一种具有内嵌肖特基二极管的rc-ligbt器件

文档序号:1313165 发布日期:2020-07-10 浏览:13次 >En<

阅读说明:本技术 一种具有内嵌肖特基二极管的rc-ligbt器件 (RC-L IGBT device with embedded Schottky diode ) 是由 易波 赵青 蔺佳 杨瑞丰 侯云如 黄东 于 2020-03-02 设计创作,主要内容包括:本发明属于功率半导体技术领域,涉及高压横向半导体器件,具体为一种具有内嵌肖特基二极管的RC-LIGBT器件。本发明中,通过在集电极一侧引入N型欧姆接触区、浮空电极以及P型肖特基二极管,在反向工作状态下形成由两个串联二极管组成的载流子流通路径,使得器件具有反向导通的能力;同时,当器件工作在正向状态时,P型肖特基二极管不会开启,从而消除了电压折回现象。更重要的是,本发明在实现反向导通和消除电压折回现象的同时缩短了器件的长度,从而大幅度的提升了器件的性能:增强了器件的反向恢复特性、使得器件具有更短的反向恢时间,减小了器件的导通压降、优化了IGBT器件导通压降和关断损耗之间的矛盾关系。(The invention belongs to the technical field of power semiconductors, and relates to a high-voltage transverse semiconductor device, in particular to an RC-L IGBT device with an embedded Schottky diode, wherein an N-type ohmic contact region, a floating electrode and a P-type Schottky diode are introduced at one side of a collector, and a carrier flow path consisting of two diodes connected in series is formed in a reverse working state, so that the device has reverse conduction capability, and meanwhile, when the device works in a forward state, the P-type Schottky diode is not turned on, so that a voltage folding-back phenomenon is eliminated.)

一种具有内嵌肖特基二极管的RC-LIGBT器件

技术领域

本发明属于功率半导体技术领域,涉及高压横向半导体器件,具体为一种具有内嵌肖特基二极管的新型RC-LIGBT器件。

背景技术

电力电子系统的小型化、集成化是功率半导体器件的一个重要研究方向。智能功率集成电路(Smart Power Integrated Circuit,SPIC)或高压集成电路(High VoltageIntegrated Cir cuit,HVIC)将保护、控制、检测、驱动等低压电路和高压功率器件集成在同一个芯片上,这样不仅缩小了系统体积,提高了系统可靠性;同时,在较高频率的工作场合,由于系统引线电感的减少,对于缓冲和保护电路而言,能够显著降低其要求。

横向绝缘栅双极晶体管(Lateral Insulated-Gate Bipolar Transistor,LIGBT)是SPIC和HVIC的重要功率器件之一;基于SOI技术的LIGBT更是由于其优良的隔离特性而被广泛应用。作为双极型功率器件,LIGBT同时具有MOSFET高输入阻抗和BJT电流密度大的特点,在导通时漂移区中聚集的大量非平衡电子空穴对,增强了器件的电导调制效应,使得器件具有更低的导通压降;然而,大量的非平衡载流子的存在使得器件在关断过程中,增加了载流子抽取时间和关断损耗;所以,优化器件的关断损耗(Turn-off loss:Eoff)和导通压降(On-state voltage drop:Von)之间的折中关系,是设计LIGBT的关键问题之一。另一方面,金属和半导体接触可以形成欧姆接触和肖特基接触,肖特基势垒二极管(SchottkyBarrier Diod e:SBD)就是通过金属和半导体形成肖特基接触的,且肖特基二极管具有单向导电特性;当金属和N型基区之间加正向电压时,N型肖特基二极管导通;当金属和P型基区之间加负电压时,P型肖特基二极管导通。

RC-IGBT(Reverse-Conducting IGBT)器件,是一种将二极管和IGBT通过工艺集成在一起的新型IGBT器件,通过集成的续流二极管,使得器件具有反向导通的能力,对IGBT在实际应用电路中有较大的保护作用。如图7所示,是2000年J.H.Chul等人在文章《A fast-switching SOI SA-LIGBT without NDR region》中提出的一种传统的RC-LIGBT结构,对于此种结构的器件,关断过程中漂移区的电子可以被新引入的N+集电极快速抽取,从而使得关断时间和关断损耗明显降低;但是,N+集电极的引入不仅会导致阳极的空穴注入效率降低,器件的导通电阻增大,而且也会导致P+/N型缓冲层在较高的电压时才开始导通,使得器件工作时出现从单极型导通模式到双极型导通模式的转变,导致了器件电流-电压特性曲线出现电压折回现象,即折回电压(Snapback Voltage:ΔVSB),对器件和电路的稳定工作构成不良影响。对于如图7所示的传统结构RC-LIGBT,当增加P+集电极和N+集电极之间的距离(LB)时,P+和N+集电极之间的电阻也会增大,从而增加P+集电极和N+集电极之间电流路径上的压降,折回电压也会相应减小,但是会增加器件长度。因此,如何解决电压折回效应,是RC-LIGBT器件设计的关键之一。

发明内容

本发明的目的在于针对上述的技术问题,提供一种具有内嵌肖特基二极管的RC-LIGBT器件,该器件能够在消除抑制电压折回现象的同时使得器件具有更优的关断损耗和导通压降的折中关系。

为了实现上述目的,本发明采用的技术方案如下:

一种具有消除电压折回现象的RC-LIGBT器件,包括:

半导体衬底1、位于半导体衬底之上的埋氧层区2以及位于埋氧层上的半导体层;

所述半导体层包括:P型半导体基区4、栅极区、表面耐压区3、N型半导体缓冲区12、P型集电区18以及串联二极管区,所述P型半导体基区4和栅极区位于半导体层一侧,所述N型半导体缓冲区12位于半导体层另一侧,所述表面耐压区3位于所述P型半导体基区4与N型半导体缓冲区12之间、且表面耐压区3上覆盖场氧20;

所述P型半导体基区4内设置有P型埋层区5、以及位于P型埋层区5上的重掺杂P型半导体区6和重掺杂N型半导体区7,所述重掺杂N型半导体区7与重掺杂P型半导体区6上覆盖发射极金属8;

所述N型半导体缓冲区12内设置P型集电极区18和串联二极管区;所述P型集电极区18上覆盖集电极金属17;所述串联二极管区包括依次邻接的N型欧姆接触区13、P型欧姆接触区14与P型半导体区16,所述N型欧姆接触区13与P型欧姆接触区14通过浮空电极15短接,所述P型半导体区16上覆盖集电极金属17,所述P型欧姆接触区14、P型半导体区16和集电极金属17形成肖特基二极管。

进一步地,所述P型集电极区18和N型欧姆接触区13之间还设置有隔离槽19,所述隔离槽可以由二氧化硅填充,也可以由二氧化硅内填充多晶硅构成。

进一步地,所述栅极区采用平面栅极区、位于所述P型半导体基区4上并覆盖部分重掺杂N型半导体区7和部分表面耐压区3;所述平面栅极区由从下往上依次设置有栅介质层11、N型多晶硅栅区10与栅极金属9组成。

显然,在本发明的基础上,可以用常见的槽栅结构代替本发明在第一有源区使用的平面栅结构构成的RC-LIGBT将具有同样的效果。

本发明的有益效果在于:

本发明提出了一种消除电压折回效应和降低关断损耗的RC-LIGBT,通过在集电极一侧引入N型欧姆接触区、浮空电极以及P型肖特基二极管,在反向工作状态下形成由两个串联二极管组成的载流子流通路径,使得器件具有反向导通的能力;同时,由于肖特基二极管具有单向整流特性,所以当器件工作在正向状态时,P型肖特基二极管不会开启,从而消除了传统RC-LIGBT引入的电压折回现象。新引入的结构在实现反向导通和消除电压折回现象的同时,缩短了器件的长度,从而大幅度的提升了器件的性能:一方面,增强了器件的反向恢复特性,使得器件具有更短的反向恢复时间;另一方面,减小了器件的导通压降,进一步优化了IGBT器件导通压降和关断损耗之间的矛盾关系。并且,肖特基二极管的泄露电流对温度很敏感,在高温下,泄露电流急剧增大,使得P+集电极和N型缓冲层12短路,从而使得集电极注入效率降低,电流下降;该特性有助于提高器件的抗短路能力以及正向安全工作区。

附图说明

图1为本发明实施例1提供的一种具有内嵌肖特基二极管的RC-LIGBT器件结构示意图;

图2为本发明实施例2提供的一种具有内嵌肖特基二极管的RC-LIGBT器件结构示意图;

图3为本发明实施例3提供的一种具有内嵌肖特基二极管的RC-LIGBT器件结构示意图;

图中,1为P型衬底,2为埋氧层区,3为表面耐压区,4为P型半导体基区,5为P型埋层区,6为重掺杂P型半导体区,7为重掺杂N型半导体区,8为发射极金属,9为栅极金属,10为N型多晶硅栅区,11为栅氧层,12为N型半导体缓冲层,13为N型欧姆接触区,14为P型欧姆接触区,15为浮空电极,16为P型区,17为集电极金属,18为P型集电极区,19为隔离槽,20为场氧。

图4为本发明实施例1和传统RC-LIGBT仿真得到的I-V关系对比图。

图5为本发明实施例1和传统RC-LIGBT仿真得到反向恢复关系对比图。

图6为本发明实施例1和传统RC-LIGBT仿真得到的Von-Eoff折中关系对比图。

图7为传统RC-LIGBT器件结构示意图。

具体实施方式

下面参照附图对本发明进行更全面的描述。

实施例1

本实施例提供一种具有内嵌肖特基二极管的RC-LIGBT器件,其结构如图1所示,包括:

半导体衬底1、位于半导体衬底之上的埋氧层区2以及位于埋氧层上的半导体层;

所述半导体层包括:P型半导体基区4、栅极区、表面耐压区3、N型半导体缓冲区12、P型集电区18以及串联二极管区;所述P型半导体基区4和栅极区位于半导体层一侧;所述N型半导体缓冲区12位于半导体层另一侧,所述N型半导体缓冲区12内设置P型集电极区18和串联二极管区;所述表面耐压区3位于所述P型半导体基区4与N型半导体缓冲区12之间;

所述P型半导体基区4内设置有P型埋层区5、以及位于P型埋层区5上的重掺杂P型半导体区6和重掺杂N型半导体区7,重掺杂N型半导体区7作为LIGBT沟道基区的源极区,部分重掺杂N型半导体区7和部分重掺杂P型半导体区6上覆盖有发射极金属8;所述栅极区采用平面栅极区、位于所述P型半导体基区4上表面并覆盖部分重掺杂N型半导体区7和部分表面耐压区3,所述平面栅极区由从下往上依次设置有栅介质层11、N型多晶硅栅区10与栅极金属9组成;所述重掺杂P型半导体区6、重掺杂N型半导体区7、栅极区、P型半导体基区4、部分表面耐压区3共同形成LIGBT的沟道n-MOS结构,即第一有源区;

所述N型半导体缓冲区12内设置P型集电极区18和串联二极管区;所述P型集电极区18上表面覆盖有集电极金属17;所述串联二极管区由N型欧姆接触区13、浮空电极15、P型肖特基二极管组成,P型基区4、表面耐压区3、N型半导体缓冲层12和N型欧姆接触区13形成二极管PN1,P型半导体区16和集电极金属17构成P型肖特基接触、P型欧姆接触区14、P型区16和集电极金属17形成肖特基二极管PN2,部分N型欧姆接触区13和部分P型欧姆接触区14上覆盖有浮空电极15、即N型欧姆接触区13与P型欧姆接触区14通过浮空电极15短接,所述P型肖特基二极管PN2位于N型欧姆接触区13旁,浮空电极15将PN1和PN2两个二极管串联在一起;所述N型半导体缓冲区12、P型集电极区18、串联二极管区和集电极金属17共同形成第二有源区;

所述表面耐压区3由N型半导体层形成、其上覆盖场氧20。

基于以上实施例,下面结合说明书附图对本发明的工作原理进行详细说明:

与传统RC-LIGBT相比,本发明主要在集电极引入串联二极管区;结合实施例,当器件工作在反向状态时,发射极相对于集电极是正向电压;P型基区4、表面耐压区3、N型半导体缓冲层12和N型欧姆接触区13形成正偏的二极管PN1;P型欧姆接触区14、P型区16和集电极金属17形成肖特基二极管PN2;浮空电极15将两个二极管串联起来形成载流子的流通路径,这样使得器件具有了反向导通能力;

当器件工作在正向导通状态时,电子从n-MOS沟道流入漂移区中到达P型集电极18,由于P型肖特基二极管具有单向整流特性,所以P型肖特基二极管不会开启,电流不能流过PN2二极管,这样消除了传统RC-LIGBT器件中的电压折回现象;更重要的是,本发明实施例引入的串联二极管的结构,能在保证器件性能的前提下,大幅度减小器件的尺寸,在各方面显著的提升了器件的性能。

如图4-图6所示为本实施例的仿真结果,本实施例中,采用的仿真器件结构参数主要设定为:半导体层厚度为25μm,埋氧层区2的厚度为3μm,表面耐压区3浓度为2.5×1014cm-3,得到的I-V特性曲线仿真结果如图4所示,从图4可以看出,本实施例能消除电压折回现象并且有更好的导通压降;但是反向导通状态下的导通压降性能会变差,这是由于本发明采用的是两个二极管的串联结构,所以增加了反向状态时的导通压降;如图5所示给出了反向恢复特性的比较,可以看出本实施例反向恢复时间(trr)从传统结构0.37s(LB=36m)和0.67s(LB=66m)下降到0.18s;如图6所示给出了Von-Eoff折中关系的对比,从图6中可以看出,本实施例具有比现有技术传统结构RC-LIGBT更好的Von-Eoff折中关系,相较于具有不同LB的传统RC-LIGBT,在相同的导通压降下,关断损耗都下降了70%左右。

实施例2

本实施例提供一种抑制电压折回现象的RC-LIGBT器件,其结构如图2所示,其与实施例1的区别在于:所述P型集电极区18和N型欧姆接触区13之间还设置有二氧化硅槽19,所述二氧化硅槽19同样作为第二有源区的一部分;所述二氧化硅隔离槽19的作用在于隔离P型集电极区18和浮空电极15区,使得注入的载流子不容易到达电极15上复合,提高注入效率。

实施例3

本实施例提供一种抑制电压折回现象的RC-LIGBT器件,其结构如图3所示,其与实施例2的区别在于:所述二氧化硅隔离槽19内填充有多晶硅。

以上所述,仅为本发明的具体实施方式,本说明书中所公开的任一特征,除非特别叙述,均可被其他等效或具有类似目的的替代特征加以替换;所公开的所有特征、或所有方法或过程中的步骤,除了互相排斥的特征和/或步骤以外,均可以任何方式组合。

10页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种结合鳍式电晶管与SOI电晶管的器件结构及制造方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!

技术分类