一种纳米晶合金及其制备方法

文档序号:900310 发布日期:2021-02-26 浏览:6次 >En<

阅读说明:本技术 一种纳米晶合金及其制备方法 (Nanocrystalline alloy and preparation method thereof ) 是由 贺爱娜 杨富尧 张博峻 董亚强 黎嘉威 马光 冯砚厅 陈新 韩钰 高洁 刘洋 于 2020-11-12 设计创作,主要内容包括:本发明涉及软磁合金材料技术领域,公开了一种纳米晶合金及其制备方法,将FeCuSiBNbMoDy带材在交变磁场慢速升温至T_1,去除交变磁场保温t_1;快速升温至T_2,保温t_2;恒定磁场下快速降温至T_3,保温t_3;慢速降温至T_4,保温t_4后快速降温至室温,得到纳米晶合金。通过Fe、Cu、Nb、Si、B、Mo、Dy元素间的协同作用,有效促进无序相的析出,提高形核率,降低有效各向异性常数,通过制备工艺的调控最终获得损耗低且对服役温度不敏感的纳米晶软磁合金。可应用于高频变压器、共模电感、无线充电、滤波器等器件中可保证产品性能的稳定和安全可靠。(The invention relates to the technical field of soft magnetic alloy materials, and discloses a nanocrystalline alloy and a preparation method thereof 1 Removing the alternating magnetic field to keep the temperature t 1 (ii) a Quickly heating to T 2 Keeping temperature t 2 (ii) a Quickly cooling to T under constant magnetic field 3 Keeping temperature t 3 (ii) a Slowly cooling to T 4 Keeping temperature t 4 And then rapidly cooling to room temperature to obtain the nanocrystalline alloy. Through the synergistic effect among Fe, Cu, Nb, Si, B, Mo and Dy elements, the precipitation of disordered phases is effectively promoted, the nucleation rate is improved, the effective anisotropy constant is reduced, and the nanocrystalline magnetically soft alloy which is low in loss and insensitive to service temperature is finally obtained through the regulation and control of the preparation process. The method can be applied to devices such as high-frequency transformers, common-mode inductors, wireless charging and filters, and can ensure the stability, safety and reliability of product performance.)

一种纳米晶合金及其制备方法

技术领域

本发明涉及软磁合金材料技术领域,具体涉及一种服役温度不敏感的纳米晶合金及其制备方法。

背景技术

随着能源危机的出现和科技的发展,全球都在重视节能降耗和低碳环保,这就要求电子器件向小型化、高效化、高频化的低能耗方向发展。与传统软磁铁氧体、硅钢和坡莫合金等传统软磁材料相比,纳米晶软磁合金具有如下优点:

1)制造上节能:采用快速凝固技术,在超短时间内(<10s)可制带成型。

2)涡流损耗低:带薄,厚度为18~20微米,高频涡流损耗低。

3)磁导率高和矫顽力低:纳米晶软磁合金具有非晶相和纳米晶相双相耦合结构,两者的铁磁交换耦合作用促进了软磁特性的提高。

4)综合软磁性能好,兼备铁基非晶合金的高磁感应强度、成本低廉和钴基非晶合金的高磁导率、低损耗以及低磁致伸缩系数。

因此,纳米晶软磁合金被誉为21世纪新型“双绿色节能战略新材料”,其Finemet合金已实现产业化,替代坡莫合金、软磁铁氧体和钴基非晶合金,在高频变压器、共模电感、无线充电、滤波器等高频电力电子和电子信息领域中获得了广泛的应用。基于铁基的非晶纳米晶软磁合金也较多的研究,如CN104934179A公开了一种强非晶形成能力的铁基纳米晶软磁合金及其制备方法,该合金的表达式为FexSiaBbPcNbdCue,所述表达式中x、a、b、c、d和e分别表示各对应组分的原子百分比含量,且满足以下条件:0.5≤a≤12,0.5≤b≤15,0.5≤c≤12,0.1≤d≤3,0.1≤e≤3,70≤x≤85,x+a+b+c+d+e=100%。本发明的软磁合金采用普通铜模铸造法可制备临界尺寸为3.5mm的铁基非晶合金,经退火后,饱和磁感应强度大于1.5T,矫顽力值在1A/m以下。

CN102412045A公开了一种铁基纳米晶软磁合金,其特征在于该合金的成分组成由化学式表示为FegSiaPbCcCudMneAlf,其中a、b、c、d、e、f、g为原子百分数,a=8.5~12,b=4~7,c=1~3,d=0.5~1.5,e=0.25~0.5,f=0.75~1.5,g=100-a-b-c-d-e-f。该发明的铁基纳米晶软磁合金不含有贵重的Co、Zr、Nb、B等元素,成本低廉,而且在最优晶化退火工艺条件下Bs最高可达到1.71T,Hc最低可以达到0.9A/m的优异软磁性能,更适合规模生产,可取代现有的硅钢片和铁基非晶、纳米晶软磁合金应用于电力电子变压器、互感器等领域。

然而,元件的热量散发和性能随温升的变化是电子设计中最关键的方面之一。因为外部环境引发的热源,或元件自身能力损失等原因均会引起元件发热。纳米晶软磁材料是高频变压器、共模电感、无线充电、滤波器等器件的关键核心材料之一,纳米晶软磁材料的软磁性能随服役温度变化剧烈,则会严重影响电感、变压器、滤波器、无线充电等器件的最终产品性能,甚至失效。

因此,对于开发兼具低损耗,且对服役温度不敏感的纳米晶软磁材料尤为重要。

发明内容

本发明旨在解决现有技术中纳米晶软磁材料的温敏性问题,通过合金元素选择和磁场、速率、温度、时间等热处理参数等晶粒析出与自由体积释放调控来优化合金性能,获得损耗低且对服役温度不敏感的纳米晶合金材料。

为实现上述目的,本发明采用的技术方案是:

一种纳米晶合金的制备方法,将FeCuSiBNbMoDy带材在交变磁场慢速升温至T1,去除交变磁场保温t1;快速升温至T2,保温t2;恒定磁场下快速降温至T3,保温t3;慢速降温至T4,保温t4后快速降温至室温,得到服役温度不敏感的纳米晶合金。其中T1、T2、T3、T4为温度,t1、t2、t3、t4为时间。

优选地,

所述T1为350~430℃,t1为0.1min以上;

所述T2为480~620℃,t2为1s~60min;

所述T3为380~420℃,t3为1s~60min;

所述T4为260~340℃,t4为0.1min以上。

在合金元素的选择上,Fe是铁磁性元素Fe、Co、Ni中来源广泛,成本较低的一种,选用Fe相较于Co、Ni,可大幅度降低生产成本;Cu可促进形核及提高纳米晶的形核率,Si和B可促进无序相的形成,大原子Nb和Mo可细化纳米晶粒,降低纳米晶合金的有效磁各向异性常数。Mo还具有抗氧化性改善制备工艺性,进而提高无序相的形成,Dy可抑制结晶,提高无序相的形成。本发明中通过Fe、Cu、Nb、Si、B、Mo、Dy元素间的协同作用,改善制备工艺,有效促进无序相的析出,提高形核率,降低有效各向异性常数。

而在制备工艺上,本发明先通过交变磁场下超慢速升温至团簇形核温度,在反复交变励磁和足够的时间弛豫下促进原子的扩散和聚集,大幅度提高Cu元素的团聚率,保温一段时间保证团聚充分和均匀;快速升温至第一晶化温度促进密集的纳米晶形核点能够同时析出,在此基础上保温可保证密集形核点同时长大而获得均一极小的晶粒;恒定磁场下快速降温至略低于第一晶化开始温度,可释放晶化产生的微观应力进而降低磁弹各向异性,慢速降温至非晶居里温度点附近保温一段时间可降低准位错偶极子;

综合以上合金和参数的相互协同作用可获得损耗低且对服役温度不敏感的纳米晶软磁合金。

进一步优选地,所述T1为380~420℃,t1为20min以上;

所述T2为520~600℃,t2为20~30min;

所述T3为390~410℃,t3为1s~1min;

所述T4为280~330℃,t4为15min以上。

从室温加交变磁场至T1,可促进Cu元素与Fe元素分离使Cu元素富集,保温t1,可使Cu元素富集形成团簇,提高纳米晶的形核率,细化晶粒,进而降低损耗和提高服役温度不敏感性。

在T2保温t2,可析出高密度、细小、分散均匀、纳米结构的晶粒,有利于获得低高频损耗和良好的温度稳定性。

恒定磁场下快速至T3保温t3,可释放晶化产生的微观应力进而降低磁弹各向异性,从而进一步改善高频损耗和提高温度稳定性。

恒定磁场下慢速降温至T4,接近非晶居里温度,保温t4,可降低准位错偶极子,同时获得感生各向异性,进一步降低高频损耗和提高温度稳定性。

优选地,所述FeCuSiBNbMoDy带材的表达式为FeaCubSicBdNbeMofDyg,其中a、b、c、d、e、f、g为原子百分数,a+b+c+d+e+f+g=100,a为72~80,b为0.1~1.5,c为5~15,d为4~10,e为0.5~1.5,f为0.1~1,g为0.1~1。

所述快速升温或快速降温的变温速率为300℃/min以上。

所述慢速升温或慢速降温的变温速率为0.01~3℃/min。T1之前升温速度越小可保证足够的时间弛豫使Cu元素与Fe元素扩散、分离与团聚。

T1至T2,升温速度越高,纳米晶晶粒更容易同时形核和长大;T2至T3,降温速度越高,越有利于释放晶化产生的微观应力进而降低磁弹各向异性;T3至T4,降温速率越小,越有利于降低准位错偶极子和获得感生各向异性。

这四种的相互协同作用有利于提高细小晶粒形核率,降低磁晶各向异性常数,诱导感生各向异性,改善高频特性和温度稳定性。

所述交变磁场的幅值为0.1~10T,频率为0.1Hz~1MHz。交变磁场的幅值越大,越有利于降低形核势垒,促进形核。频率越高,元素扩散越快,越有利于Cu元素与Fe元素分离,形成Cu团簇。两者的相互作用有利于提高Cu团簇的数密度,进而提高晶化程度和降低晶粒尺寸,降低高频损耗和稳定敏感性。

所述恒定磁场为横向静磁场和/或纵向静磁场、或旋转静磁场,磁场大小为0.1~10T。

所述FeCuSiBNbMoDy带材中Nb替换为Zr、Ta、Hf、W、Al、Cr、Co、Ni、Mn、Ga、Mg、Na、K中任一种;Dy替换为其他稀土元素Gd、La、Ce、Pr、Nd、Tb、Dy、Ho。

本发明还提供一种根据所述的制备方法制备得到的纳米晶合金,所述纳米晶合金的损耗在-60℃~250℃下保持变化率在15%以下。

优选地,所述纳米晶合金的损耗在-150℃~250℃下保持变化率在10%以下。

通过本发明的方法制备得到的纳米晶合金可应用于电子器件的原件中,可保证产品性能的稳定性,损耗低,尤其适合在温度条件苛刻的工作环境中应用。

与现有技术相比,本发明具有以下有益效果:

(1)通过本发明方法获得的纳米晶软磁合金具有超低的高频损耗,在幅值0.2T、频率150kHz的磁场下的损耗不大于500kW/m3,在高频领域具有广阔的应用前景。

(2)本发明的纳米晶软磁合金的损耗对服役温度不敏感,-60℃~250℃下保持变化率在10%以下,应用于高频变压器、共模电感、无线充电、滤波器等器件中可保证产品性能的稳定和安全可靠,尤其适用于条件苛刻的工作环境中。

具体实施方式

为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。本领域技术人员在理解本发明的技术方案基础上进行修改或等同替换,而未脱离本发明技术方案的精神和范围,均应涵盖在本发明的保护范围内。

实施例1

(1)通过熔炼获得Fe77Cu1Si10B9Nb1Mo1Dy1合金带材,将该合金带材置于热处理炉中;

(2)在交变磁场的幅值为0.1T、频率为0.1Hz下以0.01℃/min的升温速率慢速升至温度350℃;去除交变磁场保温0.1min;

(3)再以300℃/min的升温速率快速升至480℃,保温1s;

(4)增加幅值为0.1T的横向静磁场,以300℃/min的速率快速降温至380℃,保温1s;

(5)横向静磁场下再以0.01℃/min的速率慢速降至260℃保温0.1min后,以300℃/min快速降至室温,得到纳米晶合金。

实施例2

(1)通过熔炼获得Fe76.5Cu1Si12.5B8Nb1Mo0.5Dy0.5合金带材,将该合金带材置于热处理炉中;

(2)在交变磁场的幅值为0.5T、频率为100Hz下以0.5℃/min的升温速率慢速升至温度400℃;去除交变磁场保温10h;

(3)再以800℃/min的升温速率快速升至590℃,保温30min;

(4)增加幅值为0.3T的纵向静磁场,以800℃/min的速率快速降温至400℃,保温60min;

(5)再以1℃/min的速率慢速降至320℃保温100min后,以800℃/min快速降至室温,得到纳米晶合金。

实施例3

(1)通过熔炼获得Fe75.9Cu1Si13B8Nb1.5Mo0.5Dy0.1合金带材,将该合金带材置于热处理炉中;

(2)在交变磁场的幅值为10T、频率为1MHz下以3℃/min的升温速率慢速升至温度430℃;去除交变磁场保温120h;

(3)再以1000℃/min的升温速率快速升至620℃,保温60min;

(4)增加幅值为10T的横向加纵向静磁场,以1000℃/min的速率快速降温至420℃,保温60min;

(5)横向加纵向静磁场下,再以3℃/min的速率慢速降至340℃保温120h后,以1000℃/min快速降至室温,得到纳米晶合金。

对比例1

按照实施例1的工艺,仅在制备过程中未增加交变磁场和横向静磁场,得到纳米晶合金。

对比例2

按照实施例2的工艺,仅在制备过程中未增加交变磁场和纵向静磁场,得到纳米晶合金。

对比例3

按照实施例3的工艺,仅在制备过程中未增加交变磁场和横向加纵向静磁场,得到纳米晶合金。

通过交流B-H仪测试实施例1~3和对比例1~3中制备的纳米晶合金在0.1T和150kHz下的室温损耗。由损耗测试结果可知,

实施例1制备的纳米晶软磁合金在0.1T和150kHz下的室温损耗为580kW/m3,对比例1制备的纳米晶软磁合金在0.1T和150kHz下的室温损耗为870kW/m3

实施例2制备的纳米晶合金在0.1T和150kHz下的室温损耗为420kW/m3,对比例2制备的纳米晶合金在0.1T和150kHz下的室温损耗为840kW/m3

实施例3制备的纳米晶合金在0.1T和150kHz下的室温损耗为380kW/m3,对比例3制备的纳米晶合金在0.1T和150kHz下的室温损耗为780kW/m3。这充分说明了本发明合金的热处理调控的合理性和有效性。

通过加液氮和原位升温测试实施例和对比例制备的纳米晶合金在-60℃~250℃服役温度范围内测试幅值0.1T和频率150kHz下的损耗;并与其本身室温下的损耗进行对比,获得对比室温损耗的变化率,具体数值见表1。

表1实施例与对比例制备的纳米晶合金损耗的变化率

从表中可以看出,与室温损耗相比,实施例1制备的合金在-60℃~250℃服役温度范围损耗变化率最大为14.5%,而对比例1则高达21.8%。实施例2制备的合金在-60℃~250℃服役温度范围损耗变化率最大为13%,而对比例2则高达28.6%;实施例3制备的合金在-60℃~250℃服役温度范围损耗变化率最大为9.5%,而对比例3则高达31.3%。

将实施例1~3的纳米晶合金的制备过程主要区别点,0.1T和150kHz下的室温损耗,以及对比室温损耗的变化率汇总于表2中,从表中可以看出,实施例1至实施例3,0.1T,150kHz下的高频损耗和损耗变化率均在降低,但这是由于实施例1至实施例3的纳米晶合金在制备的步骤(2)中交变磁场的幅值和频率在不断增大,步骤(4)中静磁场的幅值也增大,交变磁场的幅值越大,越有利于降低形核势垒,促进形核。频率越高,元素扩散越快,越有利于Cu元素与Fe元素分离,形成Cu团簇。两者的相互作用有利于提高Cu团簇的数密度,进而提高晶化程度和降低晶粒尺寸,降低高频损耗和稳定敏感性。加上各温度间的升温速度或降温速的调整、合金元素成分的选择,综合协同作用下,提高细小晶粒形核率,降低磁晶各向异性常数,诱导感生各向异性,改善高频特性和温度稳定性。

表2实施例1~3制备过程主要差异及性能结果汇总表

8页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:用于环类件的电磁脉冲处理工艺方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!