Intelligent vehicle driving behavior decision method and system based on finite-state machine

文档序号:147849 发布日期:2021-10-26 浏览:32次 中文

阅读说明:本技术 一种基于有限状态机的智能车辆驾驶行为决策方法及系统 (Intelligent vehicle driving behavior decision method and system based on finite-state machine ) 是由 胡杰 钟鑫凯 陈瑞楠 张敏超 朱令磊 徐文才 颜伏伍 于 2021-07-27 设计创作,主要内容包括:本发明公开了一种基于有限状态机的智能车辆驾驶行为决策方法及系统,所述方法包括步骤:1)基于先验规则定义六类驾驶行为:巡航、跟车行驶、换道出去、加速超越、换道返回、制动;2)基于本车当前位置、航向角、行驶速度、行驶环境确定本车当前行驶场景的判断条件;3)采用事件集描述本车行驶场景与驾驶行为的映射关系,使用有限状态机判断当前车辆的最优驾驶行为。本发明实现了复杂环境中智能车辆驾驶行为的有效决策。(The invention discloses an intelligent vehicle driving behavior decision method and system based on a finite-state machine, wherein the method comprises the following steps: 1) six types of driving behaviors are defined based on prior rules: cruising, following driving, lane changing and exiting, accelerating and overrunning, lane changing and returning and braking; 2) determining a judgment condition of the current driving scene of the vehicle based on the current position, the course angle, the driving speed and the driving environment of the vehicle; 3) and describing the mapping relation between the driving scene and the driving behavior of the vehicle by adopting an event set, and judging the optimal driving behavior of the current vehicle by using a finite state machine. The invention realizes the effective decision of the driving behavior of the intelligent vehicle in the complex environment.)

1. An intelligent vehicle driving behavior decision method based on a finite-state machine is characterized in that: the method comprises the following steps:

1) six types of driving behaviors are defined based on prior rules: cruising, following driving, lane changing and exiting, accelerating and overrunning, lane changing and returning and braking;

2) determining a judgment condition of the current driving scene of the vehicle based on the current position, the course angle, the driving speed and the driving environment of the vehicle;

3) and describing the mapping relation between the driving scene and the driving behavior of the vehicle by adopting an event set, and judging the optimal driving behavior of the current vehicle by using a finite state machine.

2. The finite state machine-based intelligent vehicle driving behavior decision method according to claim 1, characterized in that: the specific steps of the step 2) comprise:

201) obtaining the current position (X, Y) and course angle of the vehicle by sensing and positioningThe driving speed v and the driving behavior currently executed;

202) obtaining the set reference path, the lane information, the position range of the static object in the driving environment, the position range of the dynamic object and the speed voAnd direction of motion

203) Determining a judgment condition whether the current running path and the paths on the two sides of the vehicle can pass or not according to the obstacle information;

204) analyzing the interference of the dynamic obstacle to the vehicle, and determining whether a judgment condition of front and rear obstacle cut-in danger exists or not by collision detection;

205) when the vehicle is in the reference path and no cut-in danger exists, finding the nearest barrier in the path, and determining whether the barrier meets the judgment condition of following vehicle running;

206) when the vehicle is in the lane changing path and the target return path is feasible and has no cut-in danger, whether the judgment condition of the lane changing return is met or not is determined.

3. The finite state machine-based intelligent vehicle driving behavior decision method according to claim 2, characterized in that: the specific steps of the step 3) comprise:

301) the vehicle is in an initial state of cruising and runs along a reference path;

302) when the vehicle is cruising, if the current running path and the paths at the two sides of the vehicle cannot pass through or a cut-in danger exists in the front of the vehicle, the vehicle is switched to brake;

303) when the vehicle is cruising, if the following condition is judged to be met, and meanwhile, the vehicle is switched to the following running if no previous state exists or the previous state is the following running;

304) when the vehicle is cruising, if the condition that the paths on the two sides of the vehicle can pass is met, and meanwhile, the front state is not available or the front state is the lane change exit, the vehicle is switched to the lane change exit;

305) when the vehicle is braked, if the front state is cruising and the feasible path is judged to exist and no cutting-in danger exists in the front, the vehicle is switched to cruising;

306) when the vehicle is braked, if the front state is lane change and the front and rear of the target lane change is judged to have no cut-in danger, the vehicle is switched to lane change;

307) when the vehicle is braked, if the front state is acceleration overtaking and no cutting-in danger exists in the front, the vehicle is switched to acceleration overtaking;

308) when the vehicle is braked, if the front state is lane change return, judging that the target return lane has no front and rear cut-in danger, and switching to lane change return;

309) when the vehicle follows the vehicle, if the disappearance time of the vehicle following target reaches a threshold value or no feasible path is judged, the vehicle is switched to cruise;

310) when the vehicle is out of the lane, if the lane changing process is not over half, and meanwhile, the situation that cut-in danger exists in the front and the back of the lane changed out of the target or no feasible path exists is judged, the vehicle is switched to cruise;

311) when the vehicle is out of the lane, if the lane changing process is over half and the cut-in danger exists in front of the target lane changing, the vehicle is switched to brake;

312) when the vehicle is out of the lane, if the lane is changed by half and the lane is judged to be changed out of the target without front cut-in danger, the vehicle is switched to acceleration overtaking;

313) when the vehicle is accelerated and transcends, if the vehicle is judged to have no feasible path or the vehicle is judged to have cut-in danger in the front, the vehicle is switched to brake;

314) when the vehicle overtakes in an accelerating way, if the condition of lane change returning is met and the condition that the front and rear cut-in danger does not exist in the target returning lane is judged, the vehicle is switched to the lane change returning;

315) when the vehicle is changed into the lane and returns, if the situation that the cut-in danger exists in the front and the back of the target returning lane is judged, the vehicle is switched to the acceleration overtaking mode;

316) when the lane is changed and the vehicle returns, if the vehicle returns to the reference path, the cruise is switched.

4. The finite state machine-based intelligent vehicle driving behavior decision method according to claim 2, characterized in that: the determination condition of whether the current driving path and the paths on both sides of the vehicle can pass in step 203) is as follows: establishing a grid map according to the vehicle position, the obstacle position and the path information, and taking the position of the vehicle as a reference to be in front of the vehicle spreUniformly arranged with a row of scattering points spre=s0+vT,s0Based on the forward looking distance, T is enough reaction time of the vehicle under different vehicle speeds, and v is the running speed of the vehicle; and d is the interval between the two scattering points, if the scattering point position is not in the range of the position of the obstacle, the scattering point area is considered to have no obstacle, and based on the judgment, whether the obstacle exists in the current driving path and the paths at the two sides or not is judged, so that whether the vehicle can pass is judged.

5. The finite state machine-based intelligent vehicle driving behavior decision method according to claim 2, characterized in that: the judgment condition of whether the front and rear obstacle cut-in danger exists in the step 204) is as follows:

setting the time at which the obstacle cuts into the path to tiThe initial distance from the vehicle at the time of cut-in is siWith tiThe time is the starting point, if TTC passesAfter the collision happens, the vehicle and the position range of the obstacle coincide for the first time, and then the collision is considered to happen;

wherein the TTC calculation is based on the vehicle heading angleVehicle speed v, obstacle speed voDirection of movement of the obstacleThe formula is as follows:

wherein + -represents that the positive sign is taken when the barrier is in front of the vehicle, and the negative sign is taken when the barrier is in front of the vehicle;

using the collision time TTC as a judgment standard for detecting the cut-in danger of the front and rear obstacles, and if the TTC is less than 0, indicating that no collision exists and no cut-in danger exists;

alternatively, the TTC threshold is set to TTCt, and if TTC is greater than the threshold TTCt, it is determined that the vehicle will not collide in a short time, and there is no risk of cut-in.

6. The finite state machine-based intelligent vehicle driving behavior decision method according to claim 1, characterized in that: the judgment condition whether the obstacle satisfies the following driving condition in the step 205) is as follows: the deviation from the vehicle course is less than the course deviation threshold valueAnd the speed is greater than a speed threshold vt

7. The finite state machine-based intelligent vehicle driving behavior decision method according to claim 5, characterized in that: the judgment condition returned by the channel changing in the step 206) is as follows: surpass former barrier enough distance, satisfy the following formula:

sc>st

in the formula, scIs the distance in the longitudinal direction of the vehicle from the obstacle, stIs a safe distance threshold.

8. The finite state machine-based intelligent vehicle driving behavior decision method according to claim 3, characterized in that: the judgment standard of the lane changing process in the steps 310-312) is the time t for switching from the lane changing state to the lane changing statecIf tc<ttIf the lane changing process is not over half, otherwise, the lane changing process is over half, ttAnd determining the lane change half-way time based on experience and actual overtaking test.

9. The finite state machine-based intelligent vehicle driving behavior decision method according to claim 3, characterized in that: the criterion that the vehicle has returned to the reference path in the step 316) is as follows:

where e is the lateral position deviation of the vehicle from the reference path, etThe threshold value of the lateral deviation is set,is the angle of the heading of the vehicle,is the threshold value of the angular deviation of the heading,is a reference path heading angle.

10. The utility model provides an intelligent vehicle driving action decision-making system based on finite-state machine which characterized in that: the system executes the finite state machine-based intelligent vehicle driving behavior decision method according to any one of claims 1-9.

Technical Field

The invention relates to the technical field of automatic driving, in particular to an intelligent vehicle driving behavior decision method and system based on a finite-state machine.

Technical Field

In the driving process of the intelligent vehicle, the traffic environment is complex and changeable, the uncertainty is high, static obstacles or dynamic obstacles with different speeds may exist on a driving path, and different driving behaviors are required to be adopted in the face of different obstacles so as to consider the driving safety and the driving efficiency of the vehicle.

The model-based method utilizes data to train a decision model, the dependence on data sampling and traffic environment is high, and how to acquire enough data to deal with variable traffic environment is a great challenge of the method.

The rule-based method utilizes the prior rule to formulate various driving behaviors, artificially analyzes key information of the traffic environment, integrates driving safety, comfort and driving efficiency, establishes a mapping rule between a scene and the driving behaviors, can efficiently cope with changeable traffic environments, and realizes accurate obstacle avoidance action decision on the premise of ensuring safe driving.

Disclosure of Invention

The invention aims to provide an intelligent vehicle driving behavior decision method and system based on a state machine, and the effective decision of the intelligent vehicle driving behavior in a complex environment is realized.

In order to achieve the above object, the present invention provides an intelligent vehicle driving behavior decision method based on a finite-state machine, which is characterized in that the method comprises the following steps:

1) six types of driving behaviors are defined based on prior rules: cruising, following driving, lane changing and exiting, accelerating and overrunning, lane changing and returning and braking;

2) determining a judgment condition of the current driving scene of the vehicle based on the current position, the course angle, the driving speed and the driving environment of the vehicle;

3) and describing the mapping relation between the driving scene and the driving behavior of the vehicle by adopting an event set, and judging the optimal driving behavior of the current vehicle by using a finite state machine.

Preferably, the specific steps of step 2) include:

201) obtaining the current position (X, Y) and course angle of the vehicle by sensing and positioningThe driving speed v and the driving behavior currently executed;

202) obtaining the set reference path, the lane information, the position range of the static object in the driving environment, the position range of the dynamic object and the speed voAnd direction of motion

203) Determining a judgment condition whether the current running path and the paths on the two sides of the vehicle can pass or not according to the obstacle information;

204) analyzing the interference of the dynamic obstacle to the vehicle, and determining whether a judgment condition of front and rear obstacle cut-in danger exists or not by collision detection;

205) when the vehicle is in the reference path and no cut-in danger exists, finding the nearest barrier in the path, and determining whether the barrier meets the judgment condition of following vehicle running;

206) when the vehicle is in the lane changing path and the target return path is feasible and has no cut-in danger, whether the judgment condition of the lane changing return is met or not is determined.

Preferably, the specific steps of step 3) include:

301) the vehicle is in an initial state of cruising and runs along a reference path;

302) when the vehicle is cruising, if the current running path and the paths at the two sides of the vehicle cannot pass through or a cut-in danger exists in the front of the vehicle, the vehicle is switched to brake;

303) when the vehicle is cruising, if the following condition is judged to be met, and meanwhile, the vehicle is switched to the following running if no previous state exists or the previous state is the following running;

304) when the vehicle is cruising, if the condition that the paths on the two sides of the vehicle can pass is met, and meanwhile, the front state is not available or the front state is the lane change exit, the vehicle is switched to the lane change exit;

305) when the vehicle is braked, if the front state is cruising and the feasible path is judged to exist and no cutting-in danger exists in the front, the vehicle is switched to cruising;

306) when the vehicle is braked, if the front state is lane change and the front and rear of the target lane change is judged to have no cut-in danger, the vehicle is switched to lane change;

307) when the vehicle is braked, if the front state is acceleration overtaking and no cutting-in danger exists in the front, the vehicle is switched to acceleration overtaking;

308) when the vehicle is braked, if the front state is lane change return, judging that the target return lane has no front and rear cut-in danger, and switching to lane change return;

309) when the vehicle follows the vehicle, if the disappearance time of the vehicle following target reaches a threshold value or no feasible path is judged, the vehicle is switched to cruise;

310) when the vehicle is out of the lane, if the lane changing process is not over half, and meanwhile, the situation that cut-in danger exists in the front and the back of the lane changed out of the target or no feasible path exists is judged, the vehicle is switched to cruise;

311) when the vehicle is out of the lane, if the lane changing process is over half and the cut-in danger exists in front of the target lane changing, the vehicle is switched to brake;

312) when the vehicle is out of the lane, if the lane is changed by half and the lane is judged to be changed out of the target without front cut-in danger, the vehicle is switched to acceleration overtaking;

313) when the vehicle is accelerated and transcends, if the vehicle is judged to have no feasible path or the vehicle is judged to have cut-in danger in the front, the vehicle is switched to brake;

314) when the vehicle overtakes in an accelerating way, if the condition of lane change returning is met and the condition that the front and rear cut-in danger does not exist in the target returning lane is judged, the vehicle is switched to the lane change returning;

315) when the vehicle is changed into the lane and returns, if the situation that the cut-in danger exists in the front and the back of the target returning lane is judged, the vehicle is switched to the acceleration overtaking mode;

316) when the lane is changed and the vehicle returns, if the vehicle returns to the reference path, the cruise is switched.

Preferably, the determination condition of whether the current traveling path and the paths on both sides of the host vehicle can pass in step 203) is:

establishing a grid map according to the vehicle position, the obstacle position and the path information, and taking the position of the vehicle as a reference to be in front of the vehicle spreUniformly arranged with a row of scattering points spre=s0+vT,s0Based on the forward looking distance, T is enough reaction time of the vehicle under different vehicle speeds, and v is the running speed of the vehicle; and d is the interval between the two scattering points, if the scattering point position is not in the range of the position of the obstacle, the scattering point area is considered to have no obstacle, and based on the judgment, whether the obstacle exists in the current driving path and the paths at the two sides or not is judged, so that whether the vehicle can pass is judged.

Preferably, the condition for determining whether there is a risk of front and rear obstacle cutting in step 204) is:

setting the time at which the obstacle cuts into the path to tiThe initial distance from the vehicle at the time of cut-in is siWith tiThe time is taken as a starting point, and if the vehicle and the position range of the obstacle coincide for the first time after the TTC time, the collision is considered to occur;

wherein the TTC calculation is required according to the vehicle course angleVehicle speed v, obstacle speed voDirection of movement of the obstacleThe formula is as follows:

wherein + -represents that the positive sign is taken when the barrier is in front of the vehicle, and the negative sign is taken when the barrier is in front of the vehicle;

using the collision time TTC as a judgment standard for detecting the cut-in danger of the front and rear obstacles, and if the TTC is less than 0, indicating that no collision exists and no cut-in danger exists;

alternatively, the TTC threshold is set to TTCt, and if TTC is greater than the threshold TTCt, it is considered that the vehicle will not collide in a short time, and there is no risk of cut-in.

Preferably, the judgment condition of whether the obstacle satisfies the following traveling condition in step 205) is: the deviation from the vehicle course is less than the course deviation threshold valueAnd the speed is greater than a speed threshold vt

Preferably, the judgment condition returned by the lane change in the step 206) is: surpass former barrier enough distance, satisfy the following formula:

sc>st

in the formula, scIs the distance in the longitudinal direction of the vehicle from the obstacle, stIs a safe distance threshold.

Preferably, the determination criterion of the lane change process in the step 310) is time t for switching from the lane change state to the lane change statecIf tc<ttIf the lane changing process is not over half, otherwise, the lane changing process is over half, ttAnd determining the lane change half-way time based on experience and actual overtaking test.

Preferably, the criterion that the host vehicle has returned to the reference path in step 316) is:

where e is the lateral position deviation of the vehicle from the reference path, etThe threshold value of the lateral deviation is set,is the angle of the heading of the vehicle,is the threshold value of the angular deviation of the heading,is a reference path heading angle.

The invention also provides an intelligent vehicle driving behavior decision system based on the finite-state machine, which is characterized in that: the system executes the intelligent vehicle driving behavior decision method based on the finite-state machine.

The invention designs an intelligent vehicle driving behavior decision method, which defines various driving behaviors based on prior rules, adopts an event set to describe the change relation of the driving behaviors according to the current motion state and the environmental information of a vehicle, and obtains the optimal driving behavior of the current vehicle in continuous running by using a finite state machine. The invention comprehensively considers various factors in the traffic environment, and realizes the high-efficiency and accurate obstacle avoidance action decision of the intelligent vehicle on the premise of ensuring safe driving; the influence of the static barrier on the running of the vehicle is considered, and the influence of the dynamic barrier on the vehicle when cutting into the running path of the vehicle is also considered, so that whether the dynamic object generates potential danger on the vehicle is judged by adopting the collision time, and the sufficient safe running space of the vehicle is ensured. On the basis, the driving habits of human beings are simulated, accurate and safe driving behavior switching is realized, and efficient decision making in a dynamic environment is realized.

Drawings

Fig. 1 is a diagram of steps of a driving behavior decision method of an intelligent vehicle based on a finite-state machine.

Fig. 2 is a schematic diagram of various driving behaviors.

FIG. 3 is a schematic view illustrating a state in which it is determined that there is a danger of cutting into the front of the vehicle.

Fig. 4 is a map of a driving scene and driving behavior.

Fig. 5 is a schematic view of the driving behavior state switching.

Detailed Description

The invention is described in further detail below with reference to the figures and specific embodiments.

As shown in fig. 1, the method for deciding driving behavior of an intelligent vehicle based on a finite-state machine according to the present invention includes the steps of:

1) six types of driving behaviors are defined based on prior rules: cruising, following driving, lane changing and exiting, accelerating and overrunning, lane changing and returning and braking;

2) determining a judgment condition of the current driving scene of the vehicle based on the current position, the course angle, the driving speed and the driving environment of the vehicle;

3) and describing the mapping relation between the driving scene and the driving behavior of the vehicle by adopting an event set, and judging the optimal driving behavior of the current vehicle by using a finite state machine.

Further, the specific steps of step 2) include:

201) obtaining the current position (X, Y) and course angle of the vehicle by sensing and positioningThe driving speed v and the driving behavior currently executed;

202) obtaining the set reference path, the lane information, the position range of the static object in the driving environment, the position range of the dynamic object and the speed voAnd direction of motion

203) Determining a judgment condition whether the current running path and the paths on the two sides of the vehicle can pass or not according to the obstacle information;

the judgment condition whether the current running path and the paths on the two sides of the vehicle can pass is as follows:

establishing a grid map according to the vehicle position, the obstacle position, the reference path and the lane informationAt the front of the vehicle s based on the position of the vehiclepreUniformly arranged with a row of scattering points spre=s0+vT,s0Based on the forward looking distance, T is enough reaction time of the vehicle under different vehicle speeds, and v is the running speed of the vehicle; and d is the interval between the two scattering points, if the scattering point position is not in the range of the position of the obstacle, the scattering point area is considered to have no obstacle, and based on the judgment, whether the obstacle exists in the current driving path and the paths at the two sides or not is judged, so that whether the vehicle can pass is judged.

204) Analyzing the interference of the dynamic obstacle to the vehicle, and determining whether a judgment condition of front and rear obstacle cut-in danger exists or not by collision detection;

the judgment conditions for judging whether the front and rear obstacles exist the cut-in danger are as follows:

setting the time at which the obstacle cuts into the path to tiThe initial distance from the vehicle at the time of cut-in is siWith tiThe time is taken as a starting point, and if the vehicle and the position range of the obstacle coincide for the first time after the TTC time, the collision is considered to occur;

wherein the TTC calculation is required according to the vehicle course angleVehicle speed v, obstacle speed voDirection of movement of the obstacleThe formula is as follows:

wherein + -represents that the positive sign is taken when the barrier is in front of the vehicle, and the negative sign is taken when the barrier is in front of the vehicle;

using the collision time TTC as a judgment standard for detecting the cut-in danger of the front and rear obstacles, and if the TTC is less than 0, indicating that no collision exists and no cut-in danger exists;

alternatively, the TTC threshold is set to TTCt, and if TTC is greater than the threshold TTCt, it is considered that the vehicle will not collide in a short time, and there is no risk of cut-in. The two conditions are present in parallel, and if one condition is satisfied, the threshold TTCt is greater than 0. Namely TTC <0 or TTC > TTCt, as a determination satisfaction condition.

205) When the vehicle is in the reference path and no cut-in danger exists, finding the nearest barrier in the path, and determining whether the barrier meets the judgment condition of following vehicle running; the judgment condition whether the barrier meets the following driving condition is as follows: the course deviation between the obstacle and the vehicle is less than the course deviation threshold valueAnd the speed is greater than a speed threshold vtThe following formula:

otherwise, the lane change condition is considered to be satisfied.

206) When the vehicle is in the lane changing path and the target return path is feasible and has no cut-in danger, whether the judgment condition of the lane changing return is met or not is determined. The judgment condition of the lane change return is as follows: surpass former barrier enough distance, satisfy the following formula:

sc>st

in the formula, scIs the distance in the longitudinal direction of the vehicle from the obstacle, stIs a safe distance threshold.

Further, the specific steps of step 3) include:

301) the vehicle is in an initial state of cruising and runs along a reference path;

302) when the vehicle is cruising, if the current running path and the paths at the two sides of the vehicle cannot pass through or a cut-in danger exists in the front of the vehicle, the vehicle is switched to brake;

303) when the vehicle is cruising, if the following condition is judged to be met, and meanwhile, the vehicle is switched to the following running if no previous state exists or the previous state is the following running;

304) when the vehicle is cruising, if the condition that the paths on the two sides of the vehicle can pass is met, and meanwhile, the front state is not available or the front state is the lane change exit, the vehicle is switched to the lane change exit;

305) when the vehicle is braked, if the front state is cruising and the feasible path is judged to exist and no cutting-in danger exists in the front, the vehicle is switched to cruising;

306) when the vehicle is braked, if the front state is lane change and the front and rear of the target lane change is judged to have no cut-in danger, the vehicle is switched to lane change;

307) when the vehicle is braked, if the front state is acceleration overtaking and no cutting-in danger exists in the front, the vehicle is switched to acceleration overtaking;

308) when the vehicle is braked, if the front state is lane change return, judging that the target return lane has no front and rear cut-in danger, and switching to lane change return;

309) when the vehicle follows the vehicle, if the disappearance time of the vehicle following target reaches a threshold value or no feasible path is judged, the vehicle is switched to cruise;

310) when the vehicle is out of the lane, if the lane changing process is not over half, and meanwhile, the situation that cut-in danger exists in the front and the back of the lane changed out of the target or no feasible path exists is judged, the vehicle is switched to cruise;

the judgment standard of the lane changing process is the time t for switching from the lane changing state to the lane changing statecIf tc<ttIf the lane changing process is not over half, otherwise, the lane changing process is over half, ttAnd determining the lane change half-way time based on experience and actual overtaking test.

311) When the vehicle is out of the lane, if the lane changing process is over half and the cut-in danger exists in front of the target lane changing, the vehicle is switched to brake;

312) when the vehicle is out of the lane, if the lane is changed by half and the lane is judged to be changed out of the target without front cut-in danger, the vehicle is switched to acceleration overtaking;

313) when the vehicle is accelerated and transcends, if the vehicle is judged to have no feasible path or the vehicle is judged to have cut-in danger in the front, the vehicle is switched to brake;

314) when the vehicle overtakes in an accelerating way, if the condition of lane change returning is met and the condition that the front and rear cut-in danger does not exist in the target returning lane is judged, the vehicle is switched to the lane change returning;

315) when the vehicle is changed into the lane and returns, if the situation that the cut-in danger exists in the front and the back of the target returning lane is judged, the vehicle is switched to the acceleration overtaking mode;

316) when the lane is changed and the vehicle returns, if the vehicle returns to the reference path, the cruise is switched.

The judgment standard that the vehicle has returned to the reference path is as follows:

where e is the lateral position deviation of the vehicle from the reference path, etThe threshold value of the lateral deviation is set,is the angle of the heading of the vehicle,is the threshold value of the angular deviation of the heading,is a reference path heading angle.

Based on the method, the invention also provides an intelligent vehicle driving behavior decision system based on the finite-state machine, and the system executes the intelligent vehicle driving behavior decision method based on the finite-state machine.

Finally, it should be noted that the above detailed description is only for illustrating the technical solution of the patent and not for limiting, although the patent is described in detail with reference to the preferred embodiments, it should be understood by those skilled in the art that the technical solution of the patent can be modified or replaced by equivalents without departing from the spirit and scope of the technical solution of the patent, which should be covered by the claims of the patent.

12页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:车辆行驶控制方法、装置、系统和存储介质

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!