,

本发明所用的术语是说明和示例性、而非限制性的术语。由于本发明能够以多种形式具体实施而不脱离发明的精神或实质,所以应当理解,上述实施例不限于任何前述的细节,而应在随附权利要求所限定的精神和范围内广泛地解释,因此落入权利要求或其等效范围内的全部变化和改型都应为随附权利要求所涵盖。

7页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:高性能烧结钐钴磁体的制备方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!