一种液压活塞杆及其表面复合功能涂层和制备方法

文档序号:873895 发布日期:2021-03-19 浏览:5次 >En<

阅读说明:本技术 一种液压活塞杆及其表面复合功能涂层和制备方法 (Hydraulic piston rod, surface composite functional coating thereof and preparation method ) 是由 王井 蹤雪梅 员霄 于 2020-11-12 设计创作,主要内容包括:本发明公开了一种液压活塞杆表面复合功能涂层,从液压活塞杆基体向外依次包括打底层、过渡层和工作层;打底层为高耐蚀涂层,与基体呈冶金结合;工作层为高硬度涂层;过渡层一侧与打底层机械结合,另一侧与工作层机械结合;过渡层为多层结构,过渡层成分沿打底层至工作层方向呈渐变式分布;靠近打底层一侧,成分与打底层成分相近,靠近工作层一侧,成分与工作层相近,过渡层中间段成分呈梯度渐变式分布。本发明提供的复合功能涂层,具备耐腐蚀、抗疲劳、耐磨损、高硬度等复合功能;过渡层内采取成分渐变式结构,有效降低涂层内部残余应力,避免工作层与打底层成分差异导致的性能差异,渐变式成分含量计算方法,有利于加工过程成分自动化控制。(The invention discloses a composite functional coating on the surface of a hydraulic piston rod, which sequentially comprises a priming layer, a transition layer and a working layer from the base body of the hydraulic piston rod to the outside; the priming coat is a high corrosion resistant coating and is metallurgically bonded with the matrix; the working layer is a high-hardness coating; one side of the transition layer is mechanically combined with the bottoming layer, and the other side of the transition layer is mechanically combined with the working layer; the transition layer is of a multilayer structure, and the components of the transition layer are distributed in a gradual change manner along the direction from the bottoming layer to the working layer; the components of the transition layer are distributed in a gradient gradual mode. The composite functional coating provided by the invention has the composite functions of corrosion resistance, fatigue resistance, wear resistance, high hardness and the like; the transition layer adopts a component gradual change type structure, so that the residual stress in the coating is effectively reduced, the performance difference caused by the component difference between the working layer and the priming coat is avoided, and the gradual change type component content calculation method is favorable for the automatic control of the components in the processing process.)

一种液压活塞杆及其表面复合功能涂层和制备方法

技术领域

本发明涉及一种液压活塞杆及其表面复合功能涂层和制备方法,属于液压缸活塞杆涂层技术领域。

背景技术

液压缸是将液压能转变为机械能,做直线往复运动的液压执行元件,具有结构简单、工作可靠等优点,广泛应用于工程机械、海工装备等大型装备液压系统中。在工作过程中,活塞杆需进行频繁的往复伸缩运动,其表面长期与周围工作环境介质相接触,尤其在含有酸碱性、高盐、高湿等腐蚀介质的工作环境中,更容易导致活塞杆表面发生点蚀、锈蚀等失效,进而导致液压缸漏油、卡滞等故障,影响大型装备的工作可靠性和安全性。

然而,在一些严苛的工作环境中,活塞杆不仅需要克服强腐蚀介质对材料的腐蚀作用,还需要承受外部介质的冲蚀作用以及频繁往复侧向载荷。如工程机械用悬挂油缸在车辆行驶过程中,飞溅的污泥对活塞杆表面造成强烈的冲蚀作用,且还需要承受路面颠簸时车体晃动带来的侧向载荷,再如海工装备液压缸、水利液压缸需承受海水、海风对其表面的频繁侧向冲击及海水、河水中硬质颗粒的冲蚀作用。因此,在上述作业环境中,活塞杆表面不仅需要克服颗粒的冲蚀作用,而且还需要具有较强的抗往复冲击能力。

针对严苛工况使用要求,常采用表面技术在活塞杆表面制备具有特殊功能的涂层,提升其环境适应性。常用的涂层类型有电镀铬层、热喷涂涂层、激光熔覆耐蚀金属涂层等。上述涂层具有较优的耐腐蚀性能,然而电镀铬层硬度≥700HV,厚度一般仅为0.05mm,因此涂层抗硬质颗粒的冲蚀能力较差,使用寿命较低;热喷涂WC类涂层硬度≥1200HV,具有较高的抗冲蚀能力,但该类涂层韧性较差,抗往复冲击能力低,易产生弯曲疲劳裂纹,且内部存在固有孔隙,耐蚀性能无法满足严苛环境下使用需求;激光熔覆耐蚀金属涂层硬度≥600HV,具有较高的结合强度及抗往复冲击能力,但涂层硬度低导致其抗冲蚀磨损性能不足。

发明内容

目的:针对严苛服役工况下液压缸活塞杆服役性能需求,常用的单一涂层结构及其制备工艺无法满足使用要求,本发明提供一种应用于严苛环境下的液压活塞杆及其表面复合功能涂层和制备方法。

技术方案:为解决上述技术问题,本发明采用的技术方案为:

一种液压活塞杆表面复合功能涂层,从液压活塞杆基体向外依次包括打底层、过渡层和工作层;所述打底层为高耐蚀涂层,打底层与基体呈冶金结合,所述工作层为高硬度涂层,过渡层一侧与打底层机械结合,另一侧与工作层机械结合;

所述过渡层为多层结构,过渡层成分沿打底层至工作层方向呈渐变式分布;靠近打底层一侧,过渡层成分与打底层成分相近,靠近工作层一侧,过渡层成分与工作层相近,过渡层中间段成分呈梯度渐变式分布。

进一步地,所述打底层厚度为0.3-0.5mm,硬度为HV250-HV300,打底层内部孔隙率在1%以下。

进一步地,所述工作层厚度为0.08-0.1mm,硬度为HV1000-HV1200。

进一步地,所述过渡层总厚度为L,过渡层中单层厚度为m,过渡层成分划分为M个涂层梯度,则每个涂层梯度包含涂层层数N为L/(m*M),通过rounddown函数计算得到层数为n的涂层所处的成分梯度为rounddown(n/(L/(m*M))),rounddown小数点后数字全舍去。

进一步地,所述过渡层总厚度L为0.1-0.2mm,过渡层的硬度介于打底层与工作层之间。

进一步地,设与打底层接触的一层成分为A,成分A与打底层成分相近,与工作层接触的一层成分为B,成分B与工作层成分相近,

则层数为n的涂层中A成分的含量为:(1-rounddown(n/(L/(m*M)))/M)*100%,

B成分的含量为:rounddown(n/(L/(m*M)))/M*100%。

一种液压活塞杆表面复合功能涂层的制备方法,包括如下步骤:

(1)液压活塞杆基体表面预处理:对基体表面进行除油、除污、除锈处理,并将表面洗净;

(2)打底层制备:将高耐蚀涂层材料进行烘干、预热处理,利用高能束在基体表面制备成冶金结合、高致密的涂层,即打底层;

(3)过渡层制备:采用热喷涂工艺制备过渡层,喷涂过程中利用搭建的多路协同送粉系统,根据涂层加工工艺参数,推算每一层涂层开始喷涂时间点和所需喷涂时长,根据过渡层结构特点及不同层数中涂层的各个成分含量变化规律,计算得到不同成分粉末送粉量随时间变化规律,然后设置送粉系统中不同粉末的送粉工艺参数,通过集中控制模块,实时调节不同粉末的送粉变化规律及喷涂加工工艺参数,实现多路送粉系统的协同送粉及喷涂加工;

(4)工作层制备:采用超音速喷涂或大气等离子喷涂工艺,在过渡层表面制备高硬度陶瓷涂层,即工作层;

进一步地,制备过渡层前,采用车削或磨削方法对打底层表面进行光整加工,保证打底层表面无明显凹坑、麻点。

进一步地,利用金刚石砂轮磨削加工工艺对工作层精加工至预定尺寸,再采用金刚石砂带抛光工艺对涂层进行抛光加工,满足粗糙度要求。

一种液压活塞杆,通过前述方法制备得到。

有益效果:本发明提供的复合功能涂层,采用多种涂层结合方式,使涂层具备耐腐蚀、抗疲劳、耐磨损、高硬度等复合功能;其中打底层与活塞杆基体冶金结合形成“涂-基”界面,同时打底层内部也采用冶金结合方式,涂层致密性高,不仅有效提升了涂层的抗腐蚀介质渗入性能,而且有效改善涂层的抗疲劳性能;过渡层内采取成分渐变式结构,有效降低涂层内部残余应力,避免工作层与打底层成分差异导致的性能差异,本发明提供的“成分渐变式”过渡层成分含量计算方法,有利于加工过程成分自动化控制。

附图说明

图1为本发明中表面具有复合功能涂层的液压活塞杆的结构示意图;

图2为图1中A部分的放大示意图;

图3为复合功能涂层的结构示意图。

具体实施方式

下面结合附图和实施例对本发明作更进一步的说明。

实施例:海洋环境下高性能液压缸活塞杆表面涂层结构及制备方法

海洋环境中大气及海水中含盐粒子多,具有较强的腐蚀性,同时空气湿度大、太阳辐射强,活塞杆表面频繁干湿交替,对表面涂层的耐蚀性能提出了严苛的使用要求。另一方面,活塞杆还需承受海浪往复冲击,造成活塞杆基体及涂层发生频繁的冲击变形,且海水冲击活塞杆表面时携带大量不同类型硬质物,进而在涂层表面局部区域造成较大的冲击应力。因此,海洋环境服役工况要求活塞杆涂层具有较高的冲击韧性及硬度。

基于本发明设计的液压活塞杆表面复合功能涂层,从液压活塞杆基体1向外依次包括打底层2、过渡层3和工作层4,如图1、图2所示。

所述打底层2厚度为0.3-0.5mm,涂层材料选用高耐蚀镍基粉末材料,组成成分为Cr20%-23%、Mo8%-10%、Fe1%-5%、Nb3%-5%、Co≤1%、Ni余量,涂层硬度为HV250-HV300。打底层的热膨胀系数和韧性与基材相近或相同,涂层内部结合方式为冶金结合,内部没有孔隙或孔隙率在1%以下;打底层2与基体呈冶金结合最大限度提升“涂-基”界面结合性能,打底层力学性能与基体相近或相同可有效避免工作过程中由于变形差异导致涂层内部产生过大应力,影响涂层的使用寿命;同时打底层材料为高耐蚀材料,且内部为冶金结合,致密性高,可有效阻止腐蚀介质渗入基体导致其表面发生腐蚀,提升涂层对活塞杆基体的防护性能。

所述工作层4厚度为0.08-0.1mm,涂层材料选用高硬度高耐蚀的氧化物陶瓷粉末材料,组成成分为TiO210%-30%、Al2O3≤1%、SiO2≤1%、Cr2O370%-90%,涂层硬度HV1000-HV1200。工作层4与过渡层3结合方式以机械结合为主,工作层硬度高,为避免涂层内部残余应力过高,故一般工作层厚度不宜过大。

如图3所示,所述过渡层3厚度L为0.15mm,硬度、韧性介于打底层2与工作层4之间,过渡层3与打底层2以机械结合方式结合。过渡层3成分沿打底层2至工作层4方向呈渐变式分布,靠近打底层2一侧,过渡层3成分与打底层2成分相近,靠近工作层4一侧,过渡层3的成分与工作层4相近,过渡层3中间段成分呈梯度渐变式分布,能显著降低由于打底层2与工作层4间成分与性能差异导致的涂层内部残余应力、易产生裂纹等失效。

具体地,过渡层3靠近打底层2初始成分为NiCr类粉末,组成成分为Ni60%-80%、Cr20%-40%,单层沉积厚度m为0.005mm,涂层内部一共划分为5个成分梯度,由此可以计算得到过渡层内层数为n的涂层中NiCr类粉末的质量百分比含量为:(1-rounddown(n/(0.15/(0.005*5)))/5)*100%,

涂层中氧化物陶瓷粉末的质量百分比含量为:rounddown(n/(0.15/(0.005*5)))/5*100%;

即:过渡层喷涂加工至1层时,n=1,该层的成分含量为

NiCr类粉末含量为100%,氧化物陶瓷粉末含量为0;

过渡层喷涂加工至20层时,n=20,该层的成分含量为

NiCr类粉末含量为40%,氧化物陶瓷粉末含量为60%;

过渡层喷涂加工至30层时,n=30,该层成分含量为

NiCr类粉末含量为0,氧化物陶瓷粉末含量为100%。

前述液压活塞杆表面复合功能涂层的制备过程如下:

(1)对活塞杆原始坯料依次进行下料、热处理、调形、粗精加工至工艺要求尺寸,完成活塞基体加工;将活塞杆基体装夹于卧式转台,利用丙酮、酒精等清洗剂对基体表面进行除油、除污、除锈等预处理,并将表面洗净。

(2)将预处理后的活塞杆基体继续装夹于卧式转台,编制机器人控制程序,采用激光束作为加工能量将粉末及基体同时熔化,在活塞杆基体表面制备高耐蚀、冶金结合、高致密的打底层。激光功率2000-2500W,光斑直径5mm,扫描速度15-20mm/s,搭接率50%,送粉转速1.8r/min-2.2r/min。

(3)将活塞杆装夹于卧式车床,利用车削工艺将打底层表面加工平整;利用喷砂处理方法对打底层表面进行粗化处理,喷砂距离约200-300mm,喷砂压力0.6-0.8MPa,喷砂砂粒采用氧化铝材料,粒度约20目,喷砂扫描速度180-220mm/s,喷砂后利用压缩空气对喷砂表面进行吹扫。

(4)利用等离子喷涂技术制备过渡层,根据工艺参数推算得到过渡层中不同层数涂层的开始喷涂时间和喷涂加工所需时长,按照计算得到的不同层数涂层中NiCr类粉末的含量值和氧化物陶瓷粉末的含量值,设置送粉系统送粉转速随时间变化参数。利用送粉集中控制系统,可以实时调节送粉速度及喷涂工艺参数,NiCr类粉末喷涂主要工艺参数:电压95-105V、电流550-600A、送粉气体流量3-3.5NLPM、喷涂距离120-125mm、送粉量45-50g/min、喷涂速度75-80m/min;氧化物陶瓷粉末喷涂主要工艺参数:电压65-75V、电流620-630A、送粉气体流量2-2.5NLPM、喷涂距离115-125mm、送粉量35-45g/min、喷涂速度70-80m/min。

(5)表面工作层制备:由于陶瓷涂层熔点较高,故采用等离子喷涂技术进行加工,喷涂过程关键工艺参数设置为:电压65-75V、电流620-630A、送粉气体流量2-2.5NLPM、喷涂距离115-125mm、送粉量35-45g/min、喷涂速度70-80m/min。

根据海洋环境腐蚀工况要求,选择无机单组份封孔剂对涂层进行封孔处理,该类封孔剂流动性较高,具有较强的渗透性能,能够显著提升涂层的耐腐蚀性能。

(6)液压活塞杆表面涂层精加工:将表面制备涂层的活塞杆装夹于加工转台上,利用金刚石砂轮磨削加工表面的涂层,保证加工后活塞杆的整体形位公差,并预留0.01mm/单边的抛光加工余量,然后再采用金刚石砂带抛光技术对涂层进行抛光加工,保证最终粗糙度满足设计要求。

以上所述仅是本发明的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

8页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种异形活塞多冲头油缸装置及其设计方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!