一种定点突变改造的β-半乳糖苷酶及其构造方法

文档序号:1165987 发布日期:2020-09-18 浏览:38次 >En<

阅读说明:本技术 一种定点突变改造的β-半乳糖苷酶及其构造方法 (Site-directed mutagenesis modified beta-galactosidase and construction method thereof ) 是由 盖宏伟 金潇婷 张业旺 于 2020-06-17 设计创作,主要内容包括:本发明提供了一种定点突变改造的β-半乳糖苷酶,属于基因工程领域。本发明的β-gal突变体是由野生型β-gal的氨基酸序列基础上,发生第229位Ala突变为Cys。并将该突变酶转化到大肠杆菌,进行异源表达。相较于野生酶,突变酶的酶活力提高了1倍左右。β-gal进行定点突变改造后,暴露在蛋白质表面的巯基,与修饰巯基的磁纳米颗粒之间,通过巯基-二巯基交换反应,完成酶的共价固定化。(The invention provides a beta-galactosidase modified by site-directed mutagenesis, belonging to the field of genetic engineering. The beta-gal mutant of the invention is characterized in that the 229 th Ala is mutated into Cys based on the amino acid sequence of wild beta-gal. And transforming the mutant enzyme into Escherichia coli for heterologous expression. Compared with wild enzyme, the enzyme activity of the mutant enzyme is improved by about 1 time. After the beta-gal is subjected to site-directed mutagenesis modification, the thiol exposed on the surface of the protein and the magnetic nanoparticle for modifying the thiol are subjected to thiol-dimercapto exchange reaction to complete covalent immobilization of the enzyme.)

一种定点突变改造的β-半乳糖苷酶及其构造方法

技术领域

本发明涉及基因工程,具体涉及一种定点突变改造的β-半乳糖苷酶及其构造方法与应用。

背景技术

β-半乳糖苷酶(β-galactosidase,β-Gal,EC 3.2.1.23)常简称为乳糖酶,广泛存在于各种动物、植物及微生物中,是一种重要的具有生理病理作用的水解酶。其主要生理功能是催化水解糖苷键,将乳糖转化成半乳糖,在维持正常的生命活动中具有举足轻重的作用,β-gal活性及含量的异常通常与癌症的发生有着密切的关系。

在生物化学分析中,通常依据β-gal可催化ONPG水解生成ONP,后者在405nm处有最大吸收峰的原理,用酶促反应后405nm吸光度的增加值(减去对照的吸光度值)检测β-gal活性的高低。此外,FDG被认为是可用于检测β-gal的最敏感的荧光底物之一。无色和非荧光的FDG水解成高荧光荧光素,具有出色的光谱特性(Ex/Em=492/520nm),与大多数荧光仪器的最佳检测窗口相匹配。β-gal催化的FDG水解之后可以在520nm附近荧光增加。通过荧光强度即可测定β-gal的活性。

目前,已有研究表明,通过巯基-二巯基交换反应可成功实现酶的定点固定化。巯基-二巯基交换反应是酶偶联反应的一种,是指带-SH或-S-的载体,通过巯基-二巯基的交换反应和酶分子上非必需巯基偶联。通过溶剂可及性计算可知该β-gal第613位Cys,暴露在蛋白质表面,与β-gal的相关性质密不可分,且Cys具有还原性,极易被氧化,故该Cys中的巯基并不是酶分子上非必需巯基。如此,我们尝试通过定点突变技术,完成巯基-二巯基交换反应。

定点突变技术是在已知的核苷酸序列中准确改变一个或多个碱基,从而改变组成蛋白质的一个或多个氨基酸残基,以研究蛋白质结构和功能的关系。定点突变技术在基因工程改造中发挥着巨大作用,在提高酶活,改善酶的催化特征等方面取得了非常有益的效果。通过定点突变技术将蛋白质表面的一个或多个氨基酸残基突变为Cys,从而通过巯基-二巯基交换反应来实现酶的定点固定化,已有应用(J.R.Simonsa,M.Mosischb,A.E.Tordab,L.Hilterhausa,*.Journal of Biotechnology 167(2013)1–7)。但针对β-gal表面氨基酸突变为Cys并通过巯基-二巯基交换反应完成酶的固定化,至今未有应用。

基于以上背景,本发明拟公开一种定点突变改造的β-gal及其构造方法与应用。

发明内容

本发明的目的在于通过定点突变技术,将β-gal的一个或多个氨基酸残基突变为Cys,从而通过巯基-二巯基交换反应将其固定在修饰了巯基的磁纳米颗粒上,来实现酶的定点固定化。

作为本发明的第一个方面,提供了一种β-gal突变体,其氨基酸序列如SEQ IDNo.1所示。

作为本发明的第二个方面,还提供了编码上述突变体的基因。

作为本发明的第三个方面,还提供了一种重组质粒载体,该重组质粒载体含有上述基因。

本发明还提供了一种宿主细胞,该宿主细胞含上述基因或上述重组质粒载体,此构成本发明的第四个方面。

优选的,所述宿主细胞为E.coliBL21。

作为本发明的第五个方面,还提供了上述β-gal突变体的构建方法,包括如下步骤:

(1)构建包含所述β-gal的编码基因的重组质粒载体,所述重组质粒载体以大肠杆菌为宿主;

(2)以所述步骤(1)中的重组载体为模板,利用如SEQ ID No.5和SEQ ID No.6所示的引物对,通过反向PCR扩增得到包含有SEQ ID No.2所示的碱基序列的PCR产物,即环状质粒;

(3)将所述环状质粒转化至宿主细胞即E.coliBL21,获得含有β-gal突变体基因工程菌。

与现有技术相比,本发明的有益效果:

相比野生酶,本发明的突变酶的酶活力提高了1倍左右,β-gal进行定点突变改造后,暴露在蛋白质表面的巯基,与修饰了巯基的磁纳米颗粒之间,通过巯基-二巯基交换反应,成功完成了酶的固定化。

附图说明:

图1为改造前后的β-gal的SDS-PAGE分析,其中M:蛋白Marker;1:亲和纯化的WTβ-gal;2:亲和纯化的β-gal-A229C;

图2为WT β-gal和β-gal-A229C与底物FDG反应后的荧光光谱图

图3为WTβ-gal(右)和β-gal-A229C(左)分别与与载体PuriMag Si-SH结合后与底物FDG反应后的溶液颜色改变图。

具体实施方式

实施例1 β-gal突变体的制备

(1)构建重组质粒pET-28a(+)-β-gal:编码野生型的β-gal(氨基酸序列SEQ IDNo.3所示)的基因的重组载体。

首先根据原始氨基酸序列(GenBank:AF184246)以乳酸菌表达宿主进行密码子优化合成基因,得到经优化后的β-gal编码基因(核苷酸序列如SEQ ID No.4所示),将上述β-gal编码基因和pET-28a(+)载体分别使用BamHI和Xhol酶进行双酶切,然后分别进行回收,用T4DNA连接酶将回收后的编码基因片段和pET-28a(+)载体进行连接,得到重组质粒载体pET-28a(+)-β-gal,将重组质粒载体转化至克隆宿主E.coliTOP10。对得到的转化子测序验证是否为正确的基因克隆(与核苷酸序列SEQ ID No.4相同),挑选测序正确的菌株,并提取重组质粒载体。

(2)构建重组质粒质粒pET-28a(+)-β-gal-A229C:含有β-gal突变体的编码基因的重组质粒载体。

以重组质粒pET-28a(+)-β-gal为模板,以带有突变位点的寡聚核苷酸序列为引物对(如SEQ ID No.5和SEQ ID No.6所示),利用试剂盒反向PCR扩增得到包含有突变基因的碱基序列的PCR产物,用琼脂糖凝胶电泳进行检测,然后利用DNA限制性内切酶Dpn l消化非目的产物,再将质粒转入E.coli DH5α,涂布于含有卡那霉素抗性的固体LB培养基上37℃培养。挑取培养基上的单菌落进行测序验证,得到验证正确的转化子。

(3)基因工程菌的构建:含有β-gal突变基因工程菌

从E.coli DH5α提取质粒,将其转化到E.coli BL21,涂布于含有卡那霉素抗性的固体LB培养基上37℃培养。挑取培养基上的单菌落进行测序验证,验证正确的转化子为含有β-gal突变基因工程菌。

实施例2含有本发明β-gal突变基因工程菌的表达和酶活性

(1)基因工程菌的表达纯化:

将上述含有β-gal突变基因工程菌进行扩大培养并诱导表达,诱导温度为10℃、诱导时间为13-14h、诱导剂异丙基-β-D-硫代半乳糖苷(IPTG)浓度为0.1mM,将诱导后的菌液在4℃8000r/min下离心5min,收集菌液,用pH7.5的磷酸盐缓冲液重悬菌体并采用超声波细胞破碎仪进行菌体破碎,在4℃ 8000r/min下离心20min,所得上清即为粗酶用于以下纯化。

吸取Ni-IDA填料1mL于层析柱中,用无菌水冲洗并用结合液平衡Ni柱。吸取全部平衡后的填料与上述制备的上清液于4℃下结合2h。用含50mM咪唑的缓冲溶液洗脱,至流出液OD595值达到基线。用含250mM咪唑的缓冲溶液洗脱,收集流出液,即为纯化后的β-gal-A229C。并利用SDS-PAGE检测重组蛋白。如附图1所示,WT β-gal与β-gal-A229C在诱导表达之后,经过Ni柱亲和纯化之后,均在70kDa附近出现明亮的单一条带。但纯化后,仍存在较多杂蛋白,需优化咪唑洗脱液的浓度。

(2)改造前后β-gal水解FDG产生荧光素物质

分别将WTβ-gal与β-gal-A229C纯酶,与底物FDG于室温下反应30min左右,裸眼可见,反应试管中,溶液颜色均变为浅绿色,再通过荧光光谱仪,分别测定产物荧光素物质的荧光强度,以此来判定改造前后β-gal酶活性的变化。如图2所示,相同条件下,相较于WTβ-gal,β-gal-A229C与FDG反应后,产生的荧光素物质的荧光强度明显增强1倍左右,即改造后的β-gal酶活性提高1倍左右。

实例3 β-gal-A229C与PuriMag Si-SH之间通过巯基-二巯基交换反应实现酶的固定化

购买的巯基磁珠PuriMag Si-SH(~40μg protein/mg beads)与改造前后的β-gal分别在0.1M pH 7.0的NaBH4缓冲溶液体系中,于30℃下,振荡结合6h,然后将反应试管放置在磁力架上,静置2min,去除上清,加入相同体积的blocking buffer,振荡反应2h,静置2min,去除上清,接着加入1mL washing buffer,重新悬浮溶液,静置2min,去除上清,重复洗涤3次,最后往反应体系中加入底物FDG,室温下静置30min左右。如图3所示,按上述酶固定化步骤,β-gal-A229C与PuriMag Si-SH通过巯基-二巯基交换反应,成功完成了酶的固定化,故加入底物FDG后,由于产生了荧光素物质,左边试管溶液颜色变为了裸眼可见的浅绿色,右边试管由于WTβ-gal并未结合在载体PuriMag Si-SH表面,故加入底物FDG后,并未产生荧光素物质,试管溶液颜色基本不变。

序列表

<110> 江苏师范大学

<120> 一种定点突变改造的β-半乳糖苷酶及其构造方法

<160> 6

<170> SIPOSequenceListing 1.0

<210> 1

<211> 668

<212> PRT

<213> β-半乳糖苷酶(β-gal)

<400> 1

Met Leu Gln Gln Lys Lys Leu Phe Tyr Gly Gly Asp Tyr Asn Pro Glu

1 5 10 15

Gln Trp Ser Lys Ala Ile Ile Leu Glu Asp Met Arg Leu Met Lys Lys

20 25 30

Ala Asn Val Asn Tyr Val Ser Leu Asn Ile Phe Gly Trp Ala Ser Ile

35 40 45

Gln Pro Thr Glu Glu Gly Phe Asp Phe Ser Phe Leu Asp Glu Met Leu

50 55 60

Asp Leu Leu Trp Glu Asn Gly Ile Gly Ile Asp Leu Ala Asn Gly Thr

65 70 75 80

Ala Ser Pro Pro Ala Trp Leu Val Lys Lys His Pro Glu Ile Leu Pro

85 90 95

Val Thr Ser Gln Gly Thr Pro Leu Val His Gly Ser Arg Gln His Tyr

100 105 110

Cys Pro Ser Asn Lys Val Tyr Arg Ser Tyr Val Ile Arg Leu Thr Glu

115 120 125

Glu Val Ala Lys Arg Tyr Ala Thr His Pro Gly Ile Val Met Trp His

130 135 140

Val Asn Asn Glu Tyr Thr Cys His Ile Ser Glu Cys Tyr Cys Glu Ser

145 150 155 160

Cys Glu Lys Ser Phe Arg Gln Trp Leu Gln Met Lys Tyr Lys Lys Ile

165 170 175

Asn Thr Leu Asn Glu Cys Trp Ser Thr Lys Phe Trp Ser Gln Ser Tyr

180 185 190

Ser Gln Trp Asp Glu Ile Phe Leu Pro Lys Glu Met Pro Thr Phe Lys

195 200 205

Asn Pro Ala His Gln Leu Asp Tyr Lys Arg Phe Ile Ser Asp Gln Asn

210 215 220

Leu Thr Leu Phe Lys Cys Glu Lys Lys Ala Ile Arg Ser Tyr Ser Lys

225 230 235 240

Asp Ile Pro Val Met Thr Asn Leu Met Gly Leu His Lys His Val Asp

245 250 255

Gly Phe Ala Phe Ala Glu Glu Met Asp Val Val Gly Trp Asp Ser Tyr

260 265 270

Pro Asn Pro Phe Glu Glu Lys Pro Tyr Pro Gln Phe Leu Ala Asn Asp

275 280 285

Leu Thr Arg Ser Leu Lys Lys Lys Pro Phe Leu Val Met Glu Gln Ala

290 295 300

Pro Ser Ala Val Asn Trp Arg Arg Ala Asn Gly Ala Lys Ser Pro Gly

305 310 315 320

Gln Met Arg Leu Trp Ser Tyr Glu Ala Leu Ala His Gly Ala Asp Gly

325 330 335

Ile Leu Phe Phe Gln Trp Arg Gln Ser Gln Gly Gly Ala Glu Lys Phe

340 345 350

His Ser Gly Met Val Ser His Asn Gln Asp Thr Asn Ser Arg Ile Phe

355 360 365

Lys Glu Val Val Gln Leu Gly Thr Glu Met Ser Gln Leu Asp Glu Leu

370 375 380

Val Gly Thr Asn Tyr Asn Ala Glu Val Ala Ile Val Phe Asp Trp Glu

385 390 395 400

Asn Trp Trp Ala Leu Glu Leu Asp Ala Lys Pro Ser Gly Glu Ile Asn

405 410 415

Tyr Ile Lys Gln Met Arg Asp Leu Tyr Thr Ile Phe His Glu Leu Asn

420 425 430

Ile Gly Val Asp Phe Ile His Pro Lys Glu Asp Leu Ser Asn Tyr Lys

435 440 445

Leu Val Leu Ser Ile Ala Gln Tyr Leu Val Thr Asp Asp Phe Ser Ala

450 455 460

Lys Val Lys Arg Tyr Ile Lys Ala Gly Gly His Phe Leu Thr Thr Phe

465 470 475 480

Phe Ser Gly Ile Val Asp Glu Tyr Asp Arg Val Tyr Leu Gly Gly Tyr

485 490 495

Pro Gly Ala Phe Lys Glu Val Leu Gly Ile Tyr Val Glu Glu Phe Asp

500 505 510

Pro Met Pro Ile Gly Arg Lys Ser Gln Ile Lys Tyr Gly Glu Thr Tyr

515 520 525

Tyr Thr Thr Glu Leu Trp Lys Glu Val Ile His Leu Gln Gly Ala Glu

530 535 540

Thr Ile Ala Thr Phe Thr Glu Gly Tyr Leu Met Gly Gln Pro Ala Leu

545 550 555 560

Thr Lys Phe Gly Tyr Gly Lys Gly Lys Thr Tyr Tyr Met Gly Thr Lys

565 570 575

Leu Ala Lys Asp Gly Asn Met Lys Phe Ile Gln Thr Ile Leu Ala Glu

580 585 590

Ser Lys Ile Gln Pro Leu Asn Gln Val Glu Ile Glu Ser Glu Asn Ser

595 600 605

Lys Ile Ser Met Thr Cys Arg Ser Asn Ser Ser His Asp Tyr Ile Phe

610 615 620

Leu Leu Asn Tyr Gly Gln Thr Ser Glu Lys Val Lys Leu Lys Lys Gly

625 630 635 640

Gly Gln Ser Leu Leu Asp Gly Ser Met Val Glu Gly Glu Val Ser Val

645 650 655

Lys Ala Asn Asp Val Lys Ile Ile Lys Leu Thr Lys

660 665

<210> 2

<211> 2004

<212> DNA

<213> β-半乳糖苷酶(β-gal)

<400> 2

atgctgcagc agaaaaaact gttctacggc ggtgactata acccggaaca gtggtctaaa 60

gcgattatcc tggaagatat gcgtctgatg aaaaaagcta acgttaacta tgttagcctg 120

aacatcttcg gctgggcgtc tatccagccg accgaagaag gtttcgattt tagcttcctg 180

gatgaaatgc tggacctgct gtgggaaaac ggtatcggca tcgacctggc aaacggcacc 240

gcgagcccgc cggcttggct ggttaaaaaa cacccggaaa tcctgccggt tacctcccag 300

ggcaccccgc tggtgcatgg ttcccgccag cactactgcc cgtctaacaa agtgtaccgt 360

tcttatgtga tccgcctgac cgaagaagtt gcgaaacgtt acgcaaccca tccgggtatt 420

gtgatgtggc acgtgaataa cgaatacacc tgccacatca gcgaatgcta ctgcgaaagc 480

tgcgaaaaaa gctttcgtca gtggctgcag atgaaatata aaaagatcaa caccctgaac 540

gaatgctggt ccaccaaatt ctggtcccag agctattctc agtgggacga aatcttcctg 600

ccgaaagaaa tgccgacctt caaaaacccg gctcaccagc tggattacaa acgcttcatc 660

tctgatcaga acctgaccct gttcaaatgt gaaaagaaag ctattcgttc ttacagcaaa 720

gatattccgg ttatgaccaa cctgatgggc ctgcataaac acgttgacgg tttcgcgttt 780

gcggaagaaa tggatgtggt tggctgggat tcctacccga acccgtttga agaaaaaccg 840

tacccgcagt tcctggcgaa cgatctgacc cgctccctga aaaagaaacc gttcctggtt 900

atggaacagg cgccgtctgc cgttaactgg cgtcgtgcaa acggtgcaaa aagccctggt 960

cagatgcgtc tgtggagcta tgaagcgctg gcccacggtg cggacggcat cctgttcttc 1020

cagtggcgtc agagccaggg cggcgccgaa aaattccaca gcggtatggt gtcccacaat 1080

caggatacca acagccgtat ctttaaagaa gttgttcagc tgggcaccga aatgtctcag 1140

ctggacgaac tggttggtac caactacaac gcagaagttg caatcgtttt tgactgggaa 1200

aactggtggg cgctggaact ggacgcgaaa ccgtccggtg aaatcaacta catcaaacag 1260

atgcgtgatc tgtacaccat cttccacgaa ctgaatatcg gtgttgattt catccacccg 1320

aaagaagatc tgagcaacta caaactggtg ctgagcattg cgcagtacct ggttaccgat 1380

gactttagcg cgaaagttaa acgctacatc aaagcaggtg gccactttct gaccacgttc 1440

ttcagcggca tcgtggacga atatgaccgt gtgtatctgg gtggttatcc aggcgcgttc 1500

aaagaagttc tgggcattta cgttgaagaa tttgacccga tgccgatcgg tcgtaaaagc 1560

cagatcaaat acggcgaaac ctattacacc accgaactgt ggaaagaagt gattcacctg 1620

cagggcgccg aaaccatcgc taccttcacc gaaggctacc tgatgggtca gccggcactg 1680

accaaatttg gctacggtaa aggcaaaacc tattacatgg gtaccaaact ggcgaaagac 1740

ggcaacatga aattcatcca gaccatcctg gctgaatcta aaatccagcc gctgaaccag 1800

gttgaaatcg aaagcgaaaa ctctaaaatc agcatgacct gtcgttctaa cagcagccac 1860

gattacatct tcctgctcaa ctacggccag acctccgaaa aagtgaaact gaaaaaaggc 1920

ggccagagcc tgctggatgg tagcatggtt gaaggtgaag tgagcgttaa agcgaacgat 1980

gttaaaatta tcaaactgac caaa 2004

<210> 3

<211> 660

<212> PRT

<213> 野生型的β-gal(β-gal)

<400> 3

Met Leu Gln Gln Lys Lys Leu Phe Tyr Gly Gly Asp Tyr Asn Pro Glu

1 5 10 15

Gln Trp Ser Lys Ala Ile Ile Leu Glu Asp Met Arg Leu Met Lys Lys

20 25 30

Ala Asn Val Asn Tyr Val Ser Leu Asn Ile Phe Gly Trp Ala Ser Ile

35 40 45

Gln Pro Thr Glu Glu Gly Phe Asp Phe Ser Phe Leu Asp Glu Met Leu

50 55 60

Asp Leu Leu Trp Glu Asn Gly Ile Gly Ile Asp Leu Ala Asn Gly Thr

65 70 75 80

Ala Ser Pro Pro Ala Trp Leu Val Lys Lys His Pro Glu Ile Leu Pro

85 90 95

Val Thr Ser Gln Gly Thr Pro Leu Val His Gly Ser Arg Gln His Tyr

100 105 110

Cys Pro Ser Asn Lys Val Tyr Arg Ser Tyr Val Ile Arg Leu Thr Glu

115 120 125

Glu Val Ala Lys Arg Tyr Ala Thr His Pro Gly Ile Val Met Trp His

130 135 140

Val Asn Asn Glu Tyr Thr Cys His Ile Ser Glu Cys Tyr Cys Glu Ser

145 150 155 160

Cys Glu Lys Ser Phe Arg Gln Trp Leu Gln Met Lys Tyr Lys Lys Ile

165 170 175

Asn Thr Leu Asn Glu Cys Trp Ser Thr Lys Phe Trp Ser Gln Ser Tyr

180 185 190

Ser Gln Trp Asp Glu Ile Phe Leu Pro Lys Glu Met Pro Thr Phe Lys

195 200 205

Asn Pro Ala His Gln Leu Asp Tyr Lys Arg Phe Ile Ser Asp Gln Asn

210 215 220

Leu Thr Leu Phe Lys Ala Glu Lys Lys Ala Ile Arg Ser Tyr Ser Lys

225 230 235 240

Asp Ile Pro Val Met Thr Asn Leu Met Gly Leu His Lys His Val Asp

245 250 255

Gly Phe Ala Phe Ala Glu Glu Met Asp Val Val Gly Trp Asp Ser Tyr

260 265 270

Pro Asn Pro Phe Glu Glu Lys Pro Tyr Pro Gln Phe Leu Ala Asn Asp

275 280 285

Leu Thr Arg Ser Leu Lys Lys Lys Pro Phe Leu Val Met Glu Gln Ala

290 295 300

Pro Ser Ala Val Asn Trp Arg Arg Ala Asn Gly Ala Lys Ser Pro Gly

305 310 315 320

Gln Met Arg Leu Trp Ser Tyr Glu Ala Leu Ala His Gly Ala Asp Gly

325 330 335

Ile Leu Phe Phe Gln Trp Arg Gln Ser Gln Gly Gly Ala Glu Lys Phe

340 345 350

His Ser Gly Met Val Ser His Asn Gln Asp Thr Asn Ser Arg Ile Phe

355 360 365

Lys Glu Val Val Gln Leu Gly Thr Glu Met Ser Gln Leu Asp Glu Leu

370 375 380

Val Gly Thr Asn Tyr Asn Ala Glu Val Ala Ile Val Phe Asp Trp Glu

385 390 395 400

Asn Trp Trp Ala Leu Glu Leu Asp Ala Lys Pro Ser Gly Glu Ile Asn

405 410 415

Tyr Ile Lys Gln Met Arg Asp Leu Tyr Thr Ile Phe His Glu Leu Asn

420 425 430

Ile Gly Val Asp Phe Ile His Pro Lys Glu Asp Leu Ser Asn Tyr Lys

435 440 445

Leu Val Leu Ser Ile Ala Gln Tyr Leu Val Thr Asp Asp Phe Ser Ala

450 455 460

Lys Val Lys Arg Tyr Ile Lys Ala Gly Gly His Phe Leu Thr Thr Phe

465 470 475 480

Phe Ser Gly Ile Val Asp Glu Tyr Asp Arg Val Tyr Leu Gly Gly Tyr

485 490 495

Pro Gly Ala Phe Lys Glu Val Leu Gly Ile Tyr Val Glu Glu Phe Asp

500 505 510

Pro Met Pro Ile Gly Arg Lys Ser Gln Ile Lys Tyr Gly Glu Thr Tyr

515 520 525

Tyr Thr Thr Glu Leu Trp Lys Glu Val Ile His Leu Gln Gly Ala Glu

530 535 540

Thr Ile Ala Thr Phe Thr Glu Gly Tyr Leu Met Gly Gln Pro Ala Leu

545 550 555 560

Thr Lys Phe Gly Tyr Gly Lys Gly Lys Thr Tyr Tyr Met Gly Thr Lys

565 570 575

Leu Ala Lys Asp Gly Asn Met Lys Phe Ile Gln Thr Ile Leu Ala Glu

580 585 590

Ser Lys Ile Gln Pro Leu Asn Gln Val Glu Ile Glu Ser Glu Asn Ser

595 600 605

Lys Ile Ser Met Thr Cys Arg Ser Asn Ser Ser His Asp Tyr Ile Phe

610 615 620

Leu Leu Asn Tyr Gly Gln Thr Ser Glu Lys Val Lys Leu Lys Lys Gly

625 630 635 640

Gly Gln Ser Leu Leu Asp Gly Ser Met Val Glu Gly Glu Val Ser Val

645 650 655

Lys Ala Asn Asp

660

<210> 4

<211> 2004

<212> DNA

<213> 野生型的β-gal(β-gal)

<400> 4

atgctgcagc agaaaaaact gttctacggc ggtgactata acccggaaca gtggtctaaa 60

gcgattatcc tggaagatat gcgtctgatg aaaaaagcta acgttaacta tgttagcctg 120

aacatcttcg gctgggcgtc tatccagccg accgaagaag gtttcgattt tagcttcctg 180

gatgaaatgc tggacctgct gtgggaaaac ggtatcggca tcgacctggc aaacggcacc 240

gcgagcccgc cggcttggct ggttaaaaaa cacccggaaa tcctgccggt tacctcccag 300

ggcaccccgc tggtgcatgg ttcccgccag cactactgcc cgtctaacaa agtgtaccgt 360

tcttatgtga tccgcctgac cgaagaagtt gcgaaacgtt acgcaaccca tccgggtatt 420

gtgatgtggc acgtgaataa cgaatacacc tgccacatca gcgaatgcta ctgcgaaagc 480

tgcgaaaaaa gctttcgtca gtggctgcag atgaaatata aaaagatcaa caccctgaac 540

gaatgctggt ccaccaaatt ctggtcccag agctattctc agtgggacga aatcttcctg 600

ccgaaagaaa tgccgacctt caaaaacccg gctcaccagc tggattacaa acgcttcatc 660

tctgatcaga acctgaccct gttcaaagcg gaaaagaaag ctattcgttc ttacagcaaa 720

gatattccgg ttatgaccaa cctgatgggc ctgcataaac acgttgacgg tttcgcgttt 780

gcggaagaaa tggatgtggt tggctgggat tcctacccga acccgtttga agaaaaaccg 840

tacccgcagt tcctggcgaa cgatctgacc cgctccctga aaaagaaacc gttcctggtt 900

atggaacagg cgccgtctgc cgttaactgg cgtcgtgcaa acggtgcaaa aagccctggt 960

cagatgcgtc tgtggagcta tgaagcgctg gcccacggtg cggacggcat cctgttcttc 1020

cagtggcgtc agagccaggg cggcgccgaa aaattccaca gcggtatggt gtcccacaat 1080

caggatacca acagccgtat ctttaaagaa gttgttcagc tgggcaccga aatgtctcag 1140

ctggacgaac tggttggtac caactacaac gcagaagttg caatcgtttt tgactgggaa 1200

aactggtggg cgctggaact ggacgcgaaa ccgtccggtg aaatcaacta catcaaacag 1260

atgcgtgatc tgtacaccat cttccacgaa ctgaatatcg gtgttgattt catccacccg 1320

aaagaagatc tgagcaacta caaactggtg ctgagcattg cgcagtacct ggttaccgat 1380

gactttagcg cgaaagttaa acgctacatc aaagcaggtg gccactttct gaccacgttc 1440

ttcagcggca tcgtggacga atatgaccgt gtgtatctgg gtggttatcc aggcgcgttc 1500

aaagaagttc tgggcattta cgttgaagaa tttgacccga tgccgatcgg tcgtaaaagc 1560

cagatcaaat acggcgaaac ctattacacc accgaactgt ggaaagaagt gattcacctg 1620

cagggcgccg aaaccatcgc taccttcacc gaaggctacc tgatgggtca gccggcactg 1680

accaaatttg gctacggtaa aggcaaaacc tattacatgg gtaccaaact ggcgaaagac 1740

ggcaacatga aattcatcca gaccatcctg gctgaatcta aaatccagcc gctgaaccag 1800

gttgaaatcg aaagcgaaaa ctctaaaatc agcatgacct gtcgttctaa cagcagccac 1860

gattacatct tcctgctcaa ctacggccag acctccgaaa aagtgaaact gaaaaaaggc 1920

ggccagagcc tgctggatgg tagcatggtt gaaggtgaag tgagcgttaa agcgaacgat 1980

gttaaaatta tcaaactgac caaa 2004

<210> 5

<211> 44

<212> DNA

<213> 人工序列(Artificial Sequence)

<400> 5

cagaacctga ccctgttcaa atgtgaaaag aaagctattc gttc 44

<210> 6

<211> 44

<212> DNA

<213> 人工序列(Artificial Sequence)

<400> 6

gaacgaatag ctttcttttc acatttgaac agggtcaggt tctg 44

15页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种提高双功能纤维素酶的甘露聚糖酶活的方法及纤维素酶突变体RMX-M和应用

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!