双测距模块复合快速高精度激光三维测量装置及方法

文档序号:1782381 发布日期:2019-12-06 浏览:21次 >En<

阅读说明:本技术 双测距模块复合快速高精度激光三维测量装置及方法 (Double-ranging module composite rapid high-precision laser three-dimensional measurement device and method ) 是由 时光 郑磊珏 王文 于 2019-08-19 设计创作,主要内容包括:本发明公开了双测距模块复合快速高精度激光三维测量装置及方法。目前现有激光三维扫描测量技术无法兼顾测量精度和测量速度。本发明将压缩感知技术、相位法激光测距技术和FMCW激光测距技术结合,首先对全视野目标实现快速三维测量,然后利用FMCW激光测距技术对被测目标关键特征实现高精度测量,并结合快速控制反射镜的高精度角度信息,得到被测目标的高精度三维测量结果,达到兼顾测量效率和测量精度的目的。本发明实现了对目标的快速三维测量,并且相位法激光测距技术和FMCW激光测距技术共用激光接收系统,大大降低了系统的复杂性。(The invention discloses a double-ranging module composite rapid high-precision laser three-dimensional measuring device and method. The existing laser three-dimensional scanning measurement technology cannot give consideration to both measurement precision and measurement speed. The invention combines a compressed sensing technology, a phase method laser ranging technology and an FMCW laser ranging technology, firstly realizes rapid three-dimensional measurement on a full-field target, then realizes high-precision measurement on key characteristics of the measured target by utilizing the FMCW laser ranging technology, and obtains a high-precision three-dimensional measurement result of the measured target by combining high-precision angle information of a rapid control reflector, thereby achieving the purpose of taking both measurement efficiency and measurement precision into consideration. The invention realizes the rapid three-dimensional measurement of the target, and the phase method laser ranging technology and the FMCW laser ranging technology share the laser receiving system, thereby greatly reducing the complexity of the system.)

双测距模块复合快速高精度激光三维测量装置及方法

技术领域

本发明属于激光三维测距技术领域,具体涉及一种双测距模块复合快速高精度激光三维测量装置及方法。

背景技术

随着科技的发展,技术的进步,航空航天装备、海洋工程装备及高技术船舶、先进轨道交通装备、高档数控机床、机器人装备等高端装备制造行业对大尺度三维精密测量的精度、量程和测量速度等性能提出了严苛的要求。现有的激光三维扫描测量技术由于需要配合机械扫描装置对目标进行逐点测量,在测量过程中无法兼顾测量精度和测量速度。近年来出现了使用ICCD、CMOS传感器、APD阵列代替扫描装置实现快速探测的无扫描激光三维测量技术。因为是对所有目标点同时成像,所以测量速度不会受分辨率的影响。但是,测量分辨率受限于二维面阵探测器的分辨率,特别是对于红外面阵探测器分辨率一般不超过640×480。另外面阵探测器响应频率较低,因此基于面阵探测器的激光三维测量系统,测距精度难以进一步提高。

发明内容

本发明的目的是为了克服激光三维扫描测量技术无法兼顾测量精度和测量速度的缺点以及基于面阵探测器的激光三维测量技术分辨率和精度较低的缺点,提出一种双测距模块复合快速高精度激光三维测量装置及方法。本发明将压缩感知技术、相位法激光测距技术和FMCW激光测距技术结合,首先对全视野目标实现快速三维测量,然后对被测目标关键特征实现高精度三维测量,达到兼顾测量效率和测量精度的目的。

本发明双测距模块复合快速高精度激光三维测量装置,包括正弦波发生器、半导体激光器、扩束器、第一反射镜、数字微镜阵列、激光发射系统、第一分光棱镜、激光准直系统、激光接收系统、第二分光棱镜、快速控制反射镜、第一偏振分光棱镜、第二反射镜、第一半波片、第二偏振分光棱镜、第二半波片、可调谐激光器、三角波发生器、第三反射镜、FP标准具、凸透镜、第一光电探测器、第二光电探测器、混频器和数据采集系统。所述的正弦波发生器产生正弦信号,控制半导体激光器产生光强度成正弦变化的激光。激光经过扩束器扩束后,被第一反射镜反射至数字微镜阵列;由数字微镜阵列调制后的激光经第一分光棱镜反射后,被激光发射系统投射至被测目标。被测目标反射后的回波信号被激光接收系统接收,激光接收系统接收的回波信号经第二分光棱镜后被第一光电探测器探测;混频器将第一光电探测器接收到的信号与正弦波发生器产生的正弦信号混频后传给信号采集系统进行采集。所述的三角波发生器控制可调谐激光器发射光频线性调制的窄线宽激光,窄线宽激光依次经过第二半波片和第二偏振分光棱镜后分为A、B两路。所述的A路激光经过第三反射镜反射后进入FP标准具发生干涉,从FP标准具出射的干涉信号被凸透镜聚焦后被第二光电探测器探测;所述的B路激光经过第一半波片调整偏振方向后由第一偏振分光棱镜分为C、D两路。所述C路激光的出射方向由快速控制反射镜控制,快速控制反射镜的反射光经过激光准直系统,并透过第一分光棱镜,然后被激光发射系统投射至被测目标。所述的D路激光被第二反射镜反射至第二分光棱镜。C路激光被目标反射的回波信号由接收系统接收,在第二分光棱镜处与D路激光合为一路,由第一光电探测器进行探测;数据采集系统对第一光电探测器和第二光电探测器探测的信号进行同步采集。

所述的快速控制反射镜由快速控制转镜控制器控制。

本发明双测距模块复合快速高精度激光三维测量方法,具体步骤如下:

步骤1、正弦波发生器产生正弦信号,控制半导体激光器产生光强度成正弦变化的激光。激光经过扩束器扩束后,被第一反射镜反射至数字微镜阵列;由数字微镜阵列调制后的激光经第一分光棱镜反射后,被激光发射系统投射至被测目标。

步骤2、被测目标反射后的回波信号被激光接收系统接收,激光接收系统接收的回波信号经第二分光棱镜后被第一光电探测器探测;混频器将第一光电探测器接收到的信号与正弦波发生器产生的正弦信号混频后传给信号采集系统进行采集。然后,正弦波发生器停止产生正弦信号。

步骤3、利用压缩感知恢复算法得到信号采集系统采集的图像的灰度图像,灰度图像中像素点的灰度值与被测目标上点的距离成正比,从而得到被测目标三维信息的粗测结果。

步骤4、三角波发生器控制可调谐激光器发射光频线性调制的窄线宽激光,窄线宽激光依次经过第二半波片和第二偏振分光棱镜后分为A、B两路。A路激光经过第三反射镜反射后进入FP标准具发生干涉,从FP标准具出射的干涉信号被凸透镜聚焦后被第二光电探测器探测;B路激光经过第一半波片调整偏振方向后由第一偏振分光棱镜分为C、D两路。C路激光的出射方向由快速控制反射镜控制,快速控制反射镜的反射光经过激光准直系统,并透过第一分光棱镜,然后被激光发射系统投射至被测目标。D路激光被第二反射镜反射至第二分光棱镜。其中,快速控制反射镜由快速控制转镜控制器控制。

步骤5、C路激光被目标反射的回波信号由接收系统接收,之后在第二分光棱镜处与D路激光合为一路,由第一光电探测器进行探测,最后由数据采集系统对第一光电探测器和第二光电探测器探测的信号进行同步采集。

步骤6、将数据采集系统采集的第一光电探测器和第二光电探测器的探测信号分别记为信号sig1和sig2;将可调谐激光器的调制开始信号发出后信号sig2的第一个峰值点作为起始点,可调谐激光器的调制终止信号发出前,信号sig2的最后一个峰值点作为终止点,设信号sig2在起始点和终止点之间包含起始点和终止点共有k个峰值点;利用重采样方法获得被测目标距离的高精度测量结果,并结合快速控制反射镜的角度值,得到被测目标的高精度三维测量结果。

本发明具有的有益效果:

本发明首先结合相位法激光测距原理和压缩感知理论获取目标的三维信息粗测结果,然后利用FMCW激光测距技术定位部分关键点,针对这些关键点利用重采样方法获得被测目标距离的高精度测量结果,并结合快速控制反射镜的高精度角度信息,得到被测目标的高精度三维测量结果。可见,本发明可实现到被测目标的快速测量,同时实现被测目标上部分关键点的高精度测量。并且本发明采用的相位法激光测距技术和重采样方法共用激光接收系统,大大降低了系统的复杂性。

附图说明

图1为本发明双测距模块复合快速高精度激光三维测量装置的原理图;

图中:1、正弦波发生器,2、半导体激光器,3、扩束器,4、第一反射镜,5、数字微镜阵列,6、激光发射系统,7、第一分光棱镜,8、激光准直系统,9、激光接收系统,10、第二分光棱镜,11、快速控制转镜控制器,12、快速控制转镜,13、第一偏振分光棱镜,14、第二反射镜,15、第一半波片,16、第二偏振分光棱镜,17、第二半波片,18、可调谐激光器,19、三角波发生器,20、第三反射镜,21、FP标准具,22、凸透镜,23、第二光电探测器,24、第一光电探测器,25、混频器,26、数据采集系统。

具体实施方式

下面结合附图和实施例对本发明作进一步说明。

如图1所示,双测距模块复合快速高精度激光三维测量装置,包括正弦波发生器1、半导体激光器2、扩束器3、第一反射镜4、数字微镜阵列5、激光发射系统6、第一分光棱镜7、激光准直系统8、激光接收系统9、第二分光棱镜10、快速控制转镜控制器11、快速控制反射镜12、第一偏振分光棱镜13、第二反射镜14、第一半波片15、第二偏振分光棱镜16、第二半波片17、可调谐激光器18、三角波发生器19、第三反射镜20、FP标准具21、凸透镜22、第一光电探测器24、第二光电探测器23、混频器25和数据采集系统26。快速控制反射镜12采用Newport公司的型号为FSM-300-NM的快速控制反射镜系统。

双测距模块复合快速高精度激光三维测量方法,具体步骤如下:

步骤1、如图1所示,正弦波发生器1产生正弦信号,控制半导体激光器2产生光强度成正弦变化的激光。激光经过扩束器3扩束后,被第一反射镜4反射至数字微镜阵列(也称数字微镜器件,DMD)5;由数字微镜阵列5调制后的激光经第一分光棱镜7反射后,被激光发射系统6投射至被测目标。

步骤2、被测目标反射后的回波信号被激光接收系统9接收,激光接收系统9接收的回波信号经第二分光棱镜10后被第一光电探测器24探测;混频器25将第一光电探测器24接收到的信号与正弦波发生器1产生的正弦信号混频后传给信号采集系统26进行采集。然后,正弦波发生器停止产生正弦信号。

步骤3、利用压缩感知恢复算法得到信号采集系统26采集的图像的灰度图像,灰度图像中像素点的灰度值与被测目标上点的距离成正比,从而得到被测目标三维信息的粗测结果。

步骤4、三角波发生器19控制可调谐激光器18发射光频线性调制的窄线宽激光,窄线宽激光依次经过第二半波片17和第二偏振分光棱镜16后分为A、B两路。A路激光经过第三反射镜20反射后进入FP标准具21发生干涉,从FP标准具21出射的干涉信号被凸透镜22聚焦后被第二光电探测器23探测;B路激光经过第一半波片15调整偏振方向后由第一偏振分光棱镜13分为C、D两路。C路激光的出射方向由快速控制反射镜12控制,快速控制反射镜12的反射光经过激光准直系统8,并透过第一分光棱镜7,然后被激光发射系统6投射至被测目标。D路激光被第二反射镜14反射至第二分光棱镜10。其中,快速控制反射镜12由快速控制转镜控制器11控制。

步骤5、C路激光被目标反射的回波信号由接收系统9接收,之后在第二分光棱镜10处与D路激光合为一路,由第一光电探测器24进行探测产生干涉信号,最后由数据采集系统26对第一光电探测器24和第二光电探测器23探测的信号进行同步采集。

步骤6、将数据采集系统26采集的第一光电探测器24和第二光电探测器23的探测信号分别记为信号sig1和sig2;将可调谐激光器18的调制开始信号发出后信号sig2的第一个峰值点作为起始点,可调谐激光器18的调制终止信号发出前,信号sig2的最后一个峰值点作为终止点,设信号sig2在起始点和终止点之间包含起始点和终止点共有k个峰值点;利用重采样方法获得被测目标距离的高精度测量结果,并结合快速控制反射镜12的角度值,得到被测目标的高精度三维测量结果。

重采样方法采用申请号为201811067690.7的专利申请中权利要求1的步骤3~步骤6的过程。

本发明首先结合步骤2的相位法激光测距原理和步骤3的压缩感知理论获取目标的三维信息粗测结果,然后利用FMCW激光测距技术定位部分关键点,针对这些关键点利用重采样方法获得被测目标距离的高精度测量结果,并结合快速控制反射镜12的高精度角度信息,得到被测目标的高精度三维测量结果。可见,本发明可实现到被测目标的快速测量,同时实现被测目标上部分关键点的高精度测量。

8页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:应用于智能驾驶车辆上的激光雷达动态物体感知方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!

技术分类