一种全氟磺酸复合离子传导膜的制备方法

文档序号:1364948 发布日期:2020-08-11 浏览:36次 >En<

阅读说明:本技术 一种全氟磺酸复合离子传导膜的制备方法 (Preparation method of perfluorosulfonic acid composite ion-conducting membrane ) 是由 赵丽娜 张建国 肖伟 彭海泉 于 2020-04-29 设计创作,主要内容包括:本发明涉及离子交换膜领域,特别涉及一种全氟磺酸复合离子传导膜的制备方法。采用全氟磺酸树脂作为主要成膜树脂,并在全氟磺酸离子交换膜中引入高相容性添加剂(如:不同分子组成、不同分子结构的全氟类高分子材料、有机大分子或有机小分子物质中的一种或两种以上),通过改变制膜液组分和浓度调控膜内部的微观结构。由于膜内部微观结构的调控,使得膜在导电性能及吸水后线性溶胀率等性能较传统膜均有改善。本发明制备的复合离子传导膜具有优异的综合性能,对全氟磺酸离子交换膜的广泛适用性具有重要意义。(The invention relates to the field of ion exchange membranes, in particular to a preparation method of a perfluorosulfonic acid composite ion conduction membrane. Perfluorinated sulfonic acid resin is adopted as main film forming resin, high-compatibility additives (such as one or more of perfluorinated high molecular materials, organic macromolecules or organic micromolecule substances with different molecular compositions and different molecular structures) are introduced into the perfluorinated sulfonic acid ion exchange membrane, and the microstructure inside the membrane is regulated and controlled by changing the components and the concentration of the membrane making liquid. Due to the regulation and control of the microstructure inside the film, the performances of the film such as conductivity, linear swelling rate after water absorption and the like are improved compared with the traditional film. The composite ion conduction membrane prepared by the invention has excellent comprehensive performance and has important significance for wide applicability of the perfluorinated sulfonic acid ion exchange membrane.)

一种全氟磺酸复合离子传导膜的制备方法

技术领域

本发明涉及离子交换膜领域,特别涉及一种全氟磺酸复合离子传导膜的制备方法。

背景技术

上世纪六十年代美国杜邦公司(Du Pont)首先开发出了商用名为的全氟磺酸离子聚合物(Perfluorosulfonic Ionomer,又称全氟磺酸离子交换树脂)。作为化学稳定性极高的高聚物固体电解质用于宇航开发的燃料电池内,开创了全氟离子聚合物应用的先河,全氟离子聚合物现今最大的用途是加工成离子交换膜用于氯碱槽和燃料电池中。

全氟类质子交换膜是最先实现产业化生产及应用的质子交换膜,市场中主要有:美国杜邦公司的Nafion系列膜、Dow公司的Dow膜,加拿大Ballard公司BAM膜,比利时Solvay膜,中国山东东岳集团的DF988、DF2801型质子交换膜。现阶段研究最多的是美国杜邦公司的Nafion系列及改性膜。

从1999年开始,我国掀起烧碱扩建高潮,氯碱工业在我国国民经济中占有重要的地位。氯碱工业是全氟磺酸离子交换膜应用的重要领域之一,液流电池(尤其是全钒液流电池)以及燃料电池作为大规模电化学储能的首选,得到世界范围内广泛关注和应用。但膜结构对性能的影响十分复杂,目前全氟磺酸离子交换膜发表的文献主要探讨膜的性能方面,对于膜结构对性能的影响研究有待于进一步深化研究。

发明内容

为了解决成分对膜结构的影响,本发明的目的是提供一种全氟磺酸复合离子传导膜的制备方法,采用将不同分子组成、不同分子结构的全氟类高分子聚合物、高相容性有机大分子或有机小分子引入高化学稳定性、高导电性的全氟磺酸离子交换膜中,进行组成和结构设计,提高传导膜的综合性能。

本发明的技术方案是:

一种全氟磺酸复合离子传导膜的制备方法,具体步骤如下:

(1)将全氟磺酸树脂溶于溶剂中,在反应釜中加热溶解,配成质量百分数为1%~20%的全氟磺酸树脂溶液,加热溶解温度条件为180℃~240℃;

(2)将与步骤(1)全氟磺酸树脂不同分子组成或不同分子结构的全氟类高分子聚合物中的一种或两种以上,作为添加剂溶于溶剂中,在反应釜中加热溶解,配成质量百分数为0.1~10%的添加剂溶液,加热溶解温度条件为180℃~240℃;

(3)将步骤(2)制备的添加剂溶液加入到步骤(1)制备的全氟磺酸树脂溶液中进行混合,搅拌6~24h,获得混合溶液;

(4)将有机大分子或有机小分子物质中的一种或两种以上加入到步骤(3)制备的混合溶液中进行搅拌,搅拌20~30h,得到制膜液;

(5)将步骤(4)制备的制膜液浇注到洁净的玻璃板上,在成膜温度50~150℃、成膜时间2~8h的工艺条件下进行烘干成膜,制备全氟磺酸复合离子传导膜,复合离子传导膜的厚度为30~120μm。

所述的全氟磺酸复合离子传导膜的制备方法,步骤(1)和(2)中,溶剂为N,N-二甲基甲酰胺、N,N-二甲基乙甲酰胺、二甲基亚砜、N-基吡咯烷酮、乙醇、乙二醇、异丙醇、异丁醇或二甲苯。

所述的全氟磺酸复合离子传导膜的制备方法,优选的,步骤(1)和(2)中,添加剂质量为全氟磺酸树脂质量的0.5%~10%。

所述的全氟磺酸复合离子传导膜的制备方法,优选的,步骤(1)全氟磺酸树脂溶液中,全氟磺酸树脂的质量百分数为5%~12%。

所述的全氟磺酸复合离子传导膜的制备方法,步骤(2)中,添加剂采用不同交换容量、不同分子量、不同侧链位置或结构的全氟羧酸离子交换树脂或全氟磺酸离子交换树脂。

所述的全氟磺酸复合离子传导膜的制备方法,步骤(4)中,有机大分子或有机小分子物质采用有机胺、蛋白质、核酸、多糖、氨基酸、葡萄糖、正己烷、二氯甲烷、三氯甲烷或甲基苯丙胺。

所述的全氟磺酸复合离子传导膜的制备方法,优选的,步骤(5)中,成膜温度为100~140℃,成膜时间为2~5h。

所述的全氟磺酸复合离子传导膜的制备方法,复合离子传导膜的电导率为0.07~0.1s/cm,复合离子传导膜的线性溶胀率为5.0~8.0%。。优选的,复合离子传导膜的电导率为0.08~0.1s/cm,复合离子传导膜的线性溶胀率为6.0~8.0%。

本发明的设计思想是:

本发明采用全氟磺酸树脂作为主要成膜树脂,并在全氟磺酸离子交换膜中引入高相容性添加剂(如:不同分子组成、不同分子结构的全氟类高分子材料、有机大分子或有机小分子物质中的一种或两种以上)。将两种不同聚合物混合共溶,不同聚合物对同一溶剂产生的作用力不同,则溶剂在不同组分聚合物溶液中的挥发速度不同,导致聚合物溶液的固化结晶顺序不同,进而通过改变制膜液组分和浓度调控膜内部的微观结构,提高传导膜的性能;将有机大分子或有机小分子物质添加到聚合物溶液中,使得在成膜过程中膜的相分离微结构发生改变,调控膜微结构,提高传导膜的综合性能。由于膜内部微观结构的调控,使得膜在导电性能及吸水后线性溶胀率等性能较传统膜均有改善。

本发明的优点及有益效果是:

1、根据全氟磺酸离子交换膜的结构特点及其传质机理,通过合理设计在膜中引入不同分子组成、不同分子结构的全氟类高分子聚合物,添加有机大分子或有机小分子物质。由于添加剂的尺寸、极性等因素使得膜在成型过程中树脂的交联程度发生改变,导致复合离子传导膜内部的微观结构产生差异。根据目标需求,进行组成和结构设计,调整膜性能。

2、由于引入的物质为同类全氟树脂,或与全氟磺酸具有高相容性的有机分子物质。因此,制备的复合离子传导膜不会因为引入异相产生分相、分层、均匀性差、以及长期运行后溶出的问题,保证复合离子传导膜的长寿命。

总之,本发明将溶液的组成和膜的结构进行科学合理的设计,调控膜微观结构,制备结构可控的全氟磺酸离子交换膜,有效提高复合离子传导膜的离子选择性,提高复合离子传导膜的综合性能,对复合离子传导膜在电池运行中的广泛适用性具有重要意义。

具体实施方式

在具体实施过程中,全氟磺酸离子交换膜材料的化学式如下:

其中,Nafion代表美国杜邦(Dupont)公司的Nafion膜,Dow代表美国道氏(Dow)化学公司的Dow膜,Aciplex代表日本旭化成(ASAHI-KASEI)公司的Aciplex膜。

下面,通过实施例对本发明的技术方案作进一步的具体说明。

实施例1

本实施例中,全氟磺酸复合离子传导膜的制备方法,具体步骤如下:

(1)将6g全氟磺酸树脂(交换容量为0.95mmol/g)溶于100ml二甲基乙酰胺溶剂中,在反应釜中加热溶解,配成全氟磺酸树脂溶液,加热溶解温度条件为200℃;

(2)将0.3g全氟羧酸树脂(交换容量为0.9mmol/g)溶于30ml二甲基乙酰胺溶剂中,在反应釜中加热溶解,配成添加剂溶液,加热溶解温度条件为200℃;

(3)将步骤(2)制备的溶液加入到步骤(1)制备的树脂溶液中进行混合,搅拌24h,获得混合溶液。

(4)将步骤(3)制备的制膜液浇注到洁净的玻璃板上,在成膜温度120℃、成膜时间4h的工艺条件下进行烘干成膜,制备全氟磺酸复合离子传导膜,厚度为80μm。

本实施例的相关性能数据如下:复合离子传导膜中无分相、分层现象出现,均匀性很好。膜电导率为0.075s/cm,线性溶胀率为5.1%,通过研究添加有机大分子或有机小分子制备的传导膜与未添加制备的传导膜进行性能对比,考察传导膜性能的影响规律。由于未加入有机大分子或有机小分子物质,膜电导率和线性溶胀率较低。

实施例2

本实施例中,全氟磺酸复合离子传导膜的制备方法,具体步骤如下:

(1)将6g全氟磺酸树脂(交换容量为0.95mmol/g)溶于100ml二甲基乙酰胺溶剂中,在反应釜中加热溶解,配成全氟磺酸树脂溶液,加热溶解温度条件为200℃;

(2)将0.3g全氟磺酸树脂(交换容量为0.83mmol/g)溶于30ml二甲基乙酰胺溶剂中,在反应釜中加热溶解,配成添加剂溶液,加热溶解温度条件为200℃;

(3)将步骤(2)制备的溶液加入到步骤(1)制备的树脂溶液中进行混合,搅拌24h,获得混合溶液。

(4)将步骤(3)制备的制膜液浇注到洁净的玻璃板上,在成膜温度120℃、成膜时间4h的工艺条件下进行烘干成膜,制备全氟磺酸复合离子传导膜,厚度为60μm。

本实施例的相关性能数据如下:复合离子传导膜中无分相、分层现象出现,均匀性很好。膜电导率为0.078s/cm,线性溶胀率为5.7%,通过研究添加有机大分子或有机小分子制备的传导膜与未添加制备的传导膜进行性能对比,考察传导膜性能的影响规律。由于未加入有机大分子或有机小分子物质,膜电导率和线性溶胀率较低。

实施例3

本实施例中,全氟磺酸复合离子传导膜的制备方法,具体步骤如下:

(1)将6g全氟磺酸树脂(交换容量为0.95mmol/g)溶于100ml二甲基乙酰胺溶剂中,在反应釜中加热溶解,配成全氟磺酸树脂溶液,加热溶解温度条件为200℃;

(2)将0.3g全氟磺酸树脂(交换容量为0.83mmol/g)溶于30ml二甲基乙酰胺溶剂中,在反应釜中加热溶解,配成添加剂溶液,加热溶解温度条件为200℃;

(3)将步骤(2)制备的溶液加入到步骤(1)制备的树脂溶液中进行混合,搅拌24h,获得混合溶液。

(4)称取0.5g氨基酸加入到步骤(3)制备的混合溶液中进行搅拌,搅拌24h,得到制膜液。

(5)将步骤(4)制备的制膜液浇注到洁净的玻璃板上,在成膜温度120℃、成膜时间4h的工艺条件下进行烘干成膜,制备全氟磺酸复合离子传导膜,厚度为100μm。

本实施例的相关性能数据如下:复合离子传导膜中无分相、分层现象出现,均匀性很好。膜电导率为0.083s/cm,线性溶胀率为6.5%。

实施例4

本实施例中,全氟磺酸复合离子传导膜的制备方法,具体步骤如下:

(1)将6g全氟磺酸树脂(交换容量为0.95mmol/g)溶于100ml二甲基乙酰胺溶剂中,在反应釜中加热溶解,配成全氟磺酸树脂溶液,加热溶解温度条件为200℃;

(2)称取0.5g氨基酸加入到步骤(1)制备的溶液中进行搅拌,搅拌24h,得到制膜液。

(3)将步骤(2)制备的制膜液浇注到洁净的玻璃板上,在成膜温度120℃、成膜时间4h的工艺条件下进行烘干成膜,制备全氟磺酸复合离子传导膜,厚度为40μm。

本实施例相关性能数据如下:复合离子传导膜中无分相、分层现象出现,均匀性很好。膜电导率为0.076s/cm,线性溶胀率为5.8%,通过研究加入添加剂制备的传导膜与未添加制备的传导膜进行性能对比,考察传导膜性能的影响规律。由于未加入添加剂,膜电导率和线性溶胀率较低。

实施例5

本实施例中,全氟磺酸复合离子传导膜的制备方法,具体步骤如下:

(1)将6g全氟磺酸树脂(交换容量为0.95mmol/g)溶于100ml二甲基乙酰胺溶剂中,在反应釜中加热溶解,配成全氟磺酸树脂溶液,加热溶解温度条件为200℃;

(2)称取0.1g氨基酸加入到步骤(1)制备的溶液中进行搅拌,搅拌24h,得到制膜液。

(3)将步骤(2)制备的制膜液浇注到洁净的玻璃板上,在成膜温度120℃、成膜时间4h的工艺条件下进行烘干成膜,制备全氟磺酸复合离子传导膜,厚度为100μm。

本实施例的相关性能数据如下:复合离子传导膜中无分相、分层现象出现,均匀性很好。膜电导率为0.072s/cm,线性溶胀率为5.6%,通过研究加入添加剂制备的传导膜与未添加制备的传导膜进行性能对比,考察传导膜性能的影响规律。由于未加入添加剂,膜电导率和线性溶胀率较低。

实施例6

本实施例中,全氟磺酸复合离子传导膜的制备方法,具体步骤如下:

(1)将6g全氟磺酸树脂(交换容量为0.95mmol/g)溶于100ml二甲基乙酰胺溶剂中,在反应釜中加热溶解,配成全氟磺酸树脂溶液,加热溶解温度条件为200℃;

(2)称取3g甲醇和0.5g氨基酸加入到步骤(1)制备的溶液中进行搅拌,搅拌24h,得到制膜液。

(3)将步骤(2)制备的制膜液浇注到洁净的玻璃板上,在成膜温度120℃、成膜时间4h的工艺条件下进行烘干成膜,制备全氟磺酸复合离子传导膜,厚度为30μm。

本实施例的相关性能数据如下:复合离子传导膜中无分相、分层现象出现,均匀性很好。膜电导率为0.074s/cm,线性溶胀率为4.3%,通过研究加入添加剂制备的传导膜与未添加制备的传导膜进行性能对比,考察传导膜性能的影响规律。由于未加入添加剂,膜电导率和线性溶胀率较低。

实施例7

本实施例中,全氟磺酸复合离子传导膜的制备方法,具体步骤如下:

(1)将6g全氟磺酸树脂(交换容量为0.95mmol/g)溶于100ml二甲基乙酰胺溶剂中,在反应釜中加热溶解,配成全氟磺酸树脂溶液,加热溶解温度条件为200℃;

(2)将0.3g全氟磺酸树脂(交换容量为1.2mmol/g)溶于30ml二甲基乙酰胺溶剂中,在反应釜中加热溶解,配成添加剂溶液,加热溶解温度条件为200℃;

(3)将步骤(2)制备的溶液加入到步骤(1)制备的树脂溶液中进行混合,搅拌12h,获得混合溶液。

(4)称取3g甲醇和0.5g氨基酸加入到步骤(3)制备的混合溶液中进行搅拌,搅拌30h,得到制膜液。

(5)将步骤(4)制备的制膜液浇注到洁净的玻璃板上,在成膜温度80℃、成膜时间4h的工艺条件下进行烘干成膜,制备全氟磺酸复合离子传导膜,厚度为70μm。

本实施例的相关性能数据如下:复合离子传导膜中无分相、分层现象出现,均匀性很好。膜电导率为0.09s/cm,线性溶胀率为6.3%。

实施例8

本实施例中,全氟磺酸复合离子传导膜的制备方法,具体步骤如下:

(1)将6g全氟磺酸树脂(交换容量为0.95mmol/g)溶于100ml二甲基乙酰胺溶剂中,在反应釜中加热溶解,配成全氟磺酸树脂溶液,加热溶解温度条件为180℃;

(2)将0.3g全氟羧酸树脂(交换容量为0.83mmol/g)溶于30ml二甲基乙酰胺溶剂中,在反应釜中加热溶解,配成添加剂溶液,加热溶解温度条件为180℃;

(3)将步骤(2)制备的溶液加入到步骤(1)制备的树脂溶液中进行混合,搅拌8h,获得混合溶液。

(4)称取3g甲醇和0.5g氨基酸加入到步骤(3)制备的混合溶液中进行搅拌,搅拌20h,得到制膜液。

(5)将步骤(4)制备的制膜液浇注到洁净的玻璃板上,在成膜温度90℃、成膜时间8h的工艺条件下进行烘干成膜,制备全氟磺酸复合离子传导膜,厚度为120μm。

本实施例的相关性能数据如下:复合离子传导膜中无分相、分层现象出现,均匀性很好。膜电导率为0.09s/cm,线性溶胀率为6.8%。

实施例9

本实施例中,全氟磺酸复合离子传导膜的制备方法,具体步骤如下:

(1)将3g全氟磺酸树脂(交换容量为0.95mmol/g)溶于100ml二甲基乙酰胺溶剂中,在反应釜中加热溶解,配成全氟磺酸树脂溶液,加热溶解温度条件为220℃;

(2)将0.3g全氟羧酸树脂(交换容量为0.83mmol/g)溶于30ml二甲基乙酰胺溶剂中,在反应釜中加热溶解,配成添加剂溶液,加热溶解温度条件为220℃;

(3)将步骤(2)制备的溶液加入到步骤(1)制备的树脂溶液中进行混合,搅拌12h,获得混合溶液。

(4)将步骤(3)制备的制膜液浇注到洁净的玻璃板上,在成膜温度150℃、成膜时间2h的工艺条件下进行烘干成膜,制备全氟磺酸复合离子传导膜,厚度为50μm。

本实施例的相关性能数据如下:复合离子传导膜中无分相、分层现象出现,均匀性很好。膜电导率为0.04s/cm,线性溶胀率为3.6%,通过研究添加有机大分子或有机小分子制备的传导膜与未添加制备的传导膜进行性能对比,考察传导膜性能的影响规律。由于未加入有机大分子或有机小分子物质,膜电导率和线性溶胀率较低。

实施例10

本实施例中,全氟磺酸复合离子传导膜的制备方法,具体步骤如下:

(1)将10g全氟磺酸树脂(交换容量为0.95mmol/g)溶于100ml二甲基乙酰胺溶剂中,在反应釜中加热溶解,配成全氟磺酸树脂溶液,加热溶解温度条件为240℃;

(2)将1g全氟羧酸树脂(交换容量为0.83mmol/g)溶于30ml二甲基乙酰胺溶剂中,在反应釜中加热溶解,配成添加剂溶液,加热溶解温度条件为240℃;

(3)将步骤(2)制备的溶液加入到步骤(1)制备的树脂溶液中进行混合,搅拌16h,获得混合溶液。

(4)将步骤(3)制备的制膜液浇注到洁净的玻璃板上,在成膜温度100℃、成膜时间6h的工艺条件下进行烘干成膜,制备全氟磺酸复合离子传导膜,厚度为90μm。

本实施例的相关性能数据如下:复合离子传导膜中无分相、分层现象出现,均匀性很好。膜电导率为0.079s/cm,线性溶胀率为4.9%,通过研究添加有机大分子或有机小分子制备的传导膜与未添加制备的传导膜进行性能对比,考察传导膜性能的影响规律。由于未加入有机大分子或有机小分子物质,膜电导率和线性溶胀率较低。

实施例结果表明,本发明采用将高相容性有机大分子或有机小分子引入高化学稳定性、高导电性的全氟磺酸离子交换膜中,根据目标需求,进行组成和结构设计,提高传导膜的综合性能,对离子交换膜的广泛应用具有重要意义,可应用于全钒氧化还原液流电池领域。

8页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种高温质子交换膜的制备方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!

技术分类