一种用于荧光标记的环丁烯衍生物

文档序号:644592 发布日期:2021-05-14 浏览:34次 >En<

阅读说明:本技术 一种用于荧光标记的环丁烯衍生物 (Cyclobutene derivative for fluorescent labeling ) 是由 吴昊星 孙洪宝 李�杰 于 2020-12-30 设计创作,主要内容包括:本发明提供了一种用于荧光标记的环丁烯衍生物,以及由该环丁烯衍生物制得的荧光标记试剂盒。该环丁烯衍生物的结构如式I所示。实验表明,本发明提供的环丁烯衍生物具有优异的稳定性,同时在与四嗪类化合物发生生物正交反应时具有快速的反应速度,因此,本发明的环丁烯衍生物在生物正交反应激活前在复杂的生物体系中能够保持良好的稳定性,而且在生物正交反应激活后,能够与带荧光基团的目标蛋白上的四嗪结构快速发生生物正交反应,开启荧光,实现对该目标蛋白的荧光标记。本发明提供的环丁烯衍生物能够用来制备荧光标记试剂盒,发挥荧光标记的作用,在活体追踪、荧光成像等领域具有广阔的应用前景。(The invention provides a cyclobutene derivative for fluorescent labeling and a fluorescent labeling kit prepared from the cyclobutene derivative. The cyclobutene derivative has a structure shown in a formula I. Experiments show that the cyclobutene derivative provided by the invention has excellent stability and rapid reaction speed in a bio-orthogonal reaction with tetrazine compounds, so that the cyclobutene derivative can keep good stability in a complex biological system before the bio-orthogonal reaction is activated, and can rapidly generate the bio-orthogonal reaction with a tetrazine structure on a target protein with a fluorescent group after the bio-orthogonal reaction is activated, so as to start fluorescence and realize the fluorescent labeling of the target protein. The cyclobutene derivative provided by the invention can be used for preparing a fluorescence labeling kit, plays a role of fluorescence labeling, and has wide application prospects in the fields of living body tracking, fluorescence imaging and the like.)

一种用于荧光标记的环丁烯衍生物

技术领域

本发明属于生物标记领域,具体涉及一种用于荧光标记的环丁烯衍生物。

背景技术

发展对细胞内的蛋白分子实时可视化的标记方法对于理解生命的分子基础有着重要的意义。对蛋白的标记目前主要使用荧光蛋白、自标记蛋白(比如SNAP标签)、连接酶(比如硫辛酸连接酶和自标记标签(比如四半胱氨酸)等方法。虽然这些方法可以实现快速标记,但是要在所关注的蛋白中引入额外的序列,可能会干扰蛋白的结构和功能,从而对生物学的研究造成很大的影响;此外,将这些探针分子插入到蛋白的任意位置是很有挑战性的。

生物正交反应(Bioorthogonal reaction)是一类在生理条件下能够特异性与目标分子发生的高速、高效的化学反应,被广泛应用于生物分子的定点标记。这类反应可以在生物体内的生理条件下发生,不会与体内同时发生的其他生化反应互相干扰,也不会对生物体和目标生物分子产生损伤。能够发生生物正交反应的这两个反应基团相互之间具有高度的反应活性,同时在生理环境下对周围其它的反应基团是惰性的。随着研究中对时间分辨率的更高要求,基于狄尔斯-桑尔德反应(Diels-Alder反应)机制的四嗪类化合物与亲双烯体的生物正交反应凭借突出的反应速率、正交性、生物相容性,逐渐取代了金属催化的正交反应。因此,借助这类生物正交反应与有机小分子荧光染料,可以实现实时对活细胞内生物大分子的精准标记、成像等。

在目前已知的生物正交反应中,反式环辛烯(TCO)与四嗪的逆电子需求的狄尔斯-阿尔德反应具有极高的反应速率。这种类型的反应最初由Fox教授于2008年首次报道,自此,该类生物正交反应脱颖而出,已成为目前最流行和最有效的生物正交反应。但是,TCO及其相关类似物由于自身高张力原因,很容易在复杂的生物体系中发生双键顺反异构而失活,使得该类型反应不能在拥有较高反应速率的同时保持良好的生物兼容性。而理想的生物正交反应除了要有可控性和较快的反应速率,还需要良好的生物兼容性,以便在生物正交反应激活前能够在复杂的生物体系中保持良好的稳定性。

而且,目前报道的与四嗪类化合物发生Diels-Alder反应的亲双烯体的制备方法成本较高,需要使用重金属催化剂,不合适工业化生产。

因此,开发出一种制备成本低、操作简单的方法,制得同时具有优异的稳定性和快速反应速度的新型亲双烯体,并将其用于与四嗪类化合物发生生物正交反应,在生物标记等领域具有非常重要的意义。

发明内容

本发明的目的在于提供一种用于荧光标记的环丁烯衍生物,以及由该环丁烯衍生物制得的荧光标记试剂盒。

本发明提供了一种式I所示环丁烯衍生物:

其中,X为O或S;

n选自0~3的整数;

R1各自独立的选自氢、C1~6烷基、C1~6烷氧基、COOR4、NHR5 R4选自H或C1~6烷基,R5选自氢、氨基保护基团或C1~6烷基,R6选自氢、氨基保护基团或C1~6烷基,R7选自H或C1~6烷基,L1、L2、L3各自独立的选自无、C1~4亚烷基,Y为卤素。

进一步地,它的结构如式II-1或式II-2所示:

其中,R1选自氢、C1~4烷基、C1~4烷氧基、氨基、羧基、

进一步地,它的结构如式III-1或式III-2所示:

其中,R1选自氢、C1~3烷基、C1~3烷氧基、氨基、羧基、

进一步地,它的结构为以下化合物之一:

本发明还提供了一种用于荧光标记的试剂盒,其特征在于:它包括上述的环丁烯衍生物。

本发明还提供了一种用于荧光标记的试剂盒,它包括以下组分:

A组分:上述的环丁烯衍生物,

B组分:带荧光基团的四嗪类化合物。

进一步地,A组分为化合物11;B组分为H-Tz-Cy5;

其中,H-Tz-Cy5的结构如下所示:

本发明中,“Ts”为对甲苯磺酰基。

“室温”指25±2℃。

“反应过夜”指反应12±2小时。

“四嗪类化合物”是指一类含有四个氮原子的六元杂环化合物,根据环上氮原子分布形式不同,分为以下3种结构:

狄尔斯-阿尔德反应(Diels-Alder反应),又称双烯合成反应,是一种由共轭双烯与烯烃或炔烃反应生成六元环的反应。Diels-Alder反应中提供不饱和键的反应物即为亲双烯体(又称亲二烯体)。

实验结果表明,本发明提供的环丁烯衍生物具有优异的稳定性,同时在与四嗪类化合物发生生物正交反应时具有快速的反应速度,因此,本发明的环丁烯衍生物在生物正交反应激活前在复杂的生物体系中能够保持良好的稳定性,而且在生物正交反应激活后,能够与四嗪类化合物快速发生生物正交反应。

本发明环丁烯衍生物的制备方法不使用贵金属催化剂,条件温和,操作简单,适合工业化生产。

对于由本发明环丁烯衍生物组成的试剂盒:针对生物体内(或细胞内)已经连接有带荧光基团的四嗪结构的目标蛋白,由于四嗪结构能够淬灭荧光,所以该目标蛋白不发光;但是,对生物体(或细胞)施用由本发明环丁烯衍生物组成的试剂盒后,试剂盒中的环丁烯衍生物与该目标蛋白发生Diels-Alder反应,生成哒嗪,荧光开启,实现对该目标蛋白的荧光标记。

对于由本发明环丁烯衍生物和带荧光基团的四嗪类化合物组成的试剂盒:该试剂盒中的环丁烯衍生物先与生物体内(或细胞内)的目标蛋白发生反应,修饰到该目标蛋白上;然后修饰了环丁烯衍生物的蛋白与试剂盒中带荧光基团的四嗪类化合物之间发生Diels-Alder反应,生成哒嗪,荧光开启,实现对该目标蛋白的荧光标记。

本申请的环丁烯衍生物可以直接与目标蛋白反应,也可以作为中间体,在修饰上能够与目标蛋白反应的活性基团后,再与目标蛋白反应。

综上,本发明提供的环丁烯衍生物能够用来制备荧光标记试剂盒,发挥荧光标记的作用,在活体追踪、荧光成像等领域具有广阔的应用前景。

显然,根据本发明的上述内容,按照本领域的普通技术知识和惯用手段,在不脱离本发明上述基本技术思想前提下,还可以做出其它多种形式的修改、替换或变更。

以下通过实施例形式的

具体实施方式

,对本发明的上述内容再作进一步的详细说明。但不应将此理解为本发明上述主题的范围仅限于以下的实例。凡基于本发明上述内容所实现的技术均属于本发明的范围。

附图说明

图1为本发明环丁烯衍生物的稳定性测定结果。

图2为本发明环丁烯衍生物与四嗪类化合物反应的路线示意图(a),反应动力学常数测试结果(b)。

图3为本发明环丁烯衍生物的蛋白标记体外荧光成像测定结果。

具体实施方式

本发明所用原料与设备均为已知产品,通过购买市售产品所得。

实施例1、合成化合物1

按照以下合成路线,合成化合物1:

在氩气保护下将1,3-环丁醇(15mg,0.17mmol,1eq)和三乙胺(47ul,0.34mmol,2eq)溶于0.3ml二氯甲烷中,得到反应液,反应液冷却到0℃;将对甲苯磺酰氯(22mg,0.12mmol,0.7eq)溶于0.5ml二氯甲烷中,滴加到搅拌条件下的反应液中进行反应。在室温下反应9h后,薄层色谱(TLC)监测反应完全,将反应后的体系减压旋干,剩余物通过硅胶柱(PE:EA体积比=2:1)分离纯化,干燥,得到浅黄色油状化合物1,收率为38%。

实施例2、合成化合物3a~3d

按照以下合成路线,合成化合物3a~3d:

(1)合成化合物3a

在氩气条件下,将化合物1(1eq)和化合物2a(270mg,1.2eq)溶于5ml叔丁醇中,得到反应液,然后将叔丁醇钾(1.3eq)在搅拌条件下加入反应液,于80℃下反应7小时,通过TLC监测反应完全。用水淬灭反应,并将反应体系用乙酸乙酯萃取3次,合并有机相用饱和食盐水洗2次,无水硫酸钠干燥,液体减压旋干,剩余物用硅胶柱(PE:EA体积比=3:1)分离纯化,干燥,得到化合物3a,收率86%。.1H NMR(400MHz,CDCl3)δ7.16(d,J=8.1Hz,2H),7.10(d,J=8.0Hz,2H),4.59(p,J=6.4Hz,1H),3.82(tt,J=8.6,4.3Hz,1H),2.46–2.34(m,4H),2.32(s,3H),1.99(s,1H).13C NMR(101MHz,CDCl3)δ136.20,132.91,129.82,129.72,66.25,39.63,33.85,21.13.

(2)合成化合物3b

按照上述合成化合物3a的方法合成化合物3b,区别仅在于将原料270mg化合物2a替换为121mg化合物2b,得到化合物3b,收率77%。1H NMR(400MHz,CDCl3)δ7.31–7.26(m,2H),6.87–6.81(m,2H),4.55(p,J=6.5Hz,1H),3.79(s,3H),3.77–3.69(m,1H),2.34(t,J=6.4Hz,4H),1.90(s,1H).13C NMR(101MHz,CDCl3)δ159.11,133.20,126.49,114.71,66.22,55.48,39.59,35.26.

(3)合成化合物3c

按照上述合成化合物3a的方法合成化合物3c,区别仅在于将原料270mg化合物2a替换为420mg化合物2c,得到化合物3c,收率48%。1H NMR(400MHz,CDCl3)δ7.91(d,J=8.3Hz,2H),7.15(d,J=8.3Hz,2H),4.75–4.57(m,1H),3.95(ddd,J=12.2,8.3,3.7Hz,1H),3.89(s,3H),2.60–2.48(m,2H),2.40(ddd,J=10.8,6.8,3.4Hz,2H),2.13(s,1H).13C NMR(101MHz,CDCl3)δ167.00,144.54,130.11,126.70,126.09,66.11,52.21,52.19,39.46,31.93.

(3)合成化合物3d

按照上述合成化合物3a的方法合成化合物3d,区别仅在于将原料270mg化合物2a替换为370mg化合物2d,得到化合物3d,收率32%。1H NMR(400MHz,CDCl3)δ7.29(d,J=8.4Hz,2H),7.22(d,J=8.6Hz,2H),6.48(s,1H),4.63–4.49(m,1H),3.82–3.72(m,1H),2.36(dd,J=12.8,6.4Hz,4H),1.86(s,1H),1.51(s,9H).13C NMR(101MHz,CDCl3)δ152.79,137.28,131.46,129.78,119.23,80.89,66.24,39.58,34.52,28.46.

实施例3、合成化合物4a~4d

按照以下合成路线,合成化合物4a~4d:

(1)合成化合物4a

在氩气条件下,将化合物3a(186mg,1eq),三乙胺(3eq)和DMAP(0.2eq)溶于5ml二氯甲烷中,得到反应液,将反应液冷却到0℃。将甲苯磺酰氯(2eq)溶于5ml二氯甲烷中,滴加到搅拌条件下的反应液中进行反应。在常温下反应过夜,通过TLC监测反应完全,用水淬灭反应。并将反应体系用乙酸乙酯萃取3次,合并有机相,用饱和食盐水洗2次,无水硫酸钠干燥,液体减压旋干,剩余物用硅胶柱(PE:EA体积比=2:1)分离纯化,干燥,得到浅黄色油状化合物4a,收率为78%。1H NMR(400MHz,CDCl3)δ7.76(d,J=8.3Hz,2H),7.33(d,J=8.0Hz,2H),7.11(q,J=8.3Hz,4H),5.00(p,J=6.6Hz,1H),3.84–3.73(m,1H),2.70–2.56(m,2H),2.45(s,3H),2.36–2.26(m,5H).13C NMR(101MHz,CDCl3)δ145.02,136.90,133.77,131.72,130.42,130.02,129.94,127.97,73.93,37.17,34.56,21.79,21.15.

(2)合成化合物4b

按照上述合成化合物4a的方法合成化合物4b,区别仅在于将原料186mg化合物3a替换为50mg化合物3b,得到化合物4b,收率55%。1H NMR(400MHz,CDCl3)δ7.75(d,J=8.3Hz,2H),7.33(d,J=8.1Hz,2H),7.25(d,J=8.9Hz,2H),6.83(d,J=8.8Hz,2H),4.94(p,J=6.6Hz,1H),3.79(s,3H),3.70(qd,J=8.0,3.8Hz,1H),2.63–2.51(m,2H),2.44(s,3H),2.28(ddd,J=14.4,7.1,3.8Hz,2H).13C NMR(101MHz,CDCl3)δ159.52,145.00,133.93,133.75,130.00,127.95,125.20,114.80,73.95,55.47,37.09,35.84,21.79.

(3)合成化合物4c

按照上述合成化合物4a的方法合成化合物4c,区别仅在于将原料186mg化合物3a替换为199mg化合物3c,得到化合物4c,收率79%。1H NMR(400MHz,CDCl3)δ7.91(d,J=8.6Hz,2H),7.77(d,J=8.3Hz,2H),7.34(d,J=8.0Hz,2H),7.11(d,J=8.5Hz,2H),5.05(p,J=6.7Hz,1H),3.95(ddd,J=12.4,8.5,3.6Hz,1H),3.89(s,3H),2.85–2.69(m,2H),2.45(s,3H),2.37(ddd,J=14.4,7.2,3.5Hz,2H).13C NMR(101MHz,CDCl3)δ166.79,145.18,143.24,133.65,130.22,130.09,127.98,127.27,126.47,73.40,52.25,37.09,32.55,21.82.

(4)合成化合物4d

按照上述合成化合物4a的方法合成化合物4d,区别仅在于将原料186mg化合物3a替换为120mg化合物3d,得到化合物4d,收率74%。1H NMR(400MHz,CDCl3)δ7.75(d,J=8.3Hz,2H),7.31(dd,J=15.9,8.4Hz,4H),7.19(d,J=8.6Hz,2H),6.51(s,1H),5.04–4.89(m,1H),3.74(ddd,J=12.4,8.3,3.8Hz,1H),2.64–2.52(m,2H),2.44(s,3H),2.28(ddd,J=14.4,7.1,3.7Hz,2H),1.51(s,9H).13C NMR(101MHz,CDCl3)δ152.71,145.04,137.87,133.75,132.21,130.04,128.39,127.96,119.20,80.98,73.91,37.07,35.17,28.44,21.80.

实施例4、合成化合物5a~5d

按照以下合成路线,合成化合物5a~5d:

(1)合成化合物5a

叔丁醇钾(2eq)在氩气保护下溶解于干燥的1ml DMSO中,得到反应液。然后将化合物4a(87mg,1eq)溶解于1ml DMSO中,缓慢滴加于反应液中,在室温下反应1h,TLC监测反应完全。随后用水淬灭反应。并将反应体系用乙酸乙酯萃取3次,合并有机相,用饱和食盐水洗2次,用无水硫酸钠干燥,液体减压旋干,剩余物用硅胶柱(PE)分离纯化,干燥,得到浅黄色油状化合物5a,收率86%。1H NMR(400MHz,CDCl3)δ7.25(d,J=8.0Hz,2H),7.09(d,J=7.9Hz,2H),6.10(dd,J=17.4,2.5Hz,2H),4.28(d,J=3.7Hz,1H),3.03(dd,J=13.8,3.9Hz,1H),2.49(d,J=13.8Hz,1H),2.31(s,3H).13C NMR(101MHz,CDCl3)δ138.12,137.48,136.49,132.37,130.71,129.67,46.93,40.13,21.18.

(2)合成化合物5b

按照上述合成化合物5a的方法合成化合物5b,区别仅在于将原料87mg化合物4a替换为47.6mg化合物4b,得到化合物5b,收率89%。1H NMR(400MHz,CDCl3)δ7.35(d,J=8.7Hz,2H),6.84(d,J=8.7Hz,2H),6.07(dd,J=14.4,2.6Hz,2H),4.19(d,J=3.9Hz,1H),3.80(s,3H),2.97(dd,J=13.8,4.0Hz,1H),2.46(d,J=13.8Hz,1H).13C NMR(101MHz,CDCl3)δ159.27,138.33,137.29,134.11,125.62,114.49,55.46,47.93,39.83.

(3)合成化合物5c

按照上述合成化合物5a的方法合成化合物5c,区别仅在于将原料87mg化合物4a替换为20mg化合物4c,得到化合物5c,收率47%。1H NMR(400MHz,DMSO)δ7.85(d,J=8.4Hz,2H),7.34(d,J=8.4Hz,2H),6.25(d,J=24.8Hz,2H),4.57(s,1H),3.19(dd,J=13.9,3.8Hz,1H),2.43(d,J=14.0Hz,1H).13C NMR(101MHz,DMSO)δ167.07,143.30,138.30,137.23,129.84,129.12,126.23,43.88,39.64.

(4)合成化合物5d

将22mg起始原料4d溶于0.7ml二氯甲烷中,在冰浴下滴加0.3ml三氟乙酸,在室温下反应1h。通过TLC监测,反应完全。反应体系在减压条件下旋干,得到粗品化合物4d’。将粗品化合物4d’不纯化直接用于下一步反应。

按照上述合成化合物5a的方法合成化合物5d,区别仅在于将原料化合物4a替换为粗品化合物4d’,得到化合物5d,两步反应总收率46%。1H NMR(400MHz,CDCl3)δ7.25(d,J=9.3Hz,3H),6.61(d,J=8.5Hz,2H),6.05(dd,J=10.9,2.6Hz,2H),4.13(d,J=3.9Hz,1H),3.73(s,2H),2.93(dd,J=13.8,4.0Hz,1H),2.44(d,J=13.7Hz,1H).13C NMR(101MHz,CDCl3)δ146.27,138.53,137.05,134.89,122.28,115.49,48.31,39.67.

实施例5、合成化合物7a、7b

按照以下合成路线,合成化合物7a、7b:

(1)合成化合物7a

将原料3-(苄氧基)环丁基4-甲基苯磺酸酯(1eq)、化合物6a(1.32g,2eq)、碳酸铯(2eq)、10ml DMF加入反应瓶中,溶解反应。在80℃下反应8小时后,通过TLC监测反应完全,加水淬灭反应。并将反应体系用乙酸乙酯萃取3次,合并有机相,用饱和食盐水洗2次,无水硫酸钠干燥,液体减压旋干,剩余物用硅胶柱(PE:EA体积比=10:1)分离纯化,干燥,得到浅黄色油状化合物7a,收率48%。

(2)合成化合物7b

按照上述合成化合物7a的方法合成化合物7b,区别仅在于将原料1.32g化合物6a替换为261mg化合物6b,得到化合物7b,收率70%。

实施例6、合成化合物8a、8b

按照以下合成路线,合成化合物8a、8b:

(1)合成化合物8a

将乙醇用氢气置换5次,然后将化合物7a(469mg)溶解于10ml乙醇中,加入5%的Pd/C(投入量占原料化合物7a质量的20%),得到反应液,在氢气环境中于室温反应过夜。通过TLC监测,反应完全。将反应体系过滤除去催化剂,滤饼用乙酸乙酯洗3次,有机相在减压条件下旋干,得到中间产物。该中间产物不需纯化,直接用于下一步反应。

在氩气条件下,将中间产物(1eq)、三乙胺(3eq)、DMAP(0.2eq)溶解在4ml二氯甲烷中,得到反应液,将反应液冷却到0℃;向反应液中滴加对甲苯磺酰氯(3eq)的二氯甲烷溶液(6ml)。加毕,该反应在室温下反应20h,TLC监控有少量原料剩余,加水淬灭反应。将反应体系用乙酸乙酯萃取3次,合并有机相,用饱和食盐水洗2次,无水硫酸钠干燥,液体减压旋干,剩余物用硅胶柱(PE:EA体积比=5:1)分离纯化,干燥,得到浅黄色油状化合物8a,两步反应总收率为86%。1H NMR(400MHz,CDCl3)δ7.79(d,J=8.2Hz,2H),7.35(d,J=8.3Hz,2H),7.25(t,J=8.0Hz,2H),6.94(t,J=7.4Hz,1H),6.71(d,J=7.9Hz,2H),5.11–5.00(m,1H),4.81(tt,J=7.0,3.7Hz,1H),2.67–2.58(m,2H),2.51(ddd,J=14.4,7.1,3.5Hz,2H),2.45(s,3H).13C NMR(101MHz,CDCl3)δ157.15,145.09,133.72,130.07,129.71,128.03,121.25,114.93,73.23,68.20,37.82,21.80.

(2)合成化合物8b

按照上述合成化合物8a的方法合成化合物8b,区别仅在于将469mg化合物7a替换为160mg化合物7b,得到化合物8b,两步反应总收率70%。

实施例7、合成化合物9a、9b

按照以下合成路线,合成化合物9a、9b:

(1)合成化合物9a

叔丁醇钾(2eq)在氩气保护下溶解于2ml干燥的DMSO中,形成反应液;然后化合物8a(281mg,1eq)溶解于2ml干燥的DMSO中,随后缓慢滴加于反应液中,在室温下反应1h,TLC监测反应完全。随后用水淬灭反应,将反应体系用乙酸乙酯萃取3次,合并有机相,用饱和食盐水洗2次,用无水硫酸钠干燥,液体旋干,剩余物用硅胶柱(洗脱剂为PE)分离纯化,干燥,得到无色油状物化合物9a,收率为57%。1H NMR(400MHz,CDCl3)δ7.28(t,J=9.8Hz,2H),6.95(t,J=7.4Hz,1H),6.89(d,J=7.8Hz,2H),6.31(d,J=33.7Hz,2H),5.10(d,J=3.2Hz,1H),3.00(dd,J=13.4,3.5Hz,1H),2.63(dd,J=13.4,1.0Hz,1H).13C NMR(101MHz,CDCl3)δ158.20,139.31,136.98,129.65,120.97,115.00,74.53,39.74.

(2)合成化合物9b

按照上述合成化合物9a的方法合成化合物9b,区别仅在于将281mg化合物8a替换为97mg的化合物8b,得到化合物9b,收率45%。1H NMR(400MHz,DMSO)δ12.49(s,1H),7.11(d,J=8.4Hz,2H),6.98(d,J=8.3Hz,1H),6.77(d,J=8.5Hz,2H),6.30(d,J=32.6Hz,2H),5.02(d,J=2.8Hz,1H),3.99(td,J=9.7,4.6Hz,1H),2.98–2.84(m,2H),2.71(dd,J=13.6,10.3Hz,1H),2.48–2.35(m,2H),1.28(s,8H).13C NMR(101MHz,DMSO)δ173.68,156.19,155.46,138.94,137.16,130.23,130.14,114.35,78.01,73.80,55.42,40.43,35.65,28.17,27.85.

实施例8、合成化合物10

以本发明环丁烯衍生物5d为原料,按照以下合成路线,合成化合物10:

在氩气保护下,将化合物5d(4mg,0.022mmol,1eq)、4-羧丁基三苯基溴化膦(10mg,0.022mmol,1eq)、EDCI(1-乙基-3-(3-二甲胺丙基)碳二亚胺盐酸盐,10.8mg,0.056mmol,2.5eq)、DMAP(2.8mg,0.022mmol,1eq)放入反应瓶,加入0.5ml二氯甲烷,室温搅拌反应16h.TLC监测反应完全。加水淬灭反应,用乙酸乙酯萃取3次,合并有机相,饱和食盐水洗2次,无水硫酸钠干燥,减压旋干,剩余物用硅胶柱(DCM:MeOH体积比=10:1)分离纯化,干燥,得无色油状化合物10(9mg),收率为66%。1H NMR(400MHz,CDCl3)δ11.13(s,1H),7.90(d,J=8.5Hz,2H),7.79(dd,J=12.6,7.6Hz,6H),7.67(t,J=7.1Hz,3H),7.52(td,J=7.7,3.3Hz,6H),7.28(d,J=8.5Hz,2H),6.08(d,J=9.7Hz,2H),4.24(d,J=3.5Hz,1H),3.85(td,J=13.2,5.7Hz,2H),3.05–2.86(m,3H),2.48(d,J=13.7Hz,1H),1.98(s,2H),1.64(s,2H).13CNMR(101MHz,CDCl3)δ172.02,138.81,138.29,137.34,135.02,134.99,133.75,133.65,132.09,130.54,130.42,128.76,120.39,118.80,117.95,47.44,39.90,34.46,29.82,25.99,20.67.

实施例9、合成化合物11

以本发明环丁烯衍生物5d为原料,按照以下合成路线,合成化合物11:

(1.1)合成化合物11-a

将化合物5d(5mg,0.028mmol,1.0当量),戊二酸酐(3.5mg,0.031mmol,1.1当量)和TEA(10μL,0.07mmol,2.5当量)的混合物在DCM(0.5mL)下溶解得到的混合物在室温搅拌进行反应,反应3h后用水淬灭反应,并用乙酸乙酯萃取。将有机相用饱和食盐水洗涤,取有机相经无水Na2 SO4干燥,减压浓缩,残余物通过薄层色谱法纯化(DCM:MeOH体积比=10:1),得到6.2mg白色固体,即化合物11-a,收率75%。1H NMR(400MHz,DMSO-d6)δ9.96(s,1H),7.56(d,J=8.6Hz,2H),7.28(d,J=8.6Hz,2H),6.15(dd,J=15.0,2.6Hz,2H),4.30(d,J=3.6Hz,1H),3.00(dd,J=13.8,3.9Hz,1H),2.35(dd,J=13.7,6.2Hz,3H),2.26(t,J=7.3Hz,2H),1.80(p,J=7.3Hz,2H).13C NMR(101MHz,DMSO-d6):δ174.2,170.8,138.1,137.4,131.0,128.3,119.5,46.1,39.4,35.4,33.1,20.5.HRMS[M+Na]+m/z calcd.for[C15H17NNaO3S]+314.0821,found 314.0821.

(1.2)合成化合物11

在氩气氛围下,将化合物11-a(6.2mg,0.021mmol,1.0当量),N,N-二琥珀酰亚胺基碳酸酯(DSC)(5.4mg,0.021mmol,1.0当量)和TEA(4.5μL,0.032mmol,1.5当量)的混合物溶解于0.5mL四氢呋喃(THF)中,将所得混合液体在室温下搅拌4h。反应完成后,将反应用水淬灭,并用乙酸乙酯萃取。将有机相用饱和食盐水洗涤,取有机相经无水Na2 SO4干燥,减压浓缩,残余物通过薄层色谱法纯化(DCM∶MeOH体积比=30∶1),得到4.2mg白色固体,即化合物11,收率51%。1H NMR(400MHz,CDCl3)δ8.02(s,1H),7.47(d,J=8.5Hz,2H),7.30(d,J=8.6Hz,2H),6.09(dd,J=21.8,2.5Hz,2H),4.26(d,J=3.5Hz,1H),3.02(dd,J=13.8,3.6Hz,1H),2.88(s,4H),2.75–2.68(m,2H),2.47(dd,J=12.9,5.8Hz,3H),2.23–2.12(m,2H).13C NMR(101MHz,CDCl3)δ170.2,169.7,168.5,138.0,137.6,136.9,131.7,130.9,120.3,47.0,40.0,35.5,30.0,25.8,21.2.HRMS[M+Na]+m/z calcd.for[C19H20N2NaO5S]+411.0985,found 411.0989.

实施例10、制备本发明荧光标记的试剂盒

该试剂盒由实施例9制得的化合物11组成。

实施例11、制备本发明荧光标记的试剂盒

该试剂盒由以下组分组成:

A组分:实施例9制得的化合物11;

B组分:染料H-Tz-Cy5。

其中,H-Tz-Cy5的结构如下所示:

实施例12、制备本发明荧光标记的试剂盒

该试剂盒由以下组分组成:

A组分:实施例制得的化合物5a~5d、9a~9b、10、11中的任意一个;

B组分:带荧光基团的四嗪类化合物。

以下通过实验例证明本发明制备的有益效果。

实验例1、本发明环丁烯衍生物的稳定性和动力学测定

1、实验方法

(1)环丁烯衍生物5a~5d、9a和9b的稳定性测试

为了探究本发明合成的环丁烯衍生物在生物正交反应中的潜力,本发明对其稳定性进行了测定,测定方法如下:环丁烯衍生物5a~5d、9a和9b分别被溶解在DMF:PBS=1:1的混合溶液中,最终浓度为0.5mM,在pH 7.4和37℃条件下孵育。使用高效液相色谱法分别在孵育0、12和24小时这三个时间点取样进行检测,每个时间点每次进样3μL,检测波长为:6b使用260nm,11a和11b用280nm,6a和6d用254nm,6c用300nm)。以每个时间占0小时的峰面积的百分比作为稳定性指标。

(2)环丁烯衍生物和四嗪类化合物之间的反应动力学测试

将四嗪类化合物溶解在DMF:H2O=1:1的混合溶液中,最终浓度为0.5mM,在37℃条件下孵育。分别将本发明合成的环丁烯衍生物5a~5d、9a和9b亲二烯体6a-6d 11a,和11b添加到放有四嗪类化合物溶液的石英比色皿中进行反应,控制环丁烯衍生物亲二烯体的最终浓度为5mM。该反应在37℃下进行,使用紫外可见分光光度计监测特征吸收峰的变化(四嗪类化合物在520nm处有特征吸收),每隔10分钟采集一个点,一共持续6h。使用GraphPadPrism 6.0进行实验数据处理,得到对应的反应动力学常数k。反应路线示意图如图2(a)所示。

本实验分别采用了以下Ta、Tb所示的两种结构的四嗪类化合物:

2、实验结果

环丁烯衍生物5a~5d、9a和9b的稳定性测试结果如图1所示。可以看出,本发明合成的环丁烯衍生物有较好的稳定性,其在DMF:PBS=1:1的混合溶液中于37℃下孵育24小时后稳定性也在80%以上,特别是环丁烯衍生物5c、5a和5d,其在上述条件下孵育24小时后稳定性仍高达85%以上。

环丁烯衍生物5a~5d、9a和9b与四嗪类化合物之间的反应动力学测试结果分别如图2(b)所示。可以看出,本发明环丁烯衍生物与四嗪类化合物之间的总体反应动力学常数为0.015-0.1483之间;其中,环丁烯衍生物5b和5d的反应动力学常数较大,说明环丁烯衍生物5b和5d与四嗪类化合物之间的反应速度较快。

上述实验结果表明,本发明的环丁烯衍生物在生物正交反应激活前在复杂的生物体系中能够保持良好的稳定性,而且在生物正交反应激活后,能够与四嗪类化合物快速发生生物正交反应。

综合考虑环丁烯衍生物的稳定性以及其与四嗪类化合物之间的反应速率,选取化合物5d为本发明的优选环丁烯衍生物。

实验例2、本发明环丁烯类衍生物的蛋白标记体外荧光成像测试

1、实验方法

(1)以本发明环丁烯衍生物5d为原料,按照实施例9的方法,合成化合物11。

(2)蛋白修饰:

将上述制得的环丁烯衍生物11(0.5μL,50mM,10eq.)和BSA溶液(5μL,0.5mM inPBS)分别加入碳酸钠的缓冲体系(39μL,PH 8.2)和DMSO(4.5μL)的混合溶液中,室温搅拌2h。过量的环丁烯衍生物11被除掉,通过Zeba spin脱盐柱(型号:0.5mL),得到修饰有环丁烯的BSA。将该修饰有环丁烯的BSA溶在PBS中,得到浓度为19.2uM的修饰有环丁烯的BSA溶液(用紫外分光光度计测得)。.

(3)蛋白标记体外成像测试:

将染料H-Tz-Cy5(2.5μL,5mM in DMSO)加到修饰有环丁烯的BSA溶液(22.5μL,19.2μM in PBS)中,染料H-Tz-Cy5的最终浓度为500μM,作为阳性组;将染料H-Tz-Cy5(2.5μL,5mM in DMSO)加到未修饰有环丁烯的BSA(22.5μL,19.2μM in PBS)中,染料最终浓度为500μM,作为阴性组;另外,没有修饰的BSA(25μL 19.2μM in PBS)作为空白对照。这些样品分别在37℃下孵育4h,然后通过Zeba spin脱盐柱(0.5mL)纯化。过量的染料被除去,剩下的BSA蛋白样品溶于PBS中,最终浓度用紫外分光度计测定。用PBS将各样本稀释到相同浓度,每个样品取20ul,随后加入2ul SDS-PAGE上样buffer(5x),涡旋10秒后,每个样品取15μL加到SDS-PAGE板孔中,在考马斯亮蓝染色前,先进行荧光成像,蛋白凝胶成像用ChemiDocTM MP成像系统(Bio-Rad)。

染料H-Tz-Cy5的结构如下所示:

2、实验结果

实验结果如图3所示。可以看出,当染料浓度为500uM和250uM时,阳性组和阴性组荧光都具有明显差异,具体来说,阴性组没有修饰环丁烯的BSA蛋白无法与染料H-Tz-Cy5发生反应,所以荧光强度很弱甚至没有;而阳性组中修饰有环丁烯的BSA蛋白与染料H-Tz-Cy5发生了生物正交反应,使得染料成功连接在BSA蛋白上,实现了荧光成像。

上述实验结果表明,本发明提供的环丁烯衍生物11能够修饰到蛋白上,并进一步与带有荧光基团的四嗪类染料通过生物正交反应,发挥荧光标记的作用,能够应用于生物标记领域。

综上,本发明提供了一种式I所示的用于生物正交反应的环丁烯衍生物。实验表明,本发明提供的环丁烯衍生物具有优异的稳定性,同时在与四嗪类化合物发生生物正交反应时具有快速的反应速度,因此,本发明的环丁烯衍生物在生物正交反应激活前在复杂的生物体系中能够保持良好的稳定性,而且在生物正交反应激活后,能够与带荧光基团的目标蛋白上的四嗪结构快速发生生物正交反应,开启荧光,实现对该目标蛋白的荧光标记。本发明提供的环丁烯衍生物能够用来制备荧光标记试剂盒,发挥荧光标记的作用,在活体追踪、荧光成像等领域具有广阔的应用前景。

21页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:有机电致发光材料和装置

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!

技术分类