通过使用非均相催化剂进行氧化酯化来生产甲基丙烯酸甲酯的方法

文档序号:1342962 发布日期:2020-07-17 浏览:27次 >En<

阅读说明:本技术 通过使用非均相催化剂进行氧化酯化来生产甲基丙烯酸甲酯的方法 (Method for producing methyl methacrylate by oxidative esterification using heterogeneous catalysts ) 是由 D·A·克拉普特切特夫 K·W·林巴贺 D·A·希克曼 J·赫伦 K·W·奥尔森 D·W· 于 2018-06-25 设计创作,主要内容包括:一种从甲基丙烯醛和甲醇制备甲基丙烯酸甲酯的方法。所述方法包含使包含甲基丙烯醛、甲醇、氧气和碱的混合物与包含载体和贵金属的非均相催化剂的催化剂床在具有至少四个区的管式反应器中接触,其中包含催化剂床的反应区与不包含催化剂床的混合区交替。(A process for preparing methyl methacrylate from methacrolein and methanol. The process comprises contacting a mixture comprising methacrolein, methanol, oxygen, and a base with a catalyst bed comprising a heterogeneous catalyst of a support and a noble metal in a tubular reactor having at least four zones, wherein reaction zones comprising the catalyst bed alternate with mixing zones not comprising the catalyst bed.)

通过使用非均相催化剂进行氧化酯化来生产甲基丙烯酸甲酯 的方法

背景技术

本发明涉及一种使用非均相催化剂从甲基丙烯醛和甲醇制备甲基丙烯酸甲酯的方法。

甲基丙烯酸甲酯是通过氧化酯化反应生产的,其中已知反应混合物的pH降低是有害的。现有技术报道了进行向反应器中添加碱以提高pH,以延长催化剂寿命。此问题的解决方案是在单独的容器中将碱混合到一部分反应混合物或反应物中,参见例如美国公开案第2016/0251301号。然而,需要能够提供改进的选择性的更有效的方法。

发明内容

本发明涉及一种从甲基丙烯醛和甲醇制备甲基丙烯酸甲酯的方法,所述方法包含使包含甲基丙烯醛、甲醇、氧气和碱的混合物与包含载体和贵金属的非均相催化剂的催化剂床在包含至少四个区的管式反应器中接触,其中包含催化剂床的反应区与不包含催化剂床的混合区交替。

具体实施方式

除非另外指示,否则所有百分比组成都是重量百分比(wt%),并且所有温度都是以℃为单位。除非另外指示,否则平均值是算术平均值。贵金属是金、铂、铱、锇、银、钯、铑和钌中的任一种。催化剂中可存在超过一种贵金属,在这种情况下,限制适用于所有贵金属的总量。“催化剂中心”是催化剂粒子的质心,即在所有坐标方向上所有点的平均位置。直径是穿过催化剂中心的任何线性尺寸,且平均直径是所有可能直径的算术平均值。纵横比是最长与最短直径的比。“区”是管式反应器(即,具有基本上圆形的截面的反应器)的长度的一部分,其中反应混合物沿垂直于截面的反应器长度(中心轴)流动。区的长度为其沿反应器中心轴的尺寸。管式反应器作为连续反应器操作。

优选地,第一区为混合区,向其中馈入新鲜反应物。优选地,也将碱与反应物一起或分开馈入至第一混合区。在本发明的一个优选实施例中,将碱、氧气或两者馈入至至少一个后续混合区以及第一混合区。优选地,将一部分反应混合物从后续混合区再循环至第一混合区。优选地,反应器具有至少四个,优选地至少三个,优选地至少两个;优选地不超过十个,优选地不超过五个混合区。优选地,反应区的平均长度与混合区的平均长度的比为1000:1至1:5,优选地500:1至1:2,优选地100:1至1:1。优选地,所有区的平均长度与反应器直径的比为1000:1至1:10,优选地500:1至1:5,优选地100:1至1:2。区的长度不必相同。优选地,反应器为基本上竖直的,其中反应混合物和气体向上流动。

优选地,反应器包含至少一个冷却区,其中从穿过所述区的反应混合物去除热量。混合区也可以是冷却区。优选地,通过使反应混合物与热交换器接触完成冷却,所述热交换器可包含可包括盘管、散热片或其它典型的热交换表面。

优选的碱包括碱金属氢氧化物和C1-C4醇盐,优选氢氧化钠和氢氧化钾以及甲醇钠或甲醇钾或乙醇钠或乙醇钾,优选氢氧化钠或甲醇钠。优选地,以溶液形式,优选在甲醇、乙醇或水;优选甲醇或水中添加碱。优选地,将醇盐加入甲醇或乙醇中。优选地,溶液中碱的浓度为50至1重量%,优选地45至2重量%,优选地40至5重量%。

优选地,混合区中的反应混合物使用静态混合装置、机械搅拌或喷射混合来混合。优选地,使用一或多个叶轮来完成机械搅拌。优选地,叶轮的尖端速度为0.1至10m/s;优选地1至5m/s。优选地,混合区含有用于冷却或加热目的的热交换装置。

优选地,液体通过催化剂床的表观速度为1至100mm/s;优选地至少2mm/s,优选地至少3mm/s,优选地至少5mm/s;优选地不超过30mm/s,优选地不超过25mm/s,优选地不超过20mm/s。优选地,每个反应器直径,混合区具有至少一个叶轮。优选地,叶轮的线性尖端速度为0.1至10m/s;优选地至少0.2m/s,优选地至少0.5m/s,优选地至少1m/s,优选地至少2m/s;优选地不大于8m/s,优选地不大于6m/s。优选地,比能耗ε为0至5W/kg;优选地至少0.5W/kg,优选地至少1.0W/kg;优选地不超过4W/kg,优选地不超过3.5W/kg。优选地,反应器的H/T为至少1.2,优选地至少1.3,优选地至少1.4;优选地不超过5,优选地不超过4,优选地不超过3。

优选地,反应器出口处的氧浓度为0.5至7.5mol%;优选地至少1mol%;优选地不超过6mol%。

优选地,载体为氧化物材料粒子;优选地γ-、δ-或θ-氧化铝、二氧化硅、氧化镁、二氧化钛、氧化锆、氧化铪、氧化钒、氧化铌、氧化钽、二氧化铈、氧化钇、氧化镧或其组合。优选地,在包含贵金属的催化剂的部分中,载体的表面积为大于10m2/g,优选地大于30m2/g,优选地大于50m2/g,优选地大于100m2/g,优选地大于120m2/g。在几乎不包含或不包含贵金属的催化剂的部分中,载体的表面积可为小于50m2/g,优选地小于20m2/g。

优选地,催化剂粒子的纵横比为不超过10:1,优选地不超过5:1,优选地不超过3:1,优选地不超过2:1,优选地不超过1.5:1,优选地不超过1.1:1。催化剂粒子的优选形状包括球形、圆柱形、矩形固体、环形、多叶形(例如苜蓿叶形横截面)、具有多个孔的形状和“马车车轮”;优选为球形。也可以使用不规则形状。

优选地,至少90重量%的贵金属在催化剂体积(即,平均催化剂粒子的体积)的外部70%、优选地催化剂体积的外部60%、优选地外部50%、优选地外部40%、优选地外部35%、优选地外部30%、优选地外部25%中。优选地,对于沿着垂直于外表面的线测量的,从其内表面到其外表面(粒子的表面)具有恒定距离的体积计算任何粒子形状的外部体积。例如,对于球形粒子,体积的外部x%是球形外壳,其外表面是粒子的表面,且其体积为整个球体体积的x%。优选地,至少95重量%、优选地至少97重量%、优选地至少99重量%的贵金属在催化剂的外部体积中。优选地,至少90重量%(优选地至少95重量%、优选地至少97重量%、优选地至少99重量%)的贵金属在距表面不超过催化剂直径的30%、优选地不超过25%、优选地不超过20%、优选地不超过15%、优选地不超过10%、优选地不超过8%的距离内。沿着垂直于表面的线测量距表面的距离。

优选地,贵金属为金或钯,优选为金。

优选地,催化剂粒子的平均直径为至少200微米,优选地至少300微米,优选地至少400微米,优选地至少500微米,优选地至少600微米,优选地至少700微米,优选地至少800微米;优选地不超过30mm,优选地不超过20mm,优选地不超过10mm,优选地不超过5mm,优选地不超过4mm,优选地不超过3mm。载体的平均直径和最终催化剂粒子的平均直径没有显著差异。

优选地,通过在载体的存在下从金属盐的水溶液中沉淀贵金属产生催化剂。优选的贵金属盐包括四氯金酸、金硫代硫酸钠、金硫代苹果酸钠、氢氧化金、硝酸钯、氯化钯和乙酸钯。在一个优选实施例中,通过初始润湿技术产生催化剂,其中将合适的贵金属前体盐的水溶液添加至多孔无机氧化物,使得孔被溶液填充且接着通过干燥去除水。接着通过煅烧、还原或所属领域的技术人员已知的其它处理将所得材料转化为最终催化剂,以将贵金属盐分解为金属或金属氧化物。优选地,包含至少一个羟基或羧酸取代基的C2-C18硫醇存在于溶液中。优选地,包含至少一个羟基或羧酸取代基的C2-C18硫醇具有2至12个,优选地2至8个,优选地3至6个碳原子。优选地,硫醇化合物包含不超过4个,优选地不超过3个,优选地不超过2个总羟基和羧酸基。优选地,硫醇化合物具有不超过2个,优选地不超过1个硫醇基。如果硫醇化合物包含羧酸取代基,则其可以酸形式、共轭碱形式或其混合物存在。硫醇组分也可以其硫醇(酸)形式或其共轭碱(硫醇盐)形式存在。尤其优选的硫醇化合物包括硫代苹果酸、3-巯基丙酸、硫代乙醇酸、2-巯基乙醇和1-硫代甘油,包括其共轭碱。

在本发明的一个实施例中,通过沉积沉淀产生催化剂,其中将多孔无机氧化物浸入含有合适的贵金属前体盐的水溶液中,且接着通过调节溶液的pH而使所述盐与无机氧化物的表面相互作用。接着回收(例如通过过滤)所得处理的固体且接着通过煅烧、还原或所属领域的技术人员已知的其它预处理转化为最终催化剂,以将贵金属盐分解为金属或金属氧化物。

本发明适用于生产甲基丙烯酸甲酯(MMA)的方法,所述方法包含在含有催化剂床的氧化酯化反应器(OER)中用甲醇处理甲基丙烯醛。催化剂床包含催化剂粒子。OER进一步含有包含甲基丙烯醛、甲醇和MMA的液相和包含氧气的气相。液相可进一步包含副产物,例如甲基丙烯醛二甲基乙缩醛(MDA)和异丁酸甲酯(MIB)。优选地,液相的温度为40至120℃;优选地至少50℃,优选地至少60℃;优选地不超过110℃,优选地不超过100℃。优选地,催化剂床的压力为0至2000psig(101kPa至14MPa);优选地不超过2000kPa,优选地不超过1500kPa。优选地,催化剂床中的pH为4至10;优选地至少5,优选地至少5.5;优选地不大于9,优选地不大于8,优选地不大于7.5。优选地,催化剂床在管式连续反应器中。

OER通常产生MMA,连同甲基丙烯酸和未反应的甲醇。优选地,以1:10至100:1,优选地1:2至20:1,优选地1:1至10:1的甲醇:甲基丙烯醛摩尔比将甲醇和甲基丙烯醛馈入至反应器中。优选地,催化剂床进一步包含惰性材料。优选的惰性材料包括例如氧化铝、粘土、玻璃、碳化硅和石英。优选地,位于催化剂床之前和/或之后的惰性材料的平均直径等于或大于催化剂的平均直径,优选为1至30mm;优选地至少2mm;优选地不超过30mm,优选地不超过10mm,优选地不超过7mm。优选地,将反应产物馈入至甲醇回收蒸馏塔,其提供富含甲醇和甲基丙烯醛的塔顶物料流;优选地,此物料流被再循环返回OER。来自甲醇回收蒸馏塔的塔底物料流包含MMA、MDA、甲基丙烯酸、盐和水。在本发明的一个实施例中,MDA在包含MMA、MDA、甲基丙烯酸、盐和水的介质中水解。MDA可在来自甲醇回收蒸馏塔的塔底物料流中水解;所述物料流包含MMA、MDA、甲基丙烯酸、盐和水。在另一实施例中,MDA在从甲醇回收塔底物料流分离的有机相中水解。可能有必要向有机相中加水,以确保有足够的水用于MDA水解;这些量可容易地由有机相的组成确定。MDA水解反应器的产物是相分离的,且有机相穿过一个或多个蒸馏塔以产生MMA产物以及轻质和/或重质副产物。在另一实施例中,水解可在蒸馏塔本身内进行。

优选地,反应器出口处的氧浓度为至少1mol%,优选地至少2mol%,优选地至少3mol%;优选地不超过7mol%,优选地不超过6.5mol%,优选地不超过6mol%。

在本发明的一个优选实施例中,反应器出口处的pH为3至7.5;优选地至少3.5,优选地至少4,优选地至少4.5,优选地至少4.8,优选地至少5;优选地不超过7.3,优选地不超过7.0,优选地不超过6.7,优选地不超过6.4。优选地,不将碱添加至反应器或进入反应器的液流中。优选地,反应器不连接到引入碱的外部混合罐。反应器中的pH可能会更高,可能在入口附近高于7,且在出口附近降至低于6。

用于氧化酯化的固定床反应器的一个优选实施例为滴流床反应器,其含有催化剂的固定床且使气体和液体进料均沿向下的方向穿过反应器。在滴流中,气相是连续的液相。因此,在固定床上方的反应器顶部的区域将充满氮气、二氧化碳、氧气和挥发性液体组分在其各自的蒸气压下的气相混合物。在典型的操作温度和压力(50-90℃和60-300psig(510-2200kPa)下,如果气体进料是空气,则此蒸气混合物在易燃包壳内。因此,仅需要点火源即可启动爆燃,这可能导致主安全壳的损失且损害附近的物理基础设施和人员。为了解决工艺安全性考虑,操作滴流床反应器同时避免易燃的顶部空间气氛的方法是用含足够低的氧气摩尔分数的气体进料进行操作,以确保蒸气顶部空间中的氧浓度低于极限氧浓度(LOC)。

有关的燃料混合物、温度和压力需要了解LOC。由于LOC随着温度和压力的升高而降低,且考虑到甲醇给出的LOC低于其它两种重要燃料(甲基丙烯醛和甲基丙烯酸甲酯),因此保守的设计选择一进料氧气与惰性气体比,其确保具有低于在最高预期操作温度和压力下的LOC的组成。例如,对于在最高100℃和275psig(1990kPa)下操作的反应器,氮气和/或二氧化碳中的进料氧浓度不应超过7.4mol%。在反应器中获得较低氧浓度的一种方法为再循环反应器废气和添加新鲜空气至废气以使氧含量达到所需量。

实例

实例#1:多区反应器

进行了一系列操作,其中将20重量%甲基丙烯醛、200ppm抑制剂和其余的甲醇混合且馈入至由3/8"(9.5mm)不锈钢管式反应器组成的催化区,所述反应器含有短的氮化硅前段和10g催化剂,接着为由具有斜叶涡轮的150ml液体体积搅拌容器组成的混合区,接着为由3/8"不锈钢管式反应器组成的第二催化区,所述反应器含有短的碳化硅前段和10g催化剂。催化剂由Norpro 1mm直径高表面积氧化铝球形载体上的1.5wt%Au组成。将空气馈入至足以在出口气体中具有大致5%氧气的第一催化剂区域,且将在氮气中含有8%氧气的气体馈入至足以具有4%至5%氧气的出口气体的第二区域。反应器在60℃和160psig(1200kPa)下操作。催化剂区域1的出口处的pH为大致6.3。将反应器的产物送至液体-蒸气分离器,且将蒸气送至具有液体回流的冷凝器。结果描述于下表中。在一些情况下将由甲醇钠/甲醇组成的碱添加至混合区。在一些情况下将混合区在600RPM下搅拌,且在其它情况下不搅拌。MMA的产物分布是源自甲基丙烯醛反应物的产物中的MMA%。迈克尔加合物的产物分布是源自甲基丙烯醛反应物的产物中的加合物%。时空产率是以mol MMA/Kg催化剂小时计。

比较实例#2:再循环反应器

进行了一个操作,其中将20重量%甲基丙烯醛、200ppm抑制剂和其余的甲醇馈入至3/8"不锈钢管式反应器,所述反应器含有短的碳化硅前段,接着为10g催化剂。催化剂由Norpro 1mm直径高表面积氧化铝球形载体上的1.5wt%Au组成。将在氮气中含有8mol%氧气的气体以300sccm馈入至反应器,且排出气体中的氧浓度为4mol%至5mol%。反应器在60℃和160psig下操作。将反应器的产物送至液体-蒸气分离器,且将蒸气送至具有液体回流的冷凝器。将来自此分离器的一部分产物流再循环至反应器入口,且与进入反应器的进料合并。结果描述于下表中。产物分布是源自甲基丙烯醛反应物的产物中的MMA%。将由甲醇中的0.15重量%甲醇钠组成的碱添加至液体-蒸气分离器中,所述分离器含有用于混合目的的斜叶叶轮。

操作 进料 再循环 流出物 产物分布 产物分布 转化率 STY
(g/hr) (g/hr) (g/hr) (pH) (MMA%) (加合物%) (%) (m/Kghr)
4 20 180 20 6.8 93.7 1.1 60 2.7

结论

在多区反应器中获得的数据表明,对于向反应器中添加碱,混合区中的混合是减少迈克尔加合物形成和增加针对MMA的选择性(在此处一般通过产物分布来测量)的重要参数。相对于在600RPM下的更典型和适当的混合,当在混合区中利用不当混合时,迈克尔加合物形成大致加倍。

即使在添加非常稀的碱的情况下,将多区反应器与具有90%再循环的再循环反应器进行比较也表明多区性能与具有优良产物分布的再循环反应器相比为类似或更优的(关于MMA(选择性)、转化率和时空产率)。

7页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:连续制备1,2-丙二胺(1,2-PDA)和二甲基二亚乙基三胺(DMDETA)的方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!