激光振荡器、使用了其的激光加工装置及激光振荡方法

文档序号:1191457 发布日期:2020-08-28 浏览:18次 >En<

阅读说明:本技术 激光振荡器、使用了其的激光加工装置及激光振荡方法 (Laser oscillator, laser processing apparatus using the same, and laser oscillation method ) 是由 堂本真也 石川谅 加藤直也 于 2019-02-22 设计创作,主要内容包括:激光振荡器具备:多个激光模块;光束耦合器(12),其对从多个激光模块射出的多个激光束(LB1~LB4)进行耦合并作为耦合激光束而射出;以及聚光透镜单元,其具有聚光透镜,以使耦合激光束成为规定的光束直径的方式进行聚光并引导到传输光纤。光束耦合器(12)具有构成为能够变更激光束(LB1~LB4)的光路的光学构件(OC1~OC4)。通过由光学构件(OC1~OC4)变更激光束(LB1~LB4)的光路,不用调整聚光透镜的位置而使从传输光纤射出的耦合激光束的光束轮廓变化。(A laser oscillator is provided with: a plurality of laser modules; a beam coupler (12) that couples the plurality of laser beams (LB 1-LB 4) emitted from the plurality of laser modules and emits the coupled laser beams; and a condensing lens unit having a condensing lens for condensing the coupling laser beam so that the coupling laser beam has a predetermined beam diameter and guiding the coupling laser beam to the transmission fiber. The beam coupler (12) has optical members (OC 1-OC 4) configured to be able to change the optical paths of the laser beams (LB 1-LB 4). By changing the optical paths of the laser beams (LB 1-LB 4) by the optical members (OC 1-OC 4), the beam profile of the coupled laser beam emitted from the transmission fiber is changed without adjusting the position of the condenser lens.)

激光振荡器、使用了其的激光加工装置及激光振荡方法

技术领域

本公开涉及激光振荡器、使用了其的激光加工装置及激光振荡方法。

背景技术

近年来,伴随着直接二极管激光器(Direct Diode Laser;以下称为DDL)的高输出化,使用了DDL的激光加工装置的开发正在加速。DDL通过对从多个激光模块射出的激光束进行耦合而能够得到超过数kW的高输出。从光束耦合器射出的耦合激光束经由传输光纤被引导到设置于任意地点的加工头。此时,从光束耦合器射出的耦合激光束被聚光透镜聚光至落入传输光纤的芯体的光斑直径之后,向传输光纤入射。

然而,激光加工装置中的加工对象物即工件广泛地从薄板到厚板。但是,为了实现良好的加工,不仅是光束输出及各种施工条件,光束轮廓也成为重要的要素。例如,在高速地切断薄板时,要求将高输出的耦合激光束聚光为更小的光斑直径。在该情况下,从传输光纤射出的耦合激光束适合高斯形状的光束轮廓。另外,根据加工条件,优选传输光纤的芯径变小。另一方面,在切断厚板时,为了确保比薄板切断时宽的切断宽度,需要聚光为某种程度的大小的光斑直径。此外,为了得到良好的切断面,存在比单纯的高斯光束更适合的光束轮廓。

对此,在专利文献1中,公开了如下结构:在传输光纤的入射部的附近设置聚光透镜,在入射部侧变更向传输光纤入射的耦合激光束的光斑直径,由此,能够调节从传输光纤射出的耦合激光束的光束轮廓。

在先技术文献

专利文献

专利文献1:日本特表2015-500571号公报

发明内容

发明要解决的课题

但是,在专利文献1所公开的以往的结构中,通过调整聚光透镜的位置来变更光束轮廓。因此,需要进行聚光透镜的位置的微调整,另外,需要能够进行该微调整的聚光透镜的位置控制装置。在这样的结构中,为了进行聚光透镜的精密的位置控制,位置控制装置变得复杂,并且,可能变得昂贵。

本公开是鉴于上述情况而完成的,其目的在于,提供一种能够以比较简便的结构来变更从传输光纤射出的耦合激光束的光束轮廓的激光振荡器、使用了该激光振荡器的激光加工装置及激光振荡方法。

用于解决课题的手段

为了实现上述目的,本公开的激光振荡器具备:多个激光模块,其分别发出激光束;光束耦合器,其对从多个激光模块射出的多个激光束进行耦合并作为耦合激光束而射出;以及聚光单元,其具有聚光透镜,进行聚光使得耦合激光束成为规定的光束直径,并引导到传输光纤,其特征在于,光束耦合器具有光路变更机构,该光路变更机构构成为,能够变更从多个激光模块受取的多个激光束中的至少一个激光束的光路,通过由光路变更机构变更激光束的光路,从而不用调整聚光透镜的位置而使从传输光纤射出的耦合激光束的光束轮廓变化。

根据该结构,能够比较简便地使从传输光纤射出的耦合激光束的光束轮廓变化。

另外,本公开的激光加工装置的特征在于,至少具备:上述的激光振荡器;安装于传输光纤的射出端的激光束射出头;以及对光路变更机构的动作进行控制的控制部。

根据该结构,能够得到与加工内容、加工对象物的形状等相应的光束轮廓,能够进行所希望的品质的激光加工。

另外,本公开的激光振荡方法是与传输光纤连接且具备多个激光模块和聚光透镜的激光振荡器中的激光振荡方法,其特征在于,具有如下步骤:光束耦合步骤,在该光束耦合步骤中,对从多个激光模块射出的多个激光束进行耦合并作为耦合激光束而射出;聚光步骤,在该聚光步骤中,利用聚光透镜,以使耦合激光束成为规定的光束直径的方式进行聚光,并引导到传输光纤;以及光束轮廓变更步骤,该光束轮廓变更步骤在光束耦合步骤中,通过变更从多个激光模块受取的多个激光束中的至少一个激光束的光路,从而不用调整聚光透镜的位置而使从传输光纤射出的耦合激光束的光束轮廓变化。

根据该方法,能够比较简便地使从传输光纤射出的耦合激光束的光束轮廓变化。

发明效果

根据本公开,能够比较简便地变更从传输光纤射出的耦合激光束的光束轮廓。

附图说明

图1是示出本公开的实施方式1的激光加工装置的结构的示意图。

图2是示出光束耦合器的内部结构的局部示意图。

图3A是示出变更了光路使得耦合激光束向第一芯体入射的情况下的光束轮廓的示意图。

图3B是示出变更了光路使得耦合激光束向第一芯体及第二芯体入射的情况下的光束轮廓的示意图。

图3C是示出变更了光路使得耦合激光束向第二芯体入射的情况下的光束轮廓的示意图

图4是示出激光振荡时的光束耦合器的内部结构的示意图。

图5是示出光路变更时的激光束的光束轮廓的示意图。

图6是示出变形例的光学构件的光路变更动作的示意图。

图7是示出本公开的实施方式2的光束耦合器的内部结构的示意图。

图8是示出光路变更时的激光束的光束轮廓的示意图。

具体实施方式

以下,基于附图对本公开的实施方式详细进行说明。以下的优选实施方式的说明本质上只不过是例示,并不意在限制本公开、其应用对象或其用途。

(实施方式1)

[激光加工装置的结构]

图1是本实施方式的激光加工装置100的结构的示意图。另外,图2是光束耦合器12的内部结构的局部示意图。需要说明的是,在图2中,仅示出后述的多个激光束LB1~LB4中的激光束LB1行进的部分。另外,在以后的说明中,有时将图2中的从多个激光模块11向光束耦合器12入射的激光束LB1的行进方向称为X方向,将由反射镜M1反射的激光束LB1朝向反射镜M2的方向称为Z方向,将与X方向及Z方向正交的方向称为Y方向。

激光加工装置100具备激光振荡器10、激光束射出头30、传输光纤40、控制部50以及电源60。激光振荡器10和传输光纤40的入射激光束LB1~LB4的端部(以下仅称为入射端)被收容在壳体70内。

激光振荡器10具有多个激光模块11、光束耦合器12以及聚光透镜单元(聚光单元)20。多个激光模块11分别包括发出不同波长的激光束LB1~LB4的多个激光二极管或激光阵列。通过光束耦合器12将从多个激光模块11分别射出的不同波长的激光束LB1~LB4耦合为一个激光束(以下称为耦合激光束)。另外,耦合激光束由配设于聚光透镜单元20的聚光透镜21聚光,将光束直径以规定的倍率缩小后向传输光纤40入射。通过将激光振荡器10设为这样的结构,能够得到激光束输出超过数kW的高输出的激光加工装置100。另外,激光振荡器10从后述的电源60被供给电力而进行激光振荡,入射到传输光纤40的耦合激光束从传输光纤40的射出耦合激光束的端部(以下仅称为射出端)射出。

光束耦合器12在内部具有多个反射镜M1~M5(参照图2、4)和多个光学构件(光路变更机构)OC1~OC4(参照图2、4)。各反射镜M1~M5对于各个激光束LB1~LB4的光路倾斜地配置,使得将从多个激光模块11分别射出的激光束LB1~LB4引导到激光束射出部LO(参照图2、4)。另外,光学构件OC1~OC4是石英玻璃制的平行平板状的构件,对于多个激光束LB1~LB4中的任一个激光束都是透明的。另外,光学构件OC1~OC4设置为能够在规定的激光束LB1~LB4的光路上的规定的位置(第一位置)与光路外的规定的位置(第二位置)之间移动。如图2所示,在光学构件OC1处于第一位置(虚线所示的光学构件OC1的位置)的情况与处于第二位置(实线所示的光学构件OC1的位置)的情况下,激光束LB1的光路切换地变更为虚线所示的箭头的光路与实线所示的箭头的光路。之后对此详述。需要说明的是,关于使光学构件OC1~OC4移动的致动器,省略图示及其说明。

聚光透镜单元20在内部具有聚光透镜21,聚光透镜21对耦合激光束进行聚光,使得在传输光纤40的入射端,成为比后述的第一芯体41及第二芯体42的芯径之和小的光斑直径。另外,聚光透镜单元20具有未图示的连接器,在连接器连接有传输光纤40的入射端。

传输光纤40与激光振荡器10的聚光透镜21光学地耦合,将经由聚光透镜21从激光振荡器10受取的耦合激光束向激光束射出头30传输。另外,传输光纤40在轴心具有剖面为大致圆形状的第一芯体41。另外,传输光纤40具有第二芯体42,该第二芯体42与第一芯体41的外周面相接,且与第一芯体41同轴地设置。通过耦合激光束入射到第一芯体41及第二芯体42中的至少一方,从而耦合激光束向传输光纤40的射出端传输。

另外,在传输光纤40中,与第二芯体42的外周面相接且与第一芯体41及第二芯体42同轴地设置有包层43,构成为包层43的折射率比第一芯体41及第二芯体42的折射率低。另外,第一芯体41构成为折射率比第二芯体42的折射率高。在本实施方式中,第一芯体41的材质为石英玻璃(折射率:约1.45),第二芯体42的材质为掺杂有氟的石英玻璃(折射率:约1.445)。另外,包层43的材质为与第二芯体42相比掺杂有高浓度的氟的石英玻璃(折射率:约1.43)。需要说明的是,也可以将第一芯体41及第二芯体42的材质均设为石英玻璃,在第一芯体41与第二芯体42之间***折射率比第一芯体41及第二芯体42低且掺杂有氟的石英玻璃的低折射率层。

需要说明的是,在上述中,传输光纤40具有与第一芯体41的外周面相接且与第一芯体41同轴地设置的第二芯体42,此外,以与第二芯体42的外周面相接且与第一芯体41及第二芯体42同轴的方式设置有包层43,但也可以将第二芯体42设为包层。换言之,也可以具有与第一芯体41的外周面相接且与第一芯体41同轴地设置的第一包层,此外,以与第一包层(第二芯体42)的外周面相接且与第一芯体41及第一包层同轴的方式设置有第二包层(包层43)。

通过将传输光纤40设为这样的结构,从聚光透镜单元20入射的耦合激光束在第一芯体41及第二芯体42内或者在第二芯体42内被全反射后,从传输光纤40的射出端射出。即,第一芯体41及第二芯体42中的至少一方作为耦合激光束的光波导发挥功能,包层43作为将耦合激光束向作为光波导的第一芯体41及第二芯体42内封入的光封入部发挥功能。需要说明的是,包层43的表面被覆膜覆盖,对此未图示。

激光束射出头30将在传输光纤40中传输的耦合激光束朝向外部照射。例如,在图1所示的激光加工装置100中,朝向配置于规定的位置的加工对象物即工件(未图示)射出耦合激光束。

控制部50控制激光振荡器10的激光振荡。具体而言,通过对与激光振荡器10连接的电源60供给输出电压、接通时间等控制信号,进行各个激光模块11的激光振荡控制。也能够对各个激光模块11单独地进行激光振荡控制。例如,也可以按照每个激光模块11而使激光振荡输出、接通时间等不同。另外,控制部50控制配置在光束耦合器12内的光学构件OC1~OC4的动作,具体而言,控制与光学构件OC1~OC4连结的致动器(未图示)的动作。需要说明的是,控制部50也可以控制安装有激光束射出头30的操纵器(未图示)的动作。

如上所述,电源60向激光振荡器10、具体而言多个激光模块11分别供给用于进行激光振荡的电力。也可以根据来自控制部50的指令,使向各个激光模块11供给的电力不同。另外,电源60也可以向激光加工装置100的可动部分别供给电力,还可以从其他电源(未图示)朝向激光加工装置100的可动部供给电力。

[关于耦合激光束的光束轮廓]

在使用图1所示的激光加工装置100进行激光加工的情况下,根据加工对象物及加工内容,可能产生使耦合激光束的光束轮廓变化的情况。在这样的情况下,能够通过改变传输光纤40的入射端处的耦合激光束的入射位置而使从传输光纤40射出的耦合激光束的光束轮廓变化。以下,为了容易说明,针对使用了通过调整聚光透镜21的位置而改变耦合激光束的光路的以往的方法的情况,使用图3A~3C,首先说明光束轮廓如何变化。

图3A~3C是示出耦合激光束的光路(入射位置)与从传输光纤40射出的耦合激光束的光束轮廓之间的关系的示意图。需要说明的是,作为传输光纤40,以图1、2所示的构造、即使用了具有第一芯体41及第二芯体42的双重芯体构造的光纤的例子进行说明。

如图3A的左下所示,在以落入第一芯体41的芯径的方式调整了聚光透镜21的位置的基础上,向传输光纤40入射耦合激光束。这样,从传输光纤40射出的耦合激光束的光束轮廓成为单峰状的高斯分布(参照图3A的右下)。需要说明的是,在本申请说明书中,“光束轮廓”是指激光束强度的空间分布。在图3A~3C中,激光束强度以Z方向的波形变化表示,空间分布以X方向的波形变化表示。需要说明的是,在本实施方式中,Y方向的波形变化也与X方向的波形变化是同样的,对此未图示。但是,空间分布在X方向和Y方向上也可以不同。

另一方面,如图3B所示,当使聚光透镜21在与耦合激光束的光路交叉的方向上、该情况下为Z方向上移动规定量时,耦合激光束不仅向第一芯体41入射,也向第二芯体42入射(参照图3B的左下)。这样,从传输光纤40射出的耦合激光束的光束轮廓成为具有三个峰值的形状,并且,与图3A所示的情况相比,光束轮廓的半值宽度变大(参照图3B的右下)。

当使聚光透镜21从图3B的状态进一步在Z方向上移动时,耦合激光束仅向第二芯体42入射(参照图3C的左下)。这样,从传输光纤40射出的耦合激光束的光束轮廓成为具有两个峰值的形状。另外,与图3A所示的情况相比,光束轮廓的半值宽度变大(参照图3C的右下),但与图3B所示的情况相比,光束轮廓的半值宽度变小。

这样,通过调整用于向传输光纤40引导耦合激光束的聚光透镜21的位置,能够使传输光纤40的入射端处的激光束入射位置变化,从而调整在第一芯体41中传播的耦合激光束与在第二芯体42中传播的耦合激光束的比例。另外,如图3A~3C所示,通过使聚光透镜21的位置连续地变化,能够无阶段地调整耦合激光束的光束轮廓,得到所希望的光束轮廓。

[耦合激光束的光束轮廓变更动作]

但是,传输光纤40的第一芯体41的芯径通常为几十μm~几百μm程度而较小,为了如图3A~图3C所示那样使耦合激光束的光束轮廓变化,需要精密地调整使耦合激光束向传输光纤40入射的聚光透镜21的位置,位置控制变得复杂。另外,位置调整用的位置控制装置也变得昂贵。

对此,在本公开中,提出如下结构:通过利用光学构件来变更从多个激光模块11射出的多个激光束LB1~LB4中的至少一个激光束的光路,从而使从传输光纤40射出的耦合激光束的光束轮廓变化。

图4是本实施方式的激光振荡时的光束耦合器12的内部结构的示意图。另外,图5是光路变更时的耦合激光束的光束轮廓的示意图。需要说明的是,在本实施方式中,示出使从四个激光模块11分别射出的激光束LB1~LB4在光束耦合器12内耦合为一个耦合激光束并朝向聚光透镜单元20射出的例子。但是,激光模块11的个数及射出的激光束的条数没有特别限定。另外,图5所示的光束轮廓与图3A~3C所示的光束轮廓同样地记述了以X方向及Z方向规定的平面内的变化。

如图4所示,在光束耦合器12设置有与四条激光束LB1~LB4对应的激光束入射部LI1~LI4、以及使耦合激光束射出的激光束射出部LO。另外,在光束耦合器12中,五个反射镜M1~M5分别配置为,对于激光束入射部LI1~LI4附近的激光束LB1~LB4的光路而形成规定的角度。另外,在激光束入射部LI1~LI4与反射镜M1~M4之间分别配置有光学构件OC1~OC4。光学构件OC1~OC4分别配置为,其表面对于激光束入射部LI1~LI4附近的对应的激光束LB1~LB4的光路而形成大于0°且小于90°的规定的角度。另外,如上所述,光学构件OC1~OC4分别设置为在对应的激光束LB1~LB4的光路上的第一位置与光路外的第二位置之间能够移动。

首先,考虑全部的光学构件OC1~OC4处于对应的激光束LB1~LB4的光路外、即第二位置的情况。当向光束耦合器12入射四条激光束LB1~LB4时,从激光束入射部LI1入射的激光束LB1被反射镜M1反射而朝向反射镜M2行进。激光束LB1被反射镜M2进一步反射而朝向激光束射出部LO行进。同样地,激光束LB3被反射镜M3和反射镜M5分别反射而朝向激光束射出部LO行进,激光束LB4被反射镜M4和反射镜M5分别反射而朝向激光束射出部LO行进。另一方面,从激光束入射部LI2入射的激光束LB2直行而直接朝向激光束射出部LO行进。其结果是,激光束LB1~LB4在激光束射出部LO附近成为光轴接近的状态,作为一个耦合激光束而从激光束射出部LO射出。因此,如图5的模式A所示,耦合激光束的光束轮廓成为单峰状的高斯分布。需要说明的是,激光束LB1~LB4的光轴并不是完全一致,因此,耦合激光束成为比激光束LB1~LB4分别在空间上扩展的形状的光束轮廓。

接着,考虑从全部的光学构件OC1~OC4处于对应的激光束LB1~LB4的光路外、即第二位置的状态起,仅使光学构件OC1向激光束LB1的光路上、即第一位置移动的情况。在该情况下,光学构件OC1的折射率(作为石英玻璃约为1.45)比激光束LB1通过的空间的折射率(作为空气中约为1)高,因此,当激光束LB1向光学构件OC1入射时被折射,光学构件OC1内的光路被变更。同样地,当激光束LB1从光学构件OC1射出时被折射,激光束LB1的光路被变更。即,在光学构件OC1处于激光束LB1的光路上的情况和处于光路外的情况下,激光束LB1的光路被变更,在耦合激光束中,激光束LB1成为光轴与其他三条激光束LB2~LB4偏移了的状态。另外,光学构件OC1的折射率及厚度被设定为,在光学构件OC1***到激光束LB1的光路的情况下,使激光束LB1向第二芯体42入射。因此,如图5的模式B所示,激光束LB2~LB4向第一芯体41入射,另一方面,激光束LB1向第二芯体42入射。其结果是,如图5的模式B所示,耦合激光束的光束轮廓在单峰状的高斯分布的两侧产生峰值,成为具有三个峰值的形状。另外,各个峰值的高度比模式A所示的光束轮廓的高度低。此外,图5的模式B所示的光束轮廓成为与模式A所示的光束轮廓相比沿X方向扩展的波形形状。

需要说明的是,通过将光学构件OC1~OC4中的任一个光学构件配置在对应的激光束的光路上,能够得到图5的模式B所示的光束轮廓。另外,光学构件OC2~OC4的折射率及厚度被设定为,在将光学构件OC2~OC4分别***到对应的激光束的光路的情况下,使该对应的激光束向第二芯体42入射。

接着,考虑如下情况:从全部的光学构件OC1~OC4处于对应的激光束LB1~LB4的光路外、即第二位置的状态起,将光学构件OC1~OC4中的两个配置在对应的激光束的光路上,例如,将光学构件OC1、OC2分别配置在激光束LB1、LB2的光路上。

在该情况下,通过光学构件OC1、OC2分别变更激光束LB1、LB2的光路,由此,激光束LB1、LB2向第二芯体42入射。其结果是,如图5的模式C所示,耦合激光束的光束轮廓成为具有三个峰值的形状。另外,三个峰值中的中央的峰值的高度比模式B所示的光束轮廓的对应部位的高度低,但其两侧的峰值的高度比模式B所示的光束轮廓的对应部位的高度高。这是因为,与模式B所示的情况相比,向第二芯体42入射的耦合激光束的入射量增加。

另外,考虑如下情况:从全部的光学构件OC1~OC4处于对应的激光束LB1~LB4的光路外、即第二位置的状态起,将光学构件OC1~OC4中的三个配置在对应的激光束的光路上,例如,将光学构件OC1~OC3分别配置在激光束LB1~LB3的光路上。在该情况下,通过光学构件OC1~OC3分别变更激光束LB1~LB3的光路,由此激光束LB1~LB3向第二芯体42入射。其结果是,如图5的模式D所示,耦合激光束的光束轮廓成为具有三个峰值的形状。另外,三个峰值中的中央的峰值的高度比模式C所示的光束轮廓的对应部位的高度低,但其两侧的峰值的高度比模式C所示的光束轮廓的对应部位的高度高。这是因为,与模式C所示的情况相比,向第二芯体42入射的耦合激光束的入射量增加。另外,在模式C的情况下,耦合激光束的光束轮廓的两侧的峰值比中央的峰值高。

如图4所示,在从全部的光学构件OC1~OC4处于对应的激光束LB1~LB4的光路外、即第二位置的状态起,将全部的光学构件OC1~OC4配置在对应的激光束的光路上、即第一位置的情况下,通过光学构件OC1~OC4分别变更激光束LB1~LB4的光路,由此,激光束LB1~LB4全部向第二芯体42入射。其结果是,如图5的模式E所示,耦合激光束的光束轮廓成为具有两个峰值的形状。这是因为,不存在向第一芯体41入射的激光束,两个峰值的高度比模式D所示的光束轮廓中的两侧的峰值的高度高。

[效果等]

如以上说明的那样,本实施方式的激光振荡器10具备:四个激光模块11,其分别发出激光束LB1~LB4;光束耦合器12,其对从四个激光模块11射出的四个激光束LB1~LB4进行耦合并作为耦合激光束而射出;以及聚光透镜单元20,其具有聚光透镜21,以使耦合激光束成为规定的光束直径的方式进行聚光并引导到传输光纤40。光束耦合器12具有光学构件OC1~OC4,该光学构件OC1~OC4构成为能够变更从四个激光模块11受取的四个激光束LB1~LB4中的至少一个激光束的光路。通过光学构件OC1~OC4来变更激光束LB1~LB4的光路中的至少一个激光束的光路,由此,不用调整聚光透镜21的位置而使从传输光纤40射出的耦合激光束的光束轮廓变化。

通过将激光振荡器10设为这样的结构,能够简便地使从传输光纤40射出的耦合激光束的光束轮廓变化,能够得到与激光加工内容、加工对象物的形状等相应的光束轮廓。由此,能够进行所希望的品质的激光加工。

例如,在利用激光加工装置100对薄钢板进行切断加工的情况下,最好提高切断部位的能量密度来进行,另外,切断宽度越窄越好。由此,如图5的模式A所示,优选将光束轮廓控制为单峰状的高斯分布。另一方面,在利用激光加工装置100对厚钢板进行切断加工的情况下,切断宽度也需要与钢板的厚度对应地扩宽某种程度。因此,如图5的模式B~E所示,优选通过光学构件OC1~OC4使激光束LB1~LB4的光路的至少一个变更而向第二芯体42入射,由此,将光束轮廓控制为在空间上扩宽的形状。另外,在基于激光的切断加工中,有时溅射物从加工对象物即工件中飞散,重新附着于工件而使加工品质下降。通过选择模式B~E所示的光束轮廓中的任一个光束轮廓,能够抑制这样的溅射物的产生。通常,表示激光束强度的光束轮廓的峰值高度越低,越容易抑制溅射物的产生。

另外,传输光纤40至少具有:作为光波导发挥功能的第一芯体41;与第一芯体41的外周面相接且与第一芯体41同轴设置、并且作为光波导发挥功能的第二芯体42;以及与第二芯体42的外周面相接且与第一芯体41及第二芯体42同轴设置的包层43。聚光透镜单元20在激光束LB1~LB4的光路未被光学构件OC1~OC4变更时,向传输光纤40的第一芯体41引导激光束LB1~LB4,在激光束LB1~LB4的光路被光学构件OC1~OC4变更时,将光路变更后的激光束向第二芯体42引导。即,通过使用光学构件OC1~OC4,可以仅向第一芯体41引导耦合激光束,也可以向第一芯体41及第二芯体42引导耦合激光束,或者还可以仅向第二芯体42引导耦合激光束。因此,能够简便地使从传输光纤40射出的耦合激光束的光束轮廓变化。

光学构件OC1~OC4构成为使激光束LB1~LB4的光路平行地偏移规定的距离。通过将光学构件OC1~OC4设为这样的结构,从而准确地规定了光路变更后的激光束的光路,因此,能够准确且再现性良好地调整向传输光纤40的第一芯体41及第二芯体42入射的激光束的比例。另外,通过将光学构件OC1~OC4设为对于激光束LB1~LB4透明的平行平板状的构件,能够使激光束LB1~LB4的光路平行地偏移规定的距离。

另外,光学构件OC1~OC4设置为对于激光束LB1~LB4的光路形成规定的角度,且设置为在激光束LB1~LB4的光路上的第一位置与光路外的第二位置之间能够移动。通过将光学构件OC1~OC4设为这样的结构,针对光路变更后的传输光纤40和耦合激光束的光学耦合调整,能够确保足够的裕度。另外,不用对聚光透镜21的位置、光束耦合器12内的反射镜M1~M5的角度进行微调整来变更激光束LB1~LB4的光路,能够以简便的结构,使从传输光纤40射出的耦合激光束的光束轮廓变化。

如上所述,在光束耦合器12的激光束射出部LO附近,多个激光束LB1~LB4各自的光轴不完全一致,因此,耦合激光束成为在空间上扩展的形状的光束轮廓。即,耦合激光束的光束直径比多个激光束LB1~LB4各自的光束直径大。例如,如本实施方式所示,在使用四个输出为1kW的激光模块11而生成耦合激光束的情况下,其光束直径停留在80μm左右。因此,在使该耦合激光束具有规定的裕度而向传输光纤40的第一芯体41入射时,第一芯体41的芯径最小也需要为100μm左右。另一方面,第二芯体42的芯径通常能够大于第一芯体41的芯径。这是因为,第一芯体41的芯径为了尽可能提高第一芯体41内的光密度而被要求得更小,与此相对,在第二芯体42中,为了使光的密度分散而大多选择比第一芯体41大的芯径。例如,在将第二芯体42的芯径设为360μm时,在传输光纤40的半径方向上,第二芯体42的宽度成为130μm。与使耦合激光束全部向第一芯体41入射的情况相比,使耦合激光束向第二芯体42入射时,针对传输光纤40与耦合激光束的光学耦合调整而具有裕度。优选第二芯体42的芯径为第一芯体41的芯径的3倍以上。

另外,包括光学构件对于对应的激光束的角度在内初始调整激光振荡器10的光学系统的配置即可。即,例如,若在光学构件OC1~OC4全部处于光路外的情况下使耦合激光束全部向第一芯体41入射,则能够通过使光学构件OC1~OC4对于激光束LB1~LB4的光路***或退避这样的简便动作来变更激光束LB1~LB4的光路。另外,关于光学构件OC1~OC4的移动前后的配置,也不要求高精度。例如,在使光学构件OC1~OC4向激光束LB1~LB4的光路上的第一位置移动的情况下,该位置与目标值相比偏移了10%以上。在该情况下,光学构件OC1~OC4对于激光束LB1~LB4的光路分别形成大于0°且小于90°的规定的角度,因此,不对由光学构件OC1~OC4变更后的激光束LB1~LB4的光路造成影响。由此,能够使耦合激光束的光束轮廓简便且再现性良好地变化。

另外,本实施方式的激光加工装置100至少具备上述的激光振荡器10、安装于传输光纤40的射出端的激光束射出头30、以及控制光学构件OC1~OC4的动作的控制部50。

通过将激光加工装置100设为这样的结构,能够使从激光束射出头30射出的耦合激光束的光束轮廓简便且再现性良好地变化,能够得到与激光加工内容、加工对象物的形状等相应的光束轮廓。由此,能够进行所希望的品质的激光加工。

<变形例>

图6示出本变形例的光学构件的光路变更动作的示意图。

本变形例所示的结构与实施方式1所示的结构的不同在于,光路变更前后的光学构件OC1的位移方式。在实施方式1中,通过将光学构件OC1配置在激光束LB1的光路上的第一位置,从而利用大气与光学构件OC1的折射率之差来变更激光束LB1的光路。另一方面,在本变形例中,将光学构件OC1预先配置在激光束LB1的光路上的第一位置,使激光束LB1向第一芯体41入射。在光路变更时,通过使光学构件OC1绕激光束LB1的光轴旋转规定的角度,在该情况下为90°,来变更激光束LB1的光路。即,使激光束LB1向第二芯体42入射。

如图6所示,通过使光学构件OC1对于激光束LB1的光路所成的角度变化,从而光学构件OC1内的激光束LB1被折射的方向变化,其结果是,从光学构件OC1射出的激光束LB1的光路被变更。

根据本变形例,与实施方式1同样地,能够使从传输光纤40射出的耦合激光束的光束轮廓简便且再现性良好地变化,能够得到与激光加工内容、加工对象物的形状等相应的光束轮廓。由此,能够进行所希望的品质的激光加工。另外,能够减小使光学构件OC1移动的空间,因此,能够使光束耦合器12小型化,实现激光振荡器10的省空间化。需要说明的是,在本变形例中,将光学构件OC1的旋转角度设成了90°,但也可以为其他角度。

(实施方式2)

图7示出本实施方式的光束耦合器12A的内部结构的示意图,图8示出光路变更时的激光束的光束轮廓的示意图。需要说明的是,在本实施方式中,针对与实施方式1同样的部位,标注相同的标记并省略详细的说明。

本变形例所示的结构与实施方式1所示的结构的不同在于光学构件的配置个数及配置位置。如实施方式1所示,在对于耦合前的激光束LB1~LB4分别配置光学构件OC1~OC4的情况下,实际生成的耦合激光束的光束轮廓为5种。与此相对,对于激光束LB1~LB4的光路的各光学构件OC1~OC4的配置模式为16种,光学构件OC1~OC4的移动控制变得冗余。另外,在通过控制部50对光学构件OC1~OC4的动作进行控制时,成为必要以上的复杂控制。

对此,在本实施方式中,着眼于在将多个激光束LB1~LB4最终耦合之前存在几个激光束的光轴接近且成为平行的状态。即,通过对于成为这样的状态的多个激光束的光路而配置一个光学构件,从而减少了光学构件的配置个数。由此,能够简化光学构件的动作控制。

例如,如图7所示,被反射镜M2反射的激光束LB1的光轴与激光束LB2的光轴接近,并且,两方的激光束LB1、LB2平行地向激光束射出部LO入射。光学构件OC5对于激光束LB2及被反射镜M2反射后的激光束LB1的光路而共同配置。另外,在反射镜M3与反射镜M5之间行进的激光束LB3的光轴与在反射镜M4与反射镜M5之间行进的激光束LB4的光轴接近,并且,两方的激光束LB3、LB4平行地向反射镜M5入射。光学构件OC6对于反射镜M3、M4与反射镜M5之间的激光束LB3、LB4的光路而共同配置。

如以上说明的那样,多个激光束LB1~LB4中的至少两个在光束耦合器12A内被光轴调整为,在向聚光透镜单元20入射之前光轴接近且成为平行,对于多个激光束LB1~LB4中的被光轴调整后的光路而设置有一个光学构件。通过这种方式,如图8所示,能够减少各光学构件的配置模式,并且与实施方式1所示的结构同样地能够生成5种耦合激光束的光束轮廓。需要说明的是,光学构件的配置模式不限于上述,也能够采用其他模式。例如,考虑在激光束入射部LI1与反射镜M1之间及反射镜M5与激光束射出部LO之间分别各配置一个光学构件的模式,对此未图示。在该情况下,虽然实际生成的耦合激光束的光束轮廓减少为4种,但能够使对于激光束LB1~LB4的光路的各光学构件的配置模式降低为4种,能够简化光学构件的动作控制。

(其他实施方式)

变形例所示的光学构件OC1的位移方式能够应用于实施方式1所示的光学构件OC2~OC4和实施方式2所示的光学构件OC5、OC6,在该情况下,也起到与实施方式2相同的效果。另外,不限于此,也能够将上述的各实施方式中说明的各构成要素组合而形成新的实施方式。

需要说明的是,也可以对光学构件OC1~OC6的表面实施针对激光束的防反射涂层。抑制光学构件OC1~OC6中的不必要的反射,激光束的利用效率提高。由此,能够抑制激光振荡器10的消耗电力的增加。另外,在包括变形例的实施方式1、2中,将光学构件OC1~OC6设成了平行平板状的构件,但也可以使用其他构件,例如棱镜。

另外,也可以在将光学构件OC1~OC6配置在激光束LB1~LB4的光路上的状态下,进行激光振荡器10的光学系统的初始位置调整。在该情况下,通过使光学构件OC1~OC6退避到激光束LB1~LB4的光路外来变更激光束LB1~LB4的光路。因此,聚光透镜单元20在激光束LB1~LB4的光路未被光学构件OC1~OC6变更时,向传输光纤40的第二芯体42引导激光束LB1~LB4。另外,在激光束LB1~LB4的光路被光学构件OC1~OC6变更时,将光路变更后的激光束LB1~LB4中的任一个激光束向第一芯体41引导。即便在这样的结构中,也能够仅向第一芯体41引导耦合激光束,也能够向第一芯体41及第二芯体42引导耦合激光束,或者还能够仅向第二芯体42引导耦合激光束。因此,能够简便地使从传输光纤40射出的耦合激光束的光束轮廓变化。在实施方式1中,第二芯体42的芯径成为第一芯体41的芯径的3倍以上,但在上述的结构中,不限于此。上述的结构是指,即,在激光束LB1~LB4的光路未被光学构件OC1~OC6变更时,向传输光纤40的第二芯体42引导激光束LB1~LB4。另外,在激光束LB1~LB4的光路被光学构件OC1~OC6变更时,将光路变更后的激光束LB1~LB4中的任一个激光束向第一芯体41引导。在这样的结构中,也可以使第二芯体42的芯径小于第一芯体41的芯径的3倍。

另外,也可以单独地控制从多个激光模块11分别输出的激光束LB1~LB4的输出。例如,也可以使从多个激光模块11分别输出的激光束LB1~LB4的输出不同。在将本实施方式所示的激光模块11的激光振荡输出的最大值设为1kW的情况下,耦合激光束的最大输出成为4kW。通过单独地控制各个激光模块11的激光振荡输出,虽然耦合激光束的最大输出成为4kW以下,但能够大幅增加所得到的光束轮廓的模式。由此,能够细致地选择所希望的激光加工中的最佳的光束轮廓,能够提高加工品质。

产业上的可利用性

本公开的激光振荡器及激光振荡方法能够使输出的耦合激光束的光束轮廓简便且再现性良好地变化,因此,在应用于焊接、切断加工等所使用的激光加工装置的方面是有用的。

附图标记说明:

10 激光振荡器;

11 激光模块;

12 光束耦合器;

12A 光束耦合器;

20 聚光透镜单元(聚光单元);

21 聚光透镜;

30 激光束射出头;

40 传输光纤;

41 第一芯体;

42 第二芯体;

43 包层;

50 控制部;

60 电源;

70 壳体;

100 激光加工装置;

LB1 激光束;

LB2 激光束;

LB3 激光束;

LB4 激光束;

LI1 激光束入射部;

LI2 激光束入射部;

LI3 激光束入射部;

LI4 激光束入射部;

LO 激光束射出部;

M1 反射镜;

M2 反射镜;

M3 反射镜;

M4 反射镜;

M5 反射镜;

OC1 光学构件(光路变更机构);

OC2 光学构件(光路变更机构);

OC3 光学构件(光路变更机构);

OC4 光学构件(光路变更机构);

OC5 光学构件(光路变更机构);

OC6 光学构件(光路变更机构)。

24页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:助焊剂和焊膏

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!