穿轧机顶头

文档序号:1026690 发布日期:2020-10-27 浏览:13次 >En<

阅读说明:本技术 穿轧机顶头 (Piercing mill plug ) 是由 日高康善 东田泰斗 白泽尚也 于 2019-01-18 设计创作,主要内容包括:本发明提供一种耐磨耗性得以进一步提高的穿轧机顶头。穿轧机顶头(10)具备顶头主体(11)和在顶头主体(11)的表面形成的喷镀覆膜(12)。喷镀覆膜(12)包含铁基合金及其氧化物。利用荧光X射线分析对喷镀覆膜(12)进行分析而得到的铬浓度为3~20质量%。(The invention provides a piercing-rolling mill plug with further improved wear resistance. A piercing plug (10) is provided with a plug body (11) and a sprayed coating (12) formed on the surface of the plug body (11). The sprayed coating (12) contains an iron-based alloy and an oxide thereof. The sprayed coating (12) is analyzed by fluorescent X-ray analysis, and the chromium concentration is 3-20 mass%.)

穿轧机顶头

技术领域

本发明涉及穿轧机顶头。

背景技术

以往,在无缝钢管的穿孔轧制中使用的穿轧机顶头为了确保表面的隔热性、润滑性和耐热胶着性而在表面形成氧化皮覆膜来使用。

氧化皮覆膜随着每次穿孔轧制而逐渐发生磨耗。若氧化皮覆膜完全磨耗而露出母材(顶头主体),则发生母材的熔损、与对象材料的热胶着。在不锈钢等难加工材料的穿孔中,氧化皮覆膜的磨耗显著,有时几道次就磨耗。此时需要用于再次形成氧化皮覆膜的热处理,但该热处理需要几小时~几十小时,因此存在效率差的问题。

国际公开第2009/057471号中提出了在穿轧机顶头的母材的表面形成包含铁和氧化物的喷镀覆膜的技术。国际公开第2014/034376号中公开了一种穿轧机顶头,其具备除了含有铁和铁氧化物之外还以质量%计含有C:0.015~0.6%、Si:0.05~0.5%、Mn:0.1~1.0%、Cu:0~0.3%的喷镀覆膜。

发明内容

较之氧化皮覆膜,喷镀覆膜与母材的密合性、耐磨耗性优异,且能够在几分钟~几十分钟内形成。因此,喷镀覆膜与氧化皮覆膜相比寿命长,且即使磨耗也能够在短时间内再生。另一方面,为了提高无缝钢管的制造效率,优选进一步延长穿轧机顶头的寿命。为此,优选进一步提高覆膜的耐磨耗性。

本发明的目的是提供耐磨耗性得以进一步提高的穿轧机顶头。

本发明的一个实施方式所述的穿轧机顶头具备顶头主体和在前述顶头主体的表面形成的喷镀覆膜。前述喷镀覆膜包含铁基合金和前述铁基合金的氧化物。利用荧光X射线分析对前述喷镀覆膜进行分析而得到的铬浓度为3~20质量%。

根据本发明,可获得耐磨耗性得以进一步提高的穿轧机顶头。

附图说明

图1为本发明的一个实施方式所述的穿轧机顶头的纵向截面图。

图2为示出用于形成喷镀覆膜的装置的一例的图。

图3为包芯线的截面图。

图4为本发明的其它实施方式所述的穿轧机顶头的纵向截面图。

图5为本发明的另一实施方式所述的穿轧机顶头的纵向截面图。

图6为不含Cr的喷镀覆膜的截面显微镜照片。

图7为包含Cr的喷镀覆膜的截面显微镜照片。

具体实施方式

以下,参照附图,详细说明本发明的实施方式。图中,对同一或相应部分标注同一符号,不重复其说明。各图中示出的结构构件间的尺寸比未必表示实际的尺寸比。

[穿轧机顶头的结构]

图1是本发明的一个实施方式所述的穿轧机顶头10的纵向截面图。穿轧机顶头10具备顶头主体11和喷镀覆膜12。

顶头主体11具有炮弹形状。顶头主体11具体而言具有横截面的形状为圆形,且其外径从顶头主体11的前端朝向后端变大的形状。顶头主体11由例如铁基合金构成。

喷镀覆膜12形成在顶头主体11的表面。喷镀覆膜12覆盖除顶头主体11的后端面之外的顶头主体11的整个表面。喷镀覆膜12的厚度可以不为恒定。优选的是,与顶头主体11的筒体部11b上相比,喷镀覆膜12在前端部11a上形成得更厚。

喷镀覆膜12至少包含铁基合金及其氧化物。喷镀覆膜12可以包含除了它们之外的化合物。

喷镀覆膜12中的铁基合金以铁(Fe)作为主成分,且包含碳(C)、硅(Si)、锰(Mn)和铬(Cr)等。喷镀覆膜12中的铁基合金可以仅包含C、Si、Mn和Cr中的一部分,也可以包含C、Si、Mn和Cr之外的元素。喷镀覆膜12中的铁基合金的化学组成在微观上可以不同。例如,在微观上可以混杂有几乎不含Cr的部分和Cr含量高的部分。

喷镀覆膜12中的氧化物是上述铁基合金被氧化而形成的氧化物。喷镀覆膜12中的氧化物具体为铁氧化物、以及铁与铬的复合氧化物等。铁氧化物例如为FeO、Fe3O4等。铁与铬的复合氧化物例如为(Fe,Cr)3O4等。喷镀覆膜12中的氧化物可以包含除上述之外的金属氧化物。

喷镀覆膜12中,金属成分(铁基合金)的比率越高,则与顶头主体11的密合性越会提高。另一方面,氧化物的比率越高,则隔热性越会提高。喷镀覆膜12中的氧化物的比率不限定于此,优选为25~80体积%,进一步优选为35~65体积%。此外,顶头主体11的附近优选的是:金属成分的比率高,越朝向表面则氧化物的比率越高。根据该构成,能够进一步提高与顶头主体11的密合性。需要说明的是,氧化物的体积率可以由喷镀覆膜12的截面观察来计算。

本实施方式所述的穿轧机顶头10中,利用荧光X射线分析对喷镀覆膜12进行分析而得到的铬浓度(以下称为“XRF-Cr浓度”)为3~20质量%。

如果XRF-Cr浓度为3质量%以上,则与小于3质量%的情况相比,能够获得优异的耐磨耗性。可认为这是因为:因铁与铬的复合氧化物而使喷镀覆膜12的硬度变高。另一方面,若XRF-Cr浓度超过20质量%,则喷镀覆膜12的润滑性降低,穿孔效率降低。XRF-Cr浓度的下限优选为5质量%,进一步优选为8质量%。XRF-Cr浓度的上限优选为18质量%,进一步优选为16质量%。

XRF-Cr浓度如下述那样进行测定。从喷镀覆膜12的表面入射X射线,并利用检测器检测荧光X射线。入射X射线应用靶材:Rh、输出功率:40kV×100μA、3mmΦ光斑准直器。检测器设为硅漂移探测器(Si drift detector)。以检测到的所有元素作为分母,求出质量%计的Cr浓度。XRF-Cr浓度的分子包括铁基合金中的Cr和氧化物中的Cr这两者。

本实施方式所述的穿轧机顶头10优选的是,利用荧光X射线分析对喷镀覆膜12进行分析而得到的铁浓度为50质量%以上。利用荧光X射线分析进行分析而得到的铁浓度与XRF-Cr浓度同样地进行测定。

[穿轧机顶头的制造方法]

以下,说明穿轧机顶头10的制造方法的一例。以下说明的方法只不过是例示,穿轧机顶头10的制造方法不限定于此。

准备顶头主体11。顶头主体11可以使用公知物。

对顶头主体11形成喷镀覆膜12。喷镀覆膜12可以使用图2所示的电弧喷镀装置20来形成。

电弧喷镀装置20具备喷镀枪21和旋转底座24。喷镀枪21在连续供给的阳极线材22和阴极线材23的前端产生电弧,利用压缩空气来喷射已熔融的金属。

喷镀覆膜12的化学组成和XRF-Cr浓度可通过阳极线材22和阴极线材23的化学组成来调整。阳极线材22和阴极线材23可以为相同化学组成的线材,也可以为不同化学组成的线材。使用不同化学组成的线材时,阳极线材22的金属与阴极线材23的金属混杂,形成伪合金。

阳极线材22和阴极线材23不限定于此,例如为碳钢、不锈钢。此外,作为阳极线材22和阴极线材23,可以使用图3所示的包芯线30。包芯线30具备碳钢制的外壳31和填充于外壳31的填充材料32。通过变更填充材料32的种类,能够任意地变更从喷镀枪21喷射的金属的化学组成。

从喷镀枪21的前端起至顶头主体11的表面为止的距离(以下称为“喷镀距离”)越长,则喷镀覆膜12中的氧化物的比率变得越高。这是因为:从喷镀枪21的前端喷射的金属的氧化根据喷镀距离而加剧。喷镀距离不限定于此,例如为100~1400mm。此外,通过一边缓缓地加长喷镀距离一边进行喷镀,能够提高顶头主体11附近的金属成分的比率,随着靠近表面而提高氧化物的比率。

如上所述,XRF-Cr浓度的分子包括铁基合金中的Cr和氧化物中的Cr这两者。因此,即使喷镀覆膜12中的氧化物的比率变更,XRF-Cr浓度也不明显变化。因此,即使变更喷镀距离,XRF-Cr浓度也不明显变化。

一边利用旋转底座24使顶头主体11绕着轴旋转,一边喷镀至喷镀覆膜12达到特定厚度为止。喷镀覆膜12的厚度不限定于此,例如为200~3000μm。

优选在形成喷镀覆膜12后,实施用于扩散的热处理。由此,能够使顶头主体11与喷镀覆膜12进一步密合。作为用于扩散的热处理,优选例如以600~1250℃保持10分钟以上。热处理温度更优选为600~1100℃。

以上,说明了本发明的一个实施方式所述的穿轧机顶头10。本实施方式中,将喷镀覆膜12的XRF-Cr浓度设为3~20质量%。由此,能够进一步提高穿轧机顶头10的耐磨耗性。

上述实施方式中,说明了顶头主体11为炮弹形状的情况。但是,顶头主体11的形状是任意的。穿轧机顶头例如可以在图3所示的前端突出形状的顶头主体13上形成有喷镀覆膜12,也可以在图4所示的分割形状的顶头主体14上形成有喷镀覆膜12。

上述实施方式中,说明了利用电弧喷镀形成喷镀覆膜12的情况。但是,形成喷镀覆膜12的方法不限定于此。喷镀覆膜12也可通过例如等离子体喷镀、火焰喷镀、高速火焰喷镀等来形成。

实施例

以下,通过实施例更具体地说明本发明。本发明不限定于这些实施例。

在主要成分为0.15C-0.5Si-1.0Ni-0.5Mn-1.5Mo-3.0W-余量(Bal.)Fe的模型顶头上形成喷镀覆膜。作为阳极线材和阴极线材,将低碳钢、SUS410和SUS430的线材、以及Cr浓度有变化的包芯线组合,调整喷镀覆膜的成分。

通过实施方式中说明的方法,分析喷镀覆膜的XRF-Cr浓度。荧光X射线分析装置使用JEOL公司制的DP2000 DELTA Premium,并使用JEOL公司制的ALLOY PLUS合金分析软件进行分析。

测定各顶头的喷镀覆膜的维氏硬度。维氏硬度针对各顶头测定3处,求出其平均值。

表1示出XRF-Cr浓度与平均硬度的关系。表1中,XRF-Cr浓度一栏的“-”表示XRF-Cr浓度小于分析下限。

[表1]

表1

如表1所示那样,XRF-Cr浓度越高,则平均维氏硬度变得越高。

图6是表1的标记A的喷镀覆膜的截面显微镜照片。图7是表1的标记C的喷镀覆膜的截面显微镜照片。如图7所示那样,包含Cr的喷镀覆膜与不含Cr的喷镀覆膜(图6)同样由金属成分和氧化物构成。图中,比较明亮的部分是包含金属成分的部位,深灰色的部分为包含氧化物的部位。金属成分与氧化物之比在本次制作的所有喷镀覆膜中为相同程度,氧化物的比率约为45~55体积%。

接着,使用这些顶头,实施以SUS304作为对象材料的穿孔试验,测定覆膜磨耗量。表2中示出XRF-Cr浓度与磨耗量的关系。表2的“与以往相比的磨耗量”一栏将标记A的顶头的喷镀覆膜的磨耗量设为1而以相对值的形式记载了各顶头的喷镀覆膜的磨耗量。

[表2]

表2

如表2所示那样,XRF-Cr浓度越高,则磨耗量越会降低。尤其是,通过将XRF-Cr浓度设为3质量%以上,能够将磨耗量降低至标记A时的约70%。另一方面,若XRF-Cr浓度超过20质量%,则穿孔效率降低,难以轧制。

由这些结果可以验证:通过将XRF-Cr浓度设为3~20质量%,能够进一步提高穿轧机顶头的耐磨耗性。

以上说明了本发明的实施方式,但上述实施方式只不过是用于实施本发明的例示。因而,本发明不限定于上述实施方式,可以在不超脱其主旨的范围内,对上述实施方式进行适当变形来实施。

10页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:透明氧化物膜、透明氧化物膜的制造方法、氧化物烧结体和透明树脂基板

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!