一种D-π-A型四苯乙烯基乙炔基苯基取代吡啶共轭发光小分子及其合成方法

文档序号:127080 发布日期:2021-10-22 浏览:17次 >En<

阅读说明:本技术 一种D-π-A型四苯乙烯基乙炔基苯基取代吡啶共轭发光小分子及其合成方法 (D-Pi-A type tetraphenyl vinyl ethynyl phenyl substituted pyridine conjugated light-emitting small molecule and synthetic method thereof ) 是由 张小兰 董洪霞 周一芳 潘阳 盛寿日 黄振钟 于 2021-06-21 设计创作,主要内容包括:本发明公开了一种D-π-A型四苯乙烯基乙炔基苯基取代吡啶共轭发光小分子及其合成方法。将4-溴苯甲醛、芳基苯乙酮及醋酸铵在冰醋酸催化下进行Chichibabin反应,得到2,6-二芳基-4-(4-溴苯基)吡啶化合物;再将2,6-二芳基-4-(4-溴苯基)吡啶与1-(4-乙炔基苯基)-1,2,2-三苯基乙烯在Pd(PPh-(3))-(2)Cl-(2)和CuI催化下进行Sonogashira偶联反应,即得D-π-A型四苯乙烯基乙炔基苯基取代吡啶共轭发光小分子。该小分子热稳定性好、具有聚集诱导发光(AIE)效应以及较高的荧光量子产率和较长的荧光寿命,可以作为光致荧光材料应用。(The invention discloses a D-pi-A type tetraphenylethynyl phenyl substituted pyridine conjugated light-emitting small molecule and a synthesis method thereof. Performing Chichibabin reaction on 4-bromobenzaldehyde, arylacetophenone and ammonium acetate under the catalysis of glacial acetic acid to obtain a 2, 6-diaryl-4- (4-bromophenyl) pyridine compound; then 2, 6-diaryl-4- (4-bromophenyl) pyridine and 1- (4-ethynylphenyl) -1,2, 2-triphenylethylene are added in Pd (PPh) 3 ) 2 Cl 2 And carrying out Sonogashira coupling reaction under the catalysis of CuI to obtain the D-pi-A type tetraphenyl vinyl ethynyl phenyl substituted pyridine conjugated luminescent micromolecule. The small molecule has good thermal stability and aggregation inductionThe luminescent (AIE) effect, higher fluorescence quantum yield and longer fluorescence lifetime can be used as a photoluminescence material.)

一种D-π-A型四苯乙烯基乙炔基苯基取代吡啶共轭发光小分 子及其合成方法

技术领域

本发明涉及一种发光有机小分子材料,具体涉及一种D-π-A型四苯乙烯基乙炔基苯基取代吡啶共轭发光小分子,还涉及其合成方法,属于有机发光材料技术领域。

背景技术

有机荧光化合物的设计与合成是近年来的研究热点,该类化合物可以广泛应用于化学传感器、有机发光二极管,液晶显示屏,太阳能电池等。染料敏化剂是太阳能电池中最主要的部分,因此,研究具有较高转化率的染料分子具有重大意义。大量研究表明D-π-A结构的有机染料分子具有较高的转化率,因为这种结构的分子可以通过改变给体受体和π桥来提高光学性能。

目前含氮芳香性吡啶衍生物已被大量报道,但是对于2,4,6-三芳基吡啶的研究相对较少。最近研究表明,2,4,6-三芳基吡啶经常显示出局部激发态的可见光发射和一个来自电荷转移的波长较长的可见发射带,这些特征导致它可以通过一个离子与其吡啶上的氮进行配位诱导,从而可应用于一种新型的检测离子响应的荧光化学传感器中。然而,到目前为止,该类化合物通常仅显示短波长的可见光发射并且其荧光强度通常很弱。

天津大学的孔凡鹏(孔凡鹏.基于含氮杂环的共轭有机化合物的设计、合成与性能研究[D].天津大学2011)设计合成了新型的含有强吸电子基的2,5-二(4-三氟甲基苯基)吡啶结构的D-π-A型有机共轭小分子,结构如上所示。研究结果表明当分子的共轭程度增大或连接供电子基团后,其紫外吸收光谱和荧光发射光谱均会发生红移,其中取代基为N,N-二甲基的化合物在不同极性溶剂中的荧光发射最大波长随着溶剂极性的增加而逐渐加强,这说明该分子具有明显的分子内电荷转移特性。此外,热重分析结果表明,所合成化合物具有优良的热稳定性且能够满足材料器件的应用要求。

到目前为止,还未见利用四苯乙烯(TPE)单元与2,4,6-三芳基吡啶单元通过炔基构建D-π-A型发光小分子的相关报道。

发明内容

为了实现上述技术目的,本发明的第一个目的是提供了一种热稳定性好、具有AIE效应以及较高荧光量子产率和较长荧光寿命的D-π-A型四苯乙烯基乙炔基苯基取代吡啶共轭发光小分子。

本发明的第二个目的是在于提供了一种步骤简单、原料成本较低、反应条件温和的合成D-π-A型四苯乙烯基乙炔基苯基取代吡啶共轭发光小分子的方法。

为了实现上述技术目的,本发明提供了一种D-π-A型四苯乙烯基乙炔基苯基取代吡啶共轭发光小分子,其具有式1所示结构:

其中,R为氢、C1~C5的烷基、C1~C5的烷氧基或三氟甲基。

本发明的D-π-A型四苯乙烯基乙炔基苯基取代吡啶共轭发光小分子是由2,4,6-三芳基吡啶单元与TPE单元通过炔基偶联得到。2,4,6-三芳基吡啶单元本身显示微弱的蓝色荧光,TPE单元的引入大大提高了分子的荧光性能,TPE单元不但具有优异的AIE效应,能够明显增加分子的发光强度,减弱ACQ效应的影响,而且相对于2,4,6-三芳基吡啶单元是一个良好的电子供体。炔基作为π桥,将2,4,6-三芳基吡啶单元与和TPE等强给电子能力给体单元连接起来,可进一步增强聚合物的热稳定性和蓝光发射的高量子产率。此外,吡啶结构中的R基团(烷基、烷氧基以及三氟甲基等)助于提高共轭聚合物的溶解性能。因此,2,4,6-三芳基吡啶单元与TPE单元通过炔基偶联,可以形成典型的D-π-A型发光材料。

本发明的D-π-A型四苯乙烯基乙炔基苯基取代吡啶共轭发光小分子中R为修饰基团,R的选择范围可以为氢、C1~C5的烷基、C1~C5的烷氧基或三氟甲基,C1~C5的烷基可以为直链烷烃或带支链的烷烃,具体可以选择甲基、乙基、丙基等等;C1~C5的烷氧基可以选择甲氧基、乙氧基等等。R在苯环上的位置不受限制,优选为对位。R的选择类型对D-π-A型四苯乙烯基乙炔基苯基取代吡啶共轭发光小分子的荧光性能存在明显的影响。当R为较强给电子基团时,分子红移最为明显,整个分子发出橙红色荧光,当R为吸电子基团和较弱的给电子基团时分子荧光稍微红移,分子发出蓝绿色荧光。化合物的荧光强度随吸电子基团和给电子基团的引入都不同程度的减弱,引入甲氧基的化合物其荧光强度减弱程度最为明显。

作为一个优选的方案,R为对位取代基。

本发明还提供了一种D-π-A型四苯乙烯基乙炔基苯基取代吡啶共轭发光小分子的合成方法,其包括以下步骤:

1)4-溴苯甲醛、芳基乙酮及醋酸铵在冰醋酸催化下进行Chichibabin反应,得到2,6-二芳基-4-(4-溴苯基)吡啶化合物;

所述芳基乙酮具有式2所示结构:

所述2,6-二芳基-4-(4-溴苯基)吡啶化合物具有式3所示结构:

其中,R为氢、C1~C5的烷基、C1~C5的烷氧基或三氟甲基。

2)2,6-二芳基-4-(4-溴苯基)吡啶化合物与1-(4-乙炔基苯基)-1,2,2-三苯基乙烯在Pd(PPh3)2Cl2和CuI催化下进行Sonogashira偶联反应,即得。

作为一个优选的方案,4-溴苯甲醛、芳基乙酮及醋酸铵的反应摩尔比为1:2~2.5:6~8。

作为一个优选的方案,所述Chichibabin反应的条件为:110~130℃温度下反应6~8h。

作为一个优选的方案,2,6-二芳基-4-(4-溴苯基)吡啶与1-(4-乙炔基苯基)-1,2,2-三苯基乙烯的反应摩尔比为1:1。

作为一个优选的方案,所述Sonogashira偶联反应的条件为:在75~85℃温度下,反应10~12h。

本发明的D-π-A型四苯乙烯基乙炔基苯基取代吡啶共轭发光小分子的合成方法如下:

相对现有技术,本发明技术方案带来的有益技术效果:

本发明通过Sonogashira偶联反应将TPE单元与2,4,6-三芳基吡啶单元构建成新型D-π-A型四苯乙烯基乙炔基苯基取代吡啶的共轭小分子,其具有优异的荧光性能,在不同含水量下测试其荧光发射光谱,结果表明该系列分子表现出了明显的AIE特性,同时该系列小分子表现出了良好的光物理性能,其中,最高量子产率达83.00%,密度泛函理论计算得出的HOMO、LUMO能级电子云分布图显示该系列分子具有良好的电子转移能力。此外D-π-A型四苯乙烯基乙炔基苯基取代吡啶的共轭小分子还具有较好的热稳定性,

本发明的D-π-A型四苯乙烯基乙炔基苯基取代吡啶的共轭小分子的合成方法步骤简单、原料成本较低、反应条件温和,有利于大规模生产。

附图说明

图1为化合物4a的1H NMR图谱。

图2为化合物5a的1H NMR图谱。

图3为化合物5a的13C NMR图谱。

图4为化合物5a的FTIR图谱。

图5为化合物5a~5d在THF中的UV-vis图谱。

图6为化合物5a~5d的固态荧光发射光谱:(a)未归一化;(b)归一化。

图7为化合物5a~5d的色度坐标谱图。

图8为化合物5a~5d在自然光和在365nm紫外光照射下的荧光照片。

图9化合物5a~5d在H2O/THF混合溶剂中的发射光谱。

图10为化合物5a~5d在H2O/THF混合溶剂中不同含水量时的发射光谱。

图11为化合物5a~5d在不同含水量(0~100%)中的照片。

图12为化合物5a~5d的循环伏安图。

图13为化合物5a和5b的TGA和DSC曲线图。

具体实施方式

以下具体实施例旨在进一步说明本发明内容,而不是限制权利要求保护范围。

以下实施例中:

如果没有特殊说明,采用的化学试剂都为商品化分析纯试剂。

1H NMR和13C NMR核磁共振谱测试:使用仪器:瑞士Bruker Vance 400MHz核磁共振波谱仪;使用试剂:氘代氯仿(CDCl3)或氘代二甲基亚砜(DMSO-d6)。

红外光谱分析测试:使用仪器:美国PerkinElmer FTIR Spectrometer SpectrumTwo型红外分光光度计;测试方法和使用药品:采用溴化钾(KBr)对固体待测物进行压片后测试。

熔点测试:使用仪器:WC-1型显微熔点仪;测试方法:将待测物装于0.3×100mm的熔点毛细管中以10℃/s的升温速率进行测量(熔点仪未经校对)。

紫外-可见吸收光谱测试:使用仪器:日立公司的Hitachi紫外可见吸收光谱仪;测试方法:将1mg固体样品溶于四氢呋喃溶液中,配置成浓度为1×10–5M的待测液进行测试。

稳态瞬态荧光光谱测试:使用仪器:英国爱丁堡仪器公司型号为FLS980的稳态瞬态荧光光谱仪;测试方法:设置狭缝为5或10、电压500V于最大激发波长下进行测试。

循环伏安曲线测试:使用仪器:上海辰华仪器有限公司CHI661E-A18301A型电化学工作站;测试方法和使用药品:使用六氟磷酸四丁胺(Bu4NPF6)为电解质,以50mV s–1的扫描速度在溶解了2mg样品的二氯甲烷溶液中进行测试。

X射线单晶测试:使用仪器:布鲁克公司型号为D8 QUEST X的射线衍射仪;单晶培养2mg样品于乙酸乙酯、石油醚各1mL混合溶剂中培养。

热重分析:使用仪器:Shimadzu DT-40热分析仪;测试方法和使用药品:在氮气保护下进行热失重分析,以升温速率10℃/min在20~800℃之间测定。

差示扫描量热法(DSC)分析:使用仪器:Perkin Elmer-Pyris 1差热扫描仪;测试方法:在氮气保护下以10℃ min–1的升温降温速度测试。

实施例1

2,6-二芳基-4-(4-溴苯基)吡啶(4)的制备(合成方法均相同,只是原料不同):往250mL的干燥的三口烧瓶中加入4-溴苯甲醛(9.95g,50mmol)、芳基苯乙酮(105mmol)、醋酸铵(27.00g,350mmol)和冰醋酸(40mL)。于氮气保护下,在110~130℃温度下反应7h,使用薄层层析法(TLC)追踪反应。反应完全后,停止反应并冷却至室温,有棕黄色粘稠物析出。抽滤,并用无水乙醇洗涤2~3次,粗产物经干燥和无水乙醇重结晶,得到目标化合物4。

2,6-二苯基-4-(4-溴苯基)吡啶(4a):产率:86%;白色针状固体,mp=131~132℃.1H NMR(400MHz,CDCl3):δ(ppm)=8.20(d,J=8.0Hz,4H),7.83(s,2H),7.66(d,J=8.0Hz,2H),7.61(d,J=8.0Hz,2H),7.55-7.51(m,4H),7.49-7.45(m,4H),3.88(s,6H).

2,6-二(4-甲基苯基)-4-(4-溴苯基)吡啶(4b):产率:81%;白色针状固体,mp=154~155℃.1H NMR(400MHz,CDCl3):δ(ppm)=8.15(d,J=8.0Hz,4H),7.71(s,2H),7.66-7.58(m,4H),7.03(d,J=8.0Hz,4H),3.88(s,6H).

2,6-二(4-甲氧基苯基)-4-(4-溴苯基)吡啶(4c):产率:84%;白色针状固体,mp=163~165℃.1H NMR(400MHz,CDCl3):δ(ppm)=8.09(d,J=8.0Hz,4H),7.78(s,2H),7.65(d,J=8.0Hz,2H),7.60(d,J=8.0Hz,2H),7.32(d,J=8.0Hz,4H),2.44(s,6H).

2,6-二(4-三氟甲基苯基)-4-(4-溴苯基)吡啶(4d):产率:87%;白色针状固体,mp=163~164℃.1H NMR(400MHz,CDCl3):δ(ppm)=8.09(d,J=8.0Hz,4H),7.78(s,2H),7.65(d,J=8.0Hz,2H),7.60(d,J=8.0Hz,2H),7.32(d,J=8.0Hz,4H),2.44(s,6H).

1-(4-乙炔基苯基)-1,2,2-三苯基乙烯的制备:参考文献(Liu Y J,Gao M,Lam JW Y,Hu R R,Tang B Z.Copper-catalyzed polycoupling of diynes,primary amines,and aldehydes:A new one-pot multicomponent polymerization tool to functionalpolymers[J].Macromolecules,2014,47(15):4908-4919),按如下路线合成。

1-(4-乙炔基苯基)-1,2,2-三苯基乙烯的合成路线。

2,6-二芳基-4-{4-[4-(1,2,2-三苯基乙烯基)苯乙炔基]苯基}吡啶(5)的制备(合成方法均相同,只是原料不同):在氮气保护下,向50mL的圆底烧瓶中分别加入1-(4-乙炔基苯基)-1,2,2-三苯基乙烯(0.2mmol)和2,6-二芳基-4-(4-溴苯基)吡啶(0.2mmol)、Pd(PPh3)2Cl2(2.8mg,2mol%)和CuI(0.0381mg,20mol%),再加入已重蒸的三乙胺/四氢呋喃溶液(1/1,v/v)。在75~85℃反应10~12h(TCL跟踪反应),反应结束后旋干溶剂,然后加入二氯甲烷使其溶解,再使用氯化铵饱和溶液、氯化钠饱和溶液各洗涤3次,收集有机相,用无水硫酸镁干燥有机相。过滤,旋干有机溶剂,最后以乙酸乙酯/石油醚(1:30)作为淋洗剂,通过柱色谱进行提纯,得到目标化合物5(合成路线如下所示)。

2,6-二苯基-4-{4-[4-(1,2,2-三苯基乙烯基)苯乙炔基]苯基}吡啶(5a):产率:82%;黄色固体,mp=212~213℃.1H NMR(400MHz,CDCl3):δ(ppm)=8.22(d,J=7.2Hz,4H),7.89(s,2H),7.74(d,J=8.4Hz,2H),7.65(d,J=8.4Hz,2H),7.55-7.53(m,4H),7.53-7.51(m,2H),7.32(d,J=8.4Hz,2H),7.16-7.04(m,17H);13C NMR(100MHz,CDCl3):δ(ppm)=157.6,149.4,144.3,143.4,143.5,143.3,141.9,140.3,139.4,138.5,132.3,131.5,131.4,131.4,131.3,131.1,129.2,128.7,127.9,127.8,127.7,127.2,127.1,126.7,126.7,124.2,120.8,116.9;FTIR(KBr):vmax=2215(C≡C),1594,1517,701cm-1.

2,6-二(4-甲基苯基)-4-{4-[4-(1,2,2-三苯基乙烯基)苯乙炔基]苯基}吡啶(5b):产率:87%;黄色固体,mp=215~216℃.1H NMR(400MHz,CDCl3):δ(ppm)=8.09(d,J=8.0Hz,4H),7.82(s,2H),7.70(d,J=8.4Hz,2H),7.62(d,J=8.4Hz,2H),7.32-7.29(m,6H),7.14-7.02(m,17H),2.43(s,6H);13C NMR(100MHz,CDCl3):δ(ppm)=157.5,149.2,144.3,143.5,143.5,143.3,141.8,140.3,139.1,138.8,136.8,132.2,131.5,131.4,131.4,131.3,131.0,129.4,127.9,127.8,127.7,127.1,127.0,126.7,126.7,124.1,120.9,116.2,91.2,21.3;FTIR(KBr):vmax=2208(C≡C),1598,1511,701cm-1.

2,6-二(4-甲氧基苯基)-4-{4-[4-(1,2,2-三苯基乙烯基)苯乙炔基]苯基}吡啶(5c):产率:83%;黄色固体,mp=214~215℃.1H NMR(400MHz,CDCl3):δ(ppm)=8.16(d,J=8.8Hz,4H),7.76(s,2H),7.71(d,J=8.4Hz,2H),7.63(d,J=8.4Hz,2H),7.31(d,J=8.4Hz,2H),7.14-7.03(m,17H);13C NMR(100MHz,CDCl3):δ(ppm)=160.5,157.1,144.3,143.5,143.3,141.8,140.3,138.8,132.2,131.5,131.4,131.3,131.3,131.0,128.5,127.9,127.8,127.7,127.1,126.7,126.7,120.9,115.4,114.1,91.2,89.2,55.4;FTIR(KBr):vmax=2210(C≡C),1602,1511,825cm-1.

2,6-二(4-三氟甲基苯基)-4-{4-[4-(1,2,2-三苯基乙烯基)苯乙炔基]苯基}吡啶(5d):产率:90%;黄色固体,mp=217~218℃.1H NMR(400MHz,CDCl3):δ(ppm)=8.31(d,J=8.0Hz,4H),7.96(s,2H),7.79(d,J=8.0Hz,4H),7.73(d,J=4.0Hz,2H),7.67(d,J=4.0Hz,2H),7.32(d,J=4.0Hz,2H),7.16-7.03(m,17H);13C NMR(100MHz,CDCl3):δ(ppm)=160.7,157.1,144.3,143.5,143.3,141.8,140.3,138.8,132.2,131.5,131.4,131.3,131.3,131.0,128.5,127.9,127.8,127.7,127.1,126.7,126.7,120.9,115.4,114.1,91.2,89.2;FTIR(KBr):vmax=2211(C≡C),1602,1321,831cm-1.

化合物5的合成路线。

1)化合物4和5的结构表征:

以化合物4a和5a为例。图1为4a的1H NMR谱图,在其氢谱图中出现了6组H质子信号峰,在7.84ppm左右出现了4位置的特征氢质子信号的单峰;7.45~8.21ppm为苯环上芳氢特征峰,由于3、5和6处氢原子所在碳的邻位碳上存在着氢原子,会产生耦合分裂的现象。所以,在对应位置8.21~8.20、7.67~7.65和7.62~7.60ppm附近出现了双重峰。苯环上芳氢原子的化学位移、吸收峰强度以及个数均与预期的结构吻合。

5a的1H NMR谱图和13C NMR谱图如图2和图3所示,其氢谱图中显示了9组不同芳氢质子信号峰,类似的,在7.89ppm左右出现了吡啶环上4位置的特征氢信号的单峰;8.22~8.21、7.75~7.73、7.66~7.64和7.33~7.31ppm附近的双重峰分别与其结构中3,5,6和7位置上的氢质子吸收峰吻合,这是由于该处位置的氢原子所在碳的邻位碳上存在着氢原子,从而导致耦合分裂的现象。TPE上芳氢质子峰大致出现在7.16~7.04ppm范围内;碳谱在91.3和80.2ppm处出现了C≡C键的特征吸收峰。此外,5a的红外光谱(图4)在2215cm-1处出现了C≡C的伸缩振动峰,表明C≡C键成功地接入到小分子当中。

2)化合物5a~5d的性能表征:

紫外吸收光谱:

通过使用移液枪取10μL的1.01×10–3M样品原溶液于石英比色皿中,再加入纯THF溶剂1mL稀释,得到浓度为1×10–5M的待测液。将空白比色皿放入紫外-可见光分光光度计的样品槽内并进行基线校准,接着放入含有待测试样的比色皿开始测试。化合物5a~5d的THF溶液UV-vis光谱如图5所示。

从图5中可以看出,这四个化合物存在两个吸收波段,处于250~275nm的是B吸收带,这是由于苯环中的π-π*电子跃迁引起的,属于芳香化合物的特征吸收峰,其中5b和5c分子中的最大吸收波长(λmax)分别红移了9nm和47nm,这可能是由于供电子基团(甲基、甲氧基)增大了分子的共轭程度,促进了电子向受体单元吡啶环转移。其中,含甲氧基的分子5c红移最为明显,这是由于甲氧基氧原子上的孤对电子与苯环上的π电子产生n-π*共轭导致的;而位于272~379nm处的吸收带是由于2,4,6-三苯基吡啶结构中的n-π*电子跃迁引起的,该吸收带没有明显的红移现象。

固体荧光发射光谱:

在狭缝为1nm的条件下,分别用λex=360nm、360nm、425nm和380nm作为化合物5a~5d的激发波长,对其进行固体状态下的荧光发射光谱分析(图6)量。从图6中的(a)图可以发现,随着分子给电子基团和吸电子基团的引入,荧光强度都降低了。为了更好的比较取代基的引入对化合物发射波长的影响,将图(a)进行归一化处理,得到图(b),从图(b)和色度坐标图(图7)中可以看出随着吸电子基和给电子基的引入,化合物的发射波长都发生了红移,其中,引入甲氧基时发射波长最大,这是由于甲氧基氧上的孤对电子对共轭体系中电子的π-π*跃迁存在一定的影响。

化合物5a~5d的荧光分析数据列于表1;其固体在自然光和在365nm紫外光照射下的荧光照片如图8所示。从表1中的相关数据和图8可以看出,该系列化合物发不同颜色的荧光:5a为亮蓝色的蓝光、5b为蓝绿色光、5c为黄光和5d为黄色光。上述表明:该系列化合物具有相同母吡啶结构,当较强给电子基团引入后,分子红移最为明显,整个分子发出橙红色荧光;而引入吸电子基团和较弱的给电子基团时分子荧光稍微红移,分子发出蓝绿色荧光。化合物的荧光强度随吸电子基团和给电子基团的引入都不同程度的减弱;引入甲氧基的化合物减弱程度最为明显。整个D-π-A型的吡啶系列都显示出较高的量子产率,其中化合物5a的量子产率高达83%。由此说明引入TPE后合成的一系列D-π-A型小分子,其电子传输性能增强了,分子的荧光性也得到了明显的提高。

表1.化合物5a~5d的荧光数据

aAbsorption wavelength.

bThe wavelength of excitation maximum.

cThe wavelength of emission maximum.

dFluorescence intensity.

eThe fluorescence lifetime.

fFluorescence quantum yield.

AIE效应:

为了进一步研究化合物5a~5d的AIE效应,对化合物5a~5d进行了不同水体积分数(fw)下的发射光谱测试。首先,取20μL的1.01×10–3M原溶液于石英比色皿中,将其依次配成H2O/THF(V/V)为100%、95%、90%、80%、70%、60%、50%、40%、30%、20%、10%和0%的溶液,并混合均匀;将激发波长分别设置为λex=339、360、369和361nm,激发狭缝和发射狭缝都设置为5nm,即开始进行测试。分别得到了化合物5a~5d在H2O/THF体系中,fw由0%增加到100%时化合物的荧光变化情况,实验结果如图9所示。同时,同时,根据荧光变化情况绘制了荧光强度与fw的折线图(Fig.10)。

以5a为例,当fw达到100%时化合物的荧光强度最大,随着THF量的增加荧光强度不断下降。当fw为95%时化合物荧光强度降低最为明显;当fw达到70%时分子荧光几乎完全猝灭。这是因为化合物中TPE的空间扭曲较易,从而导致该系列分子在水含量较大时容易聚集析出,进而增大了其分子间π-π堆积,降低能量消耗。由此说明该系列的化合物具有明显的AIE效应。图11为在紫外灯照射下不同含水量的照片。

电化学性能:

为了获得AIE荧光小分子5a~5d的的HOMO和LUMO能级,进行电化学性能分析,我们利用三电极体系在电化学工作站中对其进行电化学测试。以Pt片作为对电极,Ag/Ag+作为参比电极,四丁基四氟硼酸铵(TBABF4,0.1M)作为电解质,二茂铁为测试内标物,扫描速度为50mV/s,在干燥的二氯甲烷溶液中测定循环伏安曲线,循环伏安曲线图如图12所示。

表2.化合物5a~5d的电化学数据

aThe ferroncene-ferrocenium couple(Fc+/Fc)was used as the internalreference and under our experimental conditions,E(Fc+/Fc)=0.40Vvs.

bEox determined from the onset potentials of the oxidation waves.

cEHOMO=-(4.8+Eox-EFc–Fc+),ELUMO=EHOMO+Eg,Eg=1240/λemem=Initial emissionwavelength).

根据公式EHOMO=-(4.8+Eox-EFc–Fc+)和ELUMO=EHOMO+Eg计算得到分子对应的LUMO能级和HOMO能级,相应的电化学数据列于表2中。化合物5a~5d的HOMO能级分别为-5.60、-5.55、-5.48和-5.59eV,其主要由于供电子单元TPE结构的作用。LUMO能级分别为-2.52、-2.59、-3.03、-2.54eV,该能级主要由于受体单元吡啶环提供。因此,可以通过对其给受体单元之间进行修饰来调控其发光颜色。通过Eg=1240/λem(此处的λem为起始发射波长)计算该系列化合物的能级带隙,化合物5a~5d的能级带隙在2.45~3.08eV之间。

热学性能:

OLEDs器件的使用寿命与热稳定性高低息息相关。因此,良好的热稳定性是保证荧光小分子能否应用于器件的首要条件。小分子的热稳定性测试是于氮气的条件下采用热重分析(TGA)和差示扫描量热法技术(DSC)在20~800℃范围内进行的。表3为热性能测试数据结果;图13为5a和5b的TGA(a)和DSC(b)曲线图。

表3.化合物5a和5b的热力学性能数据

aTemperature at 5%weight loss in N2 at a heating rate of 10℃/min.

bTemperature at 10%weight loss in N2 at a heating rate of 10℃/min.

cThe residual weight retention at 800℃ in N2 at a heating rate of 10℃/min.

从图13(a)以及表3中的数据可以看出,化合物5a和5b在氮气环境下,其失重5%的热分解温度分别为255℃和265℃,失重10%的热分解温度分别为294℃和329℃,当温度为800℃时,残碳率分别为37.3%和43.3%。说明该分子具有良好的耐热性,这可能与其为供受体型的刚性结构有关。从图13(b)中可知,化合物5a和5d均没有明显的玻璃化转变温度。

20页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种手性α-氮杂芳烃三级碳中心类化合物的光不对称催化合成方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!